

Towards a methodology for software preservation

Brian Matthews(1), Arif Shaon(1), Juan Bicarregui(1), Catherine Jones (1) , Jim

Woodcock (2), Esther Conway (1)

(1) STFC Rutherford Appleton Laboratory, Chilton, Didcot, OXON, OX11 0QX, UK

(2) Department of Computer Science, University of York, Heslington, York, YO10 5DD, UK.
brian.matthews@stfc.ac.uk

Abstract

Only a small part of the research which has been

carried out to date on the preservation of digital objects

has looked specifically at the preservation of software.

This is because the preservation of software has been

seen as a less urgent problem than the preservation of

other digital objects, and also the complexity of

software artefacts makes the problem of preserving

them a daunting one. Nevertheless, there are good

reasons to want to preserve software. In this paper we

consider some of the motivations behind software

preservation, based on an analysis of software

preservation practice. We then go on to consider what

it means to preserve software, discussing preservation

approaches, and developing a performance model

which determines how the adequacy of the a software

preservation method. Finally we discuss some

implications for preservation analysis for the case of

software artefacts.

Introduction

Software is a class of electronic object which is by its
very nature digital and which is often a vital pre-
requisite to the preservation of other electronic objects.
However, software has many characteristics which
make its preservation substantially more challenging
than that of many other types of digital object.
Software is inherently complex, normally composed of
a very large number of highly interdependent
components and often forbiddingly opaque for people
especially those who were not directly involved in its
development. Software is also highly sensitivity to its
operating environment as a typical software artefact
has a large number of other items upon which it
depends including compilers, runtime enviroments,
operating systems, documentation, and even hardware
platform with its built in software stack. So preserving
a piece of software may involve preserving much of
the context as well.

Handling these challenges is therefore a major
barrier to the preservation of software. So much so
that often, the preservation of software is seen as a
secondary activity, less critical that the preservation of
the data it manipulates. However, in many cases, such
data is uninterpretable without the software to handle
it; and recreating software from partial information can
be a near impossible task.

Software preservation is thus a relatively

underexplored topic and there is little practical
experience in the field of software preservation as
such. The results reported in this paper arose from a
UK JISC sponsored study into the significant
properties of software for preservation

1
, and

subsequently in a JISC project into methods and tools
for software preservation

2
. Given the relative

immaturity of the field, the studies became an
exploration of the notion of software preservation,
considering the stakeholders and motivations behind
software preservation as much as identifying the
methods and technology required to support it.

Different communities have needs to preserve
software, such as libraries and archives, managers of
data archives which have a need to preserve associated
software, and software developers themselves
maintaining and reusing software over the long term.
We consider different approaches to software
preservation which vary from an emphasis on
preserving the software executables directly, which
uses hardware preservation and emulation, to an
emphasis on preserving the essential behaviour of
software in a new context via migration and porting.

We discuss some concepts useful for a software
preservation methodology, considering the stages of
retrieval, reconstruction and replay which need to be
passed through to reproduce a usable performance of a
software product. We identify a notion of adequacy of
preservation, an aspect of the authenticity of
preservation which tests the future performance of
software against specified preservation properties once
it has been reconstructed into a working version in the
new environment. This notion allows us to relate our
approach to software preservation to concepts from the
OAIS information model; indeed the approach can be
seen as a specialisation of OAIS for the case of
software. We comment on using an existing
preservation methodology for software and finally
discuss some experiences of using the approach in
practice.

1 Joint Information Systems Committee (JISC) study into

the Significant Properties of Software (2007).
2
 Joint Information Systems Committee (JISC) sponsored

project Tools and Guidelines for Preserving and Accessing

Software Research Outputs (2007-09).

Why Preserve Software?

A key question to consider is why might it useful do
preserve software. After all, software has a track
record of being both being very fragile and very
disposable.

