
An approach to encapsulation of Grid processing within an
OGC Web Processing Service

Andrew Woolf (andrew.woolf@stfc.ac.uk), Arif Shaon (arif.shaon@stfc.ac.uk),
STFC e‐Science Centre, Rutherford Appleton Laboratory, Oxon OX11 0QX, UK

1 Introduction
The Geospatial community requires an ability to analyse and process geographic datasets
using a combination of various spatial software and analytical methods. Increasingly complex
geo-processing operations drive a concomitant increase in required computing capability – it
is no longer always possible to rely on a desktop GIS to perform spatial analysis of interest,
especially where very large datasets are concerned, or the results of complex simulation
models need to be integrated.

There is also a need to be able to share processing and analytical capability across the
community in an interoperable fashion. A research group having developed a new analysis
technique may wish to make it available to the broader research community, or the owner of
a high-performance computing resource may wish to allow use by collaborators for a defined
purpose.

2 The problem
The recent development of web services has provided a powerful technical solution to
simplify the sharing of computational resources and algorithms. Software may be exposed for
use through simple web-based protocols, and chains of such services may be orchestrated in
value-adding workflows. These ‘service-oriented architectures’ provide a new paradigm for
enabling collaboration.

To date, most web-based geo-processing services take a traditional ‘RESTful’ ‘stateless’
view of resources: data are not distinguished from their access service instances,
asynchronous interaction sequences are poorly supported, there is no notion of other more
generic resource types (e.g. computational) separate from data and service instances. There
are no efficient means for handling resource-intensive processes. For example, an application
for predicting future global climate change may involve analysing significantly large volumes
of past weather data collected over a number of years, and running compute-intensive
forecast models. Such a complex application will require a large amount of computational
resources, such as disk space, memory and CPU power. Executing this application through a
standard web service allows no scheduling capability, and could utilise all available
computational resources, resulting in significant delays for other processes.

In addition, typical geo-processing web services do not take a sophisticated approach to
security-related issues associated with the underlying processes and datasets. In fact, service
providers often rely on ad-hoc access control at the client level to ensure security of the

resources exposed. This leads to non-interoperability in workflows that require interaction
between multiple services, each with different security protocols.

The aforementioned limitations are precisely the niche of Grid computing1. While Grid
architectures and technologies vary, they share in common an attempt to abstract models of
stateful resource (data, storage, compute, etc.) within a standardised framework in order to
simplify the construction on demand of complex workflows. For instance, using Grid
technology, execution of a large-scale parallel process may be accelerated by load-balancing
across different Grid nodes. In addition, Grid architectures enable allocation of specific
amounts of computational resource, such as disk space, to a particular process. In terms of
access control, many Grid architectures employ a common security framework (e.g. the Grid
Security Infrastructure (GSI)2) to provide secure, robust and interoperable communications.
Authentication in the GSI architecture is based on a public-key infrastructure (PKI) with
x.509 certificates containing information for identifying users or services.

From this perspective, geoprocessing applications and services should benefit from
integration with Grid computing resources and technologies to enable applications to scale
out. This goal is reflected in a Memorandum of Understanding (MoU) on collaboration
signed in late 20073 by the Open Geospatial Consortium (OGC)4 and the Open Grid Forum
(OGF, the principal standards body for Grid computing)5. The initial targets of the
collaboration are: integration of the OGC Web Processing Service (WPS) with Grid
processing and workflow tools, and integration of geospatial catalogues with Grid data
movement tools. From a wider perspective, it is intended to promote the use of Grid-based
resources within the Geospatial community.

3 General approach
The OGC standard Web Processing Service (WPS)6 interface is specifically designed to
facilitate publishing, discovery and use of geospatial processes in a standardised and thus
interoperable manner. In general, the WPS interface may be implemented as a Web Service,
with operations for: describing functionality in terms of inputs and outputs, triggering its
execution, monitoring its status and finally retrieving its output.