Software is fragile as it is very sensitive to changes
in environment: hardware, operating system, versions
of systems (e.g. programming languages and
compilers) and configuration. When the environment
changes, software notoriously stops working, crashes
losing vital data, or works but not as originally
intended, with missing or differing functionality. The
last case can be particularly damaging, as the software
may seem to work but produces subtly different results.
For example, compiling with a different floating point
module may produce quite different results in the
analysis. The complexity of the software makes it
difficult to make the required adjustments so that is
functions correctly in the new environment.

Software is disposable as in the face of
environment change and the complexity of large-scale
systems, developers often throw away previous
software and start again from scratch. If the data has
been preserved, it may be easier to write new software
rather than wrestle with legacy, and you may be able to
produce a faster, more user-friendly system which
operates in a modern environment.

Together, these make the preservation of software
appear both difficult and unnecessary. However, there
are also good reasons to preserve software, especially
in a research and teaching environment. Some of these
reasons are as follows.

Museums and Archives

A small but significant constituency of software
preservation is those museums, archives, and
enthusiasts which are interested in preserving aspects
of the history of computing. These institutions wish to
preserve important software artefacts as they were at
the time of their creation or use, so that future
generations can study and appreciate the computers
available that particular period, and trace their
development.

Some museums concentrate on preserving
hardware, with machines are often kept in working
operation, so there is a need to preserve the software to
demonstrate the function of the machine. Others
archives are interested in preserving the software
alone, typically via a web presence. For example, the
Multics History Project

3
 is a effort to locate and engage

the original experts on the Multics operating system to
capture their knowledge before they die.

There has been given some consideration of how to
preserve software in this context (Zabolitsky 2002).
However, this is largely limited to preserving historic
software with the historic hardware, so the major
concern is preserving the code on some physical
media, with appropriate backup and replication
strategies; these preservation actions are similar to
those for other digital artefacts. The problem of
preserving the usage of the software in a future context
is not considered in detail.

3
 http://www.multicians.org/mhp.html

Preserve a complete record of work

Software is frequently an output of research. This is
particularly the case in Computer Science where the
software itself is an important test of the hypothesis of
the research. However, software as an output of
research extends beyond Computer Science as many
research projects across all disciplines now frequently
have an aspect of computing and programming .

If university archives and libraries are going to
maintain a complete record of research, then the
software itself should be preserved. Frequently, theses
include code listings or CD-ROM's of the supporting
software. However, while the theses are stored on
library shelves, software is not necessarily preserved
against media change or change in the computing
environment making the code difficult to run.
Research projects again frequently produce software,
to support their claims, so the results of the project are
hard to interpret and evaluate without the software.
However, at the end of the project, unless the software
is taken up in a subsequent project, there is little
incentive or resources to maintain access to the
software in a usable form. Library preservation
strategies thus need to accommodate the preservation
of software as well as other research outputs.

Preserving the data

In order to verify the claims of a research project, then
they should be reproducible from its data. It may be
enough to rerun the analysis on current software if the
original data has been preserved. But in other
circumstances, for example to test accuracy or detect
fraud, there may be a need to rerun the original
software precisely to reproduce the exact result so they
can be judged on the results as they saw them at the
time. Newer software may have errors corrected, have
higher performance or accuracy characteristics, or else
have improved analysis algorithms or visualisation
tools. All these factors may lead later analysis of the
data to different conclusions but the scientists should
nevertheless be judged on the view they were able to
take at the time.

Further, data which is collected on sophisticated
equipment or facilities is expensive; other data which
is recording specific events is non-reproducible. In
these cases, it is desirable to preserve and reuse the
data to maximise its scientific potential, and it is often
necessary to also preserve some supporting software to
process the data format, and to provide data analysis.
This is also relevant to the preservation of other digital
objects. Preservation of document or image formats
requires the preservation of format processing and
rendering software in order to keep the content
accessible to future users.

Thus software also needs to be preserved to support
the preservation of data and documents, to keep them
live and reusable. In this case, the prime purpose of
the preservation is not to preserve the software in itself,
so it may be suitable not to ensure that that software is
reproduced in its exact form, but only sufficiently well
preserved to process the target data accurately.