We present here an approach to developing a Grid-enabled WPS by exploiting the similarities
and differences between WPS and Grid processing paradigms. Both provide a remote
interface for invoking computational processes. WPS functionality includes remote data
inputs/outputs, progress monitoring, and asynchronous delivery. Beyond this, Grid job

1 http://en.wikipedia.org/wiki/Grid_computing
2 http://www.globus.org/security/overview.html
3 http://www.opengeospatial.org/pressroom/newsletters/200801#C5
4 http://www.opengeospatial.org/
5 http://www.ogf.org/
6 http://www.opengeospatial.org/standards/wps

http://www.opengeospatial.org/pressroom/newsletters/200801#C5

submission mechanisms typically add the ability to stage data, and specify required
computational resource requirements7.

Our approach utilises the conceptual overlaps and differences between WPS and the Job
Submission Description Language (JSDL)8 (Figure 1). JSDL is an OGF specification that
provides a standardised description of a computational job and the resources (data and
computational) it requires. It provides a normative XML schema for describing
computational job requirements, including job description and identification, software
application to be run, resource requirements (filesystem parameters, disk space, operating
system, CPU, etc.), and data staging instructions for input and output. It also includes
standardised POSIX extensions for executable filename, command-line arguments, etc. The
purpose of JSDL is to enable a standardised specification of job submission to Grid
infrastructures irrespective of the back-end schedulers or resource managers used. JSDL job
descriptions may be submitted to consuming services like GridSAM9.

At the specification level, both the WPS and JSDL parameters include process description
information (Identifier – WPS, JobIdentification/JobName – JSDL), and process outputs and
inputs (DataInputs – WPS, POSIXApplication/Input,Argument,Output, DataStaging/Source –
JSDL). These overlapping parameters are sufficient to produce a valid JSDL document. This
is fundamental to the approach presented in this paper.

4 Solution
We have developed a solution that combines the simple web service interface of WPS with
the ability of JSDL to specify resource requirements for a large computational process.
Specifically, we have developed a WPS-Grid profile to provide a WPS interface to a Grid
computing backend. The infrastructure of the Grid enabled WPS developed may be viewed as
Grid computing resources encapsulated behind the WPS; the WPS architecture is designed to
act as an interface to the resources on the Grid.

7 Woolf (2006), “Wrappers, portlets, resource-orientation and OGC in Earth-System Science Grids”, OGC TC
Edinburgh, [Online: http://portal.opengeospatial.org/files/?artifact_id=15966]
8 http://www.gridforum.org/documents/GFD.56.pdf
9 A job submission and monitoring web service accepting JSDL input, http://gridsam.sourceforge.net.

Figure 1: Conceptual overlaps and differences between WPS and JSDL

Computational
resource requirements

WPS Web service
invocation

JSDL

Process
description, data

http://portal.opengeospatial.org/files/?artifact_id=15966
http://gridsam.sourceforge.net/

4.1 WPS Execute request
A WPS-Grid profile is achieved by enabling encoding of JSDL related information as part of
the WPS Execute request defined in the WPS 1.0 specification. The JSDL-related
information is then used by the WPS instance for constructing a JSDL document, and
submitting the process for execution to a Grid backend through a JSDL-enabled Grid client,
such as GridSAM (Figure 2).

The rationale of this approach is to incorporate JSDL handling ability into a WPS while
ensuring its conformance to the WPS 1.0 specification. Moreover, this allows the capability
of Grid computing to be combined with the simplicity of the WPS interface.

Web
Processing
Service

JSDL WPS‐Grid
protocol Computing

Grid

Figure 2: WPS-Grid generates JSDL document for submission to Grid

Two broad options are available for including JSDL-related information within the WPS
Execute request:

• where JSDL-related parameters are regarded as conceptually distinct from other
WPS input parameters: through a specific ‘JSDL’ parameter as part of the WPS
DataInputs

• where JSDL-related parameters are regarded simply as additional WPS input
parameters: through individual WPS DataInput parameters

We outline in the next two sections these different approaches to specifying JSDL input
parameters in a WPS Execute request.

4.1.1 Specific ‘JSDL’ input parameter
Typically, JSDL-related WPS input parameters will be concerned with specifying resource
requirements for executing the process on a computing Grid backend, e.g. required disk
space, CPU time, etc. Conceptually, such parameters are not process-related; they only
determine whether, and perhaps how quickly, a result is computed. The output results
themselves are independent of them. There is a strong case, therefore, to regard the JSDL-
related input parameters as different in nature to other process-related WPS input parameters.
In this case, a specific ‘JSDL’ WPS input parameter may be used to specify resource
requirements. The use of this special parameter ‘JSDL’ enables a WPS to distinguish between
JSDL parameters and the other (process-related) parameters.