Handling Legacy

Perhaps the prime motivation to preserve software for

http://www.multicians.org/mhp.html

many organisations is to save effort in recoding. It is
frequently seen as more efficient to reuse old code, or
keep old code running in the face of software
environment change than to recode. This is certainly
the reason for the maintenance of most existing
software repositories, and forms a significant part of
the effort which is undertaken by software developers.
Handling legacy software is usually seen as a problem,
and many strategies are undertaken in order to
rationalise the process, to make it more systematic and
more efficient Thus the best practice on software
maintenance and reuse, a long recognised part of good
software engineering, also supports good software
preservation. If you can find an existing package or
library routine, why bother rewriting it? Of course in
these circumstances you need assurance that the
software will run in your current environment and
provide the correct functionality

What is software preservation?

Satisfactory preservation of software requires the
consideration of the following four stages.

– Storage. A copy of software needs to be stored

for long term preservation. Software is a complex
digital object, with potentially a large number of
components. There should be a strategy to ensure
that the storage is secure and maintains coherence
and authenticity, with appropriate strategies for
storage replication, media refresh, format
migration etc.

– Retrieval. A preserved software package to be
retrieved at a date in the future, it needs to be
clearly labelled and identified, with a suitable
funcational catalogue so that the software can be
retreived.

– Reconstruction. The preserved software should
be reinstalled or rebuilt within a sufficiently close
environment to the original so that it will execute.
This is a complex operation, as there are a large
number of contextual dependencies to the software
execution environment which are required to be
satisfied before the software will execute.

– Replay. In order to be useful at a later date,
software needs be replayed, or executed and
perform in a manner which is sufficiently close in
its behaviour to the original. As with
reconstruction, there may be environmental factors
which may influence whether the software delivers
a satisfactory level of performance.

In the first two aspects, software is much like any

other digital object type. However, the problems of
reconstruction and replay are key for software. Digital
objects designed for human consumption have
requirements for rendering which again have issues of
satisfactory performance; science data objects also
typically require information on formats and analysis
tools to be “replayed” appropriately. However,
software requires an additional notion of a environment
with dependencies to hardware, other software, and
build and configuration information.

Software Preservation Approaches

Various approaches to digital preservation have been
proposed and implemented, usually as applied to data
and documents. The Cedars Project (Cedars 2002)
defined three main strategies, which we give here, and
consider how they are applicable to software.

– Technical Preservation. (techno-centric).

Maintaining the original software (typically a
binary), and often hardware, of the original
operating environment. Thus this is similar to the
situation in museums where the original
computing hardware is preserved and as much of
the original environment is maintained as is
possible. This approach is also taken in many
legacy situations; otherwise obsolete hardware is
maintained to keep vital software in operation.

– Emulation (data-centric). Re-creating the
original operating environment by programming
future platforms and operating systems to emulate
that original environment, so that software can be
preserved in binary and run "as is" in on a new
platform.

– Migration (process-centric). Transferring digital
information to a new platform. As applied to
software, this means recompiling and
reconfiguring the software source code to generate
new binaries, apply to a new software
environment, with updated operating system
languages, libraries etc.

Software migration is a continuum. The minimal
change is that the source code is recompiled and rebuilt
directly from the original source. However in practice,
the configuration scripts, or the code itself may require
updating to accommodate differences in build systems,
system libraries, or programming language (compiler)
version. An extreme version of migration may involve
rewriting the original code from the specification,
possibly in a different language. However, there is not
necessarily an exact correlation between the extent of
the change and the accuracy of the preservation.
Migration (or “porting” or “adaptive maintenance”) is
in practice how software which is supported over a
long period of time is preserved. Long lasting software
product teams spend much of their effort maintaining
(or improving) the functionality of their system in the
face of environment change.

These approaches have their advantages and
disadvantages, which have been debated in the
preservation literature. Technical (hardware)
preservation has the minimal level of intervention and
minimal deviation from the original properties of the
software. However, in the long-term this approach is
difficult to sustain as the expertise and spare
components for the hardware become harder to obtain.

The emulation approach for preserving application
software is widespread, and is particularly suited to
those situations where the properties of the original
software are required to be preserved as exactly as
possible. For example, in document rendering where
the exact pagination and fonts are required to
reproduce the original appearance of the document; or
in games software where the graphics, user controls
and performance (e.g. it should not perform too

quickly for a human player on more up to date
hardware) are required to be replicated. Emulation is
also an important approach when the source code is not
available, either having been lost or not available
through licensing or commercial restriction. However,
a problem of emulation is that it transfers the problem
to the (hopefully lesser) one of preserving the
emulator. As the platform the emulator is designed for
becomes obsolete, the emulator has to be rebuilt or
emulated on another emulator. Nevertheless,
emulation is being applied in several projects, notably
within the European project PLANETS

4
.

The migration approach does not seek to preserve
all the properties of the original, or at least not exactly,
only those up to the interface definition, which we
could perhaps generalise to those properties which
have been identified as being of significant for the
preservation task in hand. Migration then can take
the original source and adapt to the best performance
and capabilities of the modern environment, while still
preserving the significant functionality required. This
is thus perhaps the most suited where the exact (in
some respects) characteristics of the original are not
required – there may be for example difference in user
interaction or processing performance, or even
software architecture – but core functionality is
maintained. For example, for most scientific software
the accurate processing of the original data is key but
there is a tolerance to change of other characteristics.

The choice of preservation approach undertaken is
thus dependent on the nature of the software artefacts
available, the extent to which the original operating
environment of the software can also be preserved or
reproduced, and legal restrictions such as software
licensing.

Performance Model and Adequacy

The test of the validity of a preservation approach is
how a performance of the software adequately
preserves some required characteristics. Performance
as a model for the preservation of digital objects was
defined in (Heslop et. al. 2002) to measure the
effectiveness of a digital preservation strategy. Noting
that for digital content, technology (e.g. media,
hardware, software) has to be applied to data to render
it intelligible to a user, they define a model where
Source data has a Process applied to it, in the case of
digital data some application of hardware and software,
to generate a Performance for a user who extracts
meaning from it. Different processes applied to a
source may produce different performances but it is the
properties of the performance which need to be
considered for the value of a preservation action. Thus
the properties can arise from a combination of the
properties of the data with the technology applied in
the processing. We consider how this model applies
to software.

In the case of software, the performance is the
execution of binary files on some hardware platform
configured in some architecture to provide the end
experience for the user. However, the processing stage
depends on the nature of the software artefacts

4
 http://www.planets-project.eu/

preserved which have differing reconstruction and
replay requirements.

– If the binary is preserved, the process to generate

the performance is one of preserving the original
operating software environment and possibly the
hardware too, or else emulating that software
environment on a new platform. In this case, the
emphasis is usually on performing as closely as
possible to the original system.

– When source code and configuration scripts are
preserved, then a rebuild process can be
undertaken, using later compilers on a new
platform, with new versions of libraries and
operating system. In this case, we would expect
that the performance would not necessarily
preserve all the properties of the original (e.g.
systems performance, or exact look and feel of the
user interface), but have some deviations from the
original.

– In an extreme case, a performance can be
replicated by recoding the program in a different
language. In this case, we would expect
significant deviation from the original and perhaps
only core functionality to be preserved

A software performance can thus result in some
properties being preserved, and others deviating from
the original or even being disregarded altogether. Thus
in order to determine the value of a particular
performance, in addition to the established notion of
Authenticity of preservation (i.e. that the digital object
can be identified and assured to be the object as
originally archived) we define an additional notion of
Adequacy. A software package (or indeed any digital
object) can be said to perform adequately relative to a
particular set of features (“significant properties”), if
in a particular performance (that is after it has been
subjected to a reconstruction and replay process) it
preserves those significant properties to an acceptable
tolerance. By measuring the adequacy of the
performance, we can thus determine how well the
software has been preserved and replayed.