JSDL input parameters may be supplied in a conformant XML format, or as individual
elements, as described in the next two sections respectively.

4.1.1.1 Full JSDL document or valid snippet
In this case, a URL may be provided to a complete pre-created JSDL document, or valid
snippet (e.g. specifying just the JSDL ‘Resource’ XML elements), Listing 1.

Advantages of this approach are that JSDL input may be validated against the JSDL schema.

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator
&DataInput=other_inputs=xxx;JSDL=http://www.foo.com/myfoo.jsdl@Format=text/xml&storeExecu
teResponse=true&status=true

Listing 1: WPS Execution request with URL to JSDL document

Alternatively, the JSDL document or snippet may be URL-encoded and included within the
WPS request, Listing 2.

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator
&DataInput=other_inputs=xxx;JSDL=%3CJobDefinition%3E%3CJobDescription%3E%3CResources%3E
%3CTotalDiskSpace%3E%3CExact%3E5%3C%2FExact%3E%3C%2FTotalDiskSpace%3E%3CTotalCPUCo
unt%3E%3CExact%3E1%3C%2FExact%3E%3C%2FTotalCPUCount%3E%3C%2FResources%3E%3C%2FJ
obDescription%3E%3C%2FJobDefinition%3E@Format=text/xml@Schema=http://server/jsdl.xsd&sto
reExecuteResponse=true&status=true

Listing 2: WPS Execution request with URL-encoded JSDL snippet

Note that such a JSDL document or document fragment may also be supplied very naturally
through a HTTP POST request (Listing 3) facilitating the service invocation in XML-based
workflows.

<wps:Execute service="WPS" version="1.0.0" xmlns:wps="http://www.opengis.net/wps/1.0.0"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
..\wpsExecute_request.xsd">
 <ows:Identifier>WeatherGenerator</ows:Identifier>
 <wps:DataInputs>
 <wps:Input>
 ...
 </wps:Input>
 <wps:Input>
 <ows:Identifier>JSDL</ows:Identifier>
 <wps:Data>
 <wps:ComplexData encoding=”” schema=”http://server/jsdl.xsd”>

<jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema‐
instance">

 <jsdl:JobDescription>
<jsdl:Resources>

<jsdl:TotalDiskSpace>
<jsdl:Exact>5</jsdl:Exact>

</jsdl:TotalDiskSpace>
< jsdl:TotalCPUCount>

< jsdl:Exact>1</ jsdl:Exact>
</ jsdl:TotalCPUCount>

</ jsdl:Resources>
<jsdl:JobDescription/>

</jsdl:JobDefinition>

 </wps:ComplexData>
 </wps:Data>
 </wps:Input>
 </wps:DataInputs>
 <wps:ResponseForm>
 <wps:ResponseDocument storeExecuteResponse="true" status="true"/>
 </wps:ResponseForm>
</wps:Execute>

Listing 3: WPS Execution request with HTTP-POST JSDL snippet

4.1.1.2 JSDL elements microformat
In this approach, JSDL-related parameters are represented as key-value pairs, with the
keyword deriving directly from the relevant JSDL element name. As well, an Xpath-like
syntax can be used (replacing ‘/’ with ‘#’) to specify the JSDL element name.

JSDL parameters to be included in the WPS request URL are specified in a microformat as
the value of the complex DataInput parameter, ‘JSDL’ (Listing 4). JSDL key-value pairs are

enclosed within square brackets [], with the WPS data input attribute (‘Format’) set to the
special value ‘text/kvp’. (Note that the entire URL must be URL-encoded as per IETFC RFC
1738, although for clarity the examples in the listings below are left unencoded.)

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator
&DataInput=other_inputs=xxx;JSDL=[TotalDiskSpace=5;TotalCPUCount=1]@Format=text/kvp&store
ExecuteResponse=true&status=true

Listing 4: WPS Execution request with microformat for JSDL input parameters

As an alternative to specifying full Xpath JSDL element names, simplified keywords may be
specified for predefined common JSDL elements (e.g. ‘Source_URI’ for the JSDL
‘DataStaging/Source/URI’ XML element).