Performance of software and of data

A further feature of the performance model for
software is that the measure of adequacy of the
software is closely related to the performance of its
input data. The purpose of software is to process data,
so the performance of a software package becomes the
processing of its input data. This relationship is
illustrated in the modified performance model in
Figure 1. There is also an interaction between the user
and the software performance, reflecting the user’s
interaction with the software package during execution,
changing the data processing and thus the data
performance.

So for example, in the case of a word processing
package which is preserved in a binary format, which
itself is processed via operating system emulation, the
performance of the package is the processing and
rendering of word processing file format data into a
performance which a (human) user can experience via
reading it off a display. The user can then interact
with the processing (via for example entering,

http://www.planets-project.eu/

reformatting or deleting text) to change the data
performance. Thus the measure of adequacy of the
software is the measure of the adequacy of the
performance when it is used to process input data, and
thus how well it preserves the significant properties of
its input data, and also perserving a known change in
the data performance which results from user
interaction with the processing.

Figure 1: Performance model of software and its
input data

Thus the adequacy of different preservation
approaches is dependent upon the performance of the
end result on the end use of data. As the software has
to be able to produce an adequate performance for any
valid input data, the adequacy can be established by
performing trial executions against representative test
data covering the range of required behaviour
(including error conditions). The adequacy of
preservation of a particular significant property can be
established by testing against pre-specified suites of
test cases with the expected behaviour, and pre-
specified user interactions to change the data
performance in known ways.

The follow table gives examples of properties and
test cases to establish the adequacy of preservation
appropriate for different categories of software, test
after it has be reconstructed.

Software
Category

“Adequacy” Factor(s)

Scientific Data
Processing
Software

The adequacy of the behaviour of
this type of software may be
measured by:
– Running the software to

process some pre-specified test
input data

– Comparing the output of the
test run with the corresponding
pre-specified test result;

– Checking if the output exceeds
the acceptable level of error
tolerance for the software.

For example, the NAG Software
Library publishes test cases.

Games The adequacy of the behaviour of a
game may be measured by:
– Comparing its User Interface

UI with the screen capture of

its original UI.
– Comparing its performance

against some pre-defined use
cases. For example, the
completion time of a particular
level can be compared against
the average completion time
for that level in the original
game.

For example, when playing the
emulated version of the 1990’s
DOS-based computer game Prince
of Persia

5
, some of the operations

do not always work on the emulator
and the original appearance of the
game is also somewhat lost but it is
still possible to play the complete
game.

Programming
Language
Compilers

A compiler may be said to have
been preserved adequately, if:
– it covers all features of the

programming language that it
supports, e.g. concurrency (i.e.
threads), polymorphism, etc. .

– the application resulting from
compiling its source code
(written in a language
supported by the compiler)
using the compiler yields the
expected behaviour.

For example, some programming
languages (e.g. Fortran, C, C++
etc.), have ISO standards

6
 which

describe the correct behaviour of a
software written in these languages.
These standards also provide test
programs that may be used to assess
the adequacy of a compiler for
rendering all features of the
programming language that it
supports

Word
Processor

The adequacy of a word processor
may be measured based on its
ability to:
– render existing supported word

documents with an acceptable
level of error tolerance. For
example, a word processor may
be regarded as adequate as long
as it clearly displays the
contents (e.g. text, diagram,
etc.) of a word document, even
if some of the features of the
document content, such as font
colour and size, may have been
rendered incorrectly or even
lost completely.

5
 Best Old Games | Prince of Persia Download

http://www.bestoldgames.net/eng/old-games/prince-of-
persia.php

6

http://www.iso.org/iso/iso_catalogue/catalogue_tc/cata
logue_tc_browse.htm?commid=45202

Software

Source

Software

Performance/

Data

Processing

Software

Processing

User

Data

Source

Data

Performance

http://www.bestoldgames.net/eng/old-games/prince-of-persia.php
http://www.bestoldgames.net/eng/old-games/prince-of-persia.php
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45202
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45202

– enable editing (e.g.
add/change/remove text,
change font) and saving
existing word documents

– enable creation and saving of
new word documents

For example, OpenOffice Word

7
 is

adequate for viewing and editing
word documents originally created
using Microsoft Word

8
 with some

level of error tolerance (e.g. images
do not always appear as originally
intended but viewable nevertheless)

A full conceptual model of software and detailing a

set of properties for preservation which support all
stages of the software preservation process (recall,
reconstruction and replay has been developed within
the project; which has been omitted for brevity. For
details see (Matthews et.al. 2009a).

Applying the OAIS Reference Model to

Software Preservation

The Reference Model for an Open Archival
Information System (OAIS) is an ISO standard that is
primarily concerned with the long-term preservation of
digitally encoded information. In essence, the
underlying notions of the OAIS reference model
should be applicable to the long-term preservation of
software artefacts as fundamentally (i.e. at bit level)
they are in fact digitally encoded information.
Therefore, as illustrated in Figure 2, the OAIS
information model can be applied to the process of
rendering a preserved Data Source on a future
technological platform, where the rendering of the data
requires the use of a particular software product, which
in turn requires a specific complier, to be rebuilt from
its preserved state. In short, the OAIS defined
Descriptive Info, Representation Information (RI) and
Preservation Description Information (PDI) (ISO 2002)
can be used to retrieve (discover and access),
reconstruct (compile source code), and replay (verify
authenticity and run) a software object respectively.

However, once re-built, additional properties of the
software are required to measure its adequacy for
processing the Data Source, which in turn measures the
performance of the compiler in re-building the
software from its source code. Examples of these
properties may include documentation of expected user
interaction with the software in terms of expected
inputs and outputs, information about accepted speed
of execution and pre-defined test scripts and expected
output and so on. This is not comprehensively
addressed in the OAIS model but may be considered
amongst the Preservation Description Information of
software for demonstrating the satisfaction of
significant properties, and thus viewed as an additional
component of the OAIS information object in the
context of long-term software preservation. Thus the
notion of significant property corresponds to the

7
 http://www.openoffice.org/

8
http://office.microsoft.com/en-

gb/word/default.aspx

proposed Transformational Information Property in
(Giaretta et. al. 2009)

Figure 2: The OAIS Information Model and the

Software Performance Model

Towards a methodology for software

preservation

We have analysed the requirements for software
preservation,considered the criteria which needs to be
defined to ensure adequate preservation approach, and
identified how software preservation can be related to
the OAIS model. Consequently to perform a
preservation analysis of a particular software product,
we can use an OAIS compliant preservation analysis
methodology, such as (Conway et. al. 2009). That
paper presents an approach to preservation analysis
which allows the software archiver to identify the
designated community and appropriate information
objects (including representation information, PDI and
significant properties. Our framework identifies which
components to look for in the case of software. Here
we highlight some aspects particular to software
which should inform the use of the methodology.

Stakeholder Analysis

As part of a principled preservation planning process,
there is need to consider the stakeholders involved,
with their different points of view and skills. The
following table outlines some of the stakeholder
categories which arise when considering software.

Stakeholder Role.

Software
creator

Has detailed knowledge of the
software, so can provide reconstruction
and replay properties, to make it easier
to maintain software in the present as
well as the longer term. This might be a
single person, a team or a commercial
company.

Software
procurer

The funder of the software creator. The
software may be required to work in a
“live production” environment for
analysing data for example, or may be a
prototype only destined to prove the
theorum of a research project. There

http://www.openoffice.org/

are different expectations around the
levels of documentation in these cases.
For research projects, the procurer may
be the funding council and rather
remote; for live production software the
procurer is likely to have a high degree
of commitment to the project but is
probably mostly interested in the
outcomes of the software rather than
the software per se.

Software
user

Most users of software are not
particularly interested in the software
per se but the functionality that it
provides. Whilst it provides the
required functionality then it is needed
to operate. This can cause issues when
the software and the user are not
changing requirements/functionality at
the same rate.