Multiple values for a JSDL parameter are separated using “,” (Listing 5).

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator
&DataInput=other_inputs=xxx;JSDL=[DataStaging#Target#URI=http://www.foo.com/myfoo.xml,http
://www.foo.com/myfoo2.xml]@Format=text/kvp&storeExecuteResponse=true&status=true

Listing 5: WPS Execution request with multiple JSDL element values

4.1.2 Individual JSDL input parameters
Rather than regarding JSDL parameters as special, they may be regarded as simply additional
WPS literal input parameters individually. In this case, they may be included as key-value
pairs in a manner similar to that described in section 4.1.1.2 above, except as individual
parameters instead of within an aggregate microformat value of the parameter ‘JSDL’
(Listing 6).

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator
&DataInput=other_inputs=xxx;TotalDiskSpace=5;TotalCPUCount=1&storeExecuteResponse=true&st
atus=true

Listing 6: WPS Execution request with individual JSDL input parameters

4.2 Progress monitoring
This JSDL-enabled WPS is also able to monitor the status of the process on the Grid using
the same Grid client as was used for the job submission (e.g. GridSAM).

4.3 Generation of JSDL document
The generation by the WPS server of a conformant and appropriate JSDL document for
submission to a Grid backend is implementation-defined. Typically, an internal configuration
would assign a default JSDL to a specific WPS process, with user-supplied JSDL parameters
over-riding the defaults. As mentioned earlier, in fact a conventional WPS request contains
sufficient information to generate a minimal compliant JSDL document.

4.4 Security
Secure access to OGC web services is the subject of considerable ongoing work. Rather than
develop a divergent solution, a very lightweight ‘placeholder’ approach has been taken to
security within the WPS-Grid profile. We allow a user to embed MyProxy10 parameters
(host, port, username, password) within the WPS request using the microformat encoding
mechanism mentioned earlier ($4.1.1.2), as the value of a special DataInput parameter,
“MyProxy” (Listing 7). These are processed by the WPS server and used at job submission
for authentication.

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator
&DataInput=otherinput@datatype=string;JSDL=[TotalDiskSpace=5]@Format=text/kvp;MyProxy=[us
ername=xxxx;password=xxxx;host=xxx;port=xxxx]@Format=text/kvp&storeExecuteRepose=true&sta
tus=true

Listing 7: WPS Execution request with MyProxy input parameters

Including sensitive information, such as a user’s MyProxy credential in a WPS Execute
request does pose security risks. Therefore, this approach assumes that implementation of this
WPS-JSDL profile will incorporate necessary security protocol (e.g. SSL) to ensure the
security of MyProxy information in the WPS Process Execution Get Request.

5 Implementation
A Grid-enabled WPS service has been implemented within the OGC’s OWS-6 activity as a
proof-of-concept using an atmospheric particle-tracing ‘trajectory service’11 and deployment
on the UK National Grid Service12, which is explicitly mentioned as a target Grid
infrastructure in the OGC-OGF MoU. The implementation of this Grid-enabled WPS is fully
complaint with the OGC WPS specification 1.0.0, and uses Python as the underlying
programming language and Pylons13 as the integrated web development framework. At an
architectural level, it depends on a number of other services and components (Figure 3) to
enable invocation and controlling of Grid-based processes through standard WPS requests.

10 http://grid.ncsa.uiuc.edu/myproxy/
11 http://badc.nerc.ac.uk/community/trajectory/
12 http://www.ngs.ac.uk
13 http://pylonshq.com/

http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator&DataInput=otherinput@datatype=string;JSDL=%5BTotalDiskSpace=5%5D@Format=text/kvp;MyProxy=%5Busername=xxxx;password=xxxx;host=xxx;port=xxxx%5D@Format=text/kvp&storeExecuteRepose=true&status=true
http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator&DataInput=otherinput@datatype=string;JSDL=%5BTotalDiskSpace=5%5D@Format=text/kvp;MyProxy=%5Busername=xxxx;password=xxxx;host=xxx;port=xxxx%5D@Format=text/kvp&storeExecuteRepose=true&status=true
http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator&DataInput=otherinput@datatype=string;JSDL=%5BTotalDiskSpace=5%5D@Format=text/kvp;MyProxy=%5Busername=xxxx;password=xxxx;host=xxx;port=xxxx%5D@Format=text/kvp&storeExecuteRepose=true&status=true
http://foo.bar.1/wps?version=1.0.0&request=Execute&service=WPS&Identifier=WeatherGenerator&DataInput=otherinput@datatype=string;JSDL=%5BTotalDiskSpace=5%5D@Format=text/kvp;MyProxy=%5Busername=xxxx;password=xxxx;host=xxx;port=xxxx%5D@Format=text/kvp&storeExecuteRepose=true&status=true
http://grid.ncsa.uiuc.edu/myproxy/
http://badc.nerc.ac.uk/community/trajectory/
http://www.ngs.ac.uk/
http://pylonshq.com/

WPS SOAP
Layer

GridSAM Client

Grid-enabled
WPS

WPS Host UK NGS

GridSAM
Service

Grid

MyProxy
Server

WPS Requests
(e.g. GetCapabilities,

Execute etc.)

JSDL
JSDL

Verify MyProxy
Credentials

Job
Submission

Job-related
Query/Response

Job-related
Query/Response

Job-related
Query/Response

Figure 3: An Architectural View of the Grid-enabled WPS

• GridSAM Client

The Grid-enabled WPS liaises with a GridSAM client deployed on the machine that is
also hosting the WPS to submit jobs to the UK NGS. The GridSAM client receives the
WPS-generated JSDL job description and submits it to the GridSAM server. The WPS
also interacts with the GridSAM client for checking the status of a job on the Grid; the
job status result is used by the WPS to produce and record WPS-specific process status
(for example ProcessCompleted, ProcessSucceeded, etc.)14.

• GridSAM Service

The aforementioned GridSAM client sends a JSDL job description to the UK NGS
GridSAM service (installed on the Oxford node of NGS), which then executes the
requested job on the NGS. This service also receives queries (for example job status
check, etc.) from the GridSAM client and responds to them by liaising with the Grid with
which it is associated. The GridSAM service is also responsible for retrieving and
verifying users’ Grid certificates using the MyProxy credentials received along with the
JSDL job description from the GridSAM client.

• WPS SOAP / Proxy Layer

There is also a WPS SOAP/Proxy layer that provides a SOAP wrapper outside the
network firewall to proxy SOAP requests through HTTP GET requests to the Grid-
enabled WPS. The SOAP interface provided by the SOAP wrapper conforms to the WPS
specification 1.0.0. In addition, this layer is also used for forwarding other HTTP GET

14 Standard GridSAM status codes are mapped onto WPS status codes.

requests to the Grid-enabled WPS, such as request for downloading process output and
status check request for a process.

6 Conclusions & Future Work
Grid computing provides efficient means of executing resource-intensive processes, and thus
should be beneficial to the Geospatial community that has an increasing need for performing
highly complex geo-processing operations involving large geographical datasets. The WPS-
Grid profiling approach presented in this paper demonstrates the feasibility of integrating
Grid capability within standard geo-processing web services, such as the Web Processing
Service. However, there is considerable scope for further work in this area, for example,
refactoring OGC web services around a resource-oriented view of data within the Grid
infrastructure using technologies such as the Web Services Resource Framework (WSRF)15.
It may also be useful to look into replacing GridSAM as the grid middleware for consuming
JSDL documents and job management on the Grid, with any middleware conforming to the
‘HPC Basic Profile’16, subject to associated restrictions on the allowable scope of JSDL.
Moreover, future evolution of the WPS-Grid profile will need to align with best practice for
adding security to other OGC service interfaces, possibly by harmonising the Grid Security
Infrastructure (GSI) and the current OGC approaches to security.

15 http://www.globus.org/wsrf/
16 http://www.ogf.org/documents/GFD.114.pdf

	1 Introduction
	2 The problem
	3 General approach
	4 Solution
	4.1 WPS Execute request
	4.1.1 Specific ‘JSDL’ input parameter
	4.1.1.1 Full JSDL document or valid snippet
	4.1.1.2 JSDL elements microformat

	4.1.2 Individual JSDL input parameters

	4.2 Progress monitoring
	4.3 Generation of JSDL document
	4.4 Security

	5 Implementation
	6 Conclusions & Future Work