Repository
manager

In the research arena where all research
outputs of an institution need to be
collected and curated, then issues
around software need to be considered,
both for software in its own right and
software as an access mechanism for
data.

Risks analysis of preserving software

A key observation of our study is that preserving
software is a complex process, with many
dependencies and highly technical knowlede required
to provide a preservable software product which can
even be successfully reconstructed let alone adequately
replayed. The most sucsseful software preservation
activities were by those organisations who had initially
developed software and then spent much time and
effort to keep the software alive, using systematic
software engineering methods, strong documentation,
and a base of “tacit knowledge” in the workforce. In
recognition that the best place to start preservation is
during the creation of a digital object, we developed a
tool which extended the popular software development
tool Eclipse with the capability to record preservation
properties during the development process, and in
conjunction with the version control system of the
software development.

However, it may not be possible to undertake the
software preservation activity in conjunction with the
development. Software preservation may be
retrospective on legacy code, and the software product
may be handed to an archivist or librarian to preserve.
In this case, the risks associated with preservation are
much greater, and a careful decision should be
undertaken as to whether the additional effort is
worthwhile. Figure 3 outlines some of the key
descisions which must be undertaken to assess the
value of a software preservation action. Again, the
preservation properties identified in within our
framework provide guideance to the required
inforamtion and therefore allow the value of the
preservation action to be assessed.

Figure 3: Descision proceedure for software

preservation analysis.

Validating the Approach

In order to validate our framework and
methodology for software preservation, we have
undertaken trials in the application of the software
preservation framework in the context of a use case
involving the British Atmospheric Data Centre

9
. This

includes evaluating the overall efficiency of the
framework against a number of BADC software,
specifically in terms of its relevance (to the software
that it is applied to) and sufficiency (of the information
recorded) for long-term preservation of software,
considered within the context of the BADC’s approach
to accommodating changes in the technological
environment to ensure effective long-term software
maintenance and re-use.

In short, the BADC study highlights that the BADC

should benefit from suitable software preservation

models and tools that would effectively manage

9
 http://badc.nerc.ac.uk/home/index.html

No

No

No

No

Yes

Yes

Is the creator

of the software

depositing it?

Work with the

creator/depositor to

gain information on

what needs to be

recorded for future

use, e.g. test data,

significant properties

y
e
s
Y
e
s Does the depositor

have knowledge of the

purpose and creation of

the software?

Is there anyone

else who does

know?

Assess the importance of ingesting this

software, bearing in mind that

preservation will be difficult Does this

software need to be in a specialist

repository?

Is documentation

sufficient to

determine

preservation

properties?

Establish information

needed to be recorded

for future use, e.g. test

data, significant

properties. Assess the

completeness of the

information to gague

likely value of

preserved software.

Yes

Yes

http://badc.nerc.ac.uk/home/index.html

complexity and reduce costs of software preservation,

and could also be integrated within existing systems

for software development and maintenance.
The preservation approach should be assisted with

tool support to allow the systematic collection of
preservation propertied for software. We have
developed a Java-based tool called Significant
Properties Editing and Querying for Software
(SPEQS), developed in view of our analysis of the
BADC use case. SPEQS demonstrates the feasibility
of integrating preservation (in terms of capturing
preservation properties identified in the software
preservation framework) within the software
development lifecycle to aid its long-term preservation
in future, and thus has the potential to be beneficial to
software development oriented organisations. The
BADC case study and the SPEQS tool are described in
(Matthews et. al. 2009b)

A further validation of the approach took place
within a preservation exercise for solar-terrestrial
physics data. This study considered raw data which
could be analysed to extract an Ionogram – a graph
showing ionization layers in the atmosphere. Current
scientists use a software product called SAO explorer

10

to extract ionograms from the data. This software was
archived in accordance with the methodology
described in this paper. As a result the archived
software could with confidence be integrated into an
larger OAIS compliant solution for the preservation of
mmm data files. This solutions permits the long term
study of specified atmospheric phenomena from this
geographic location. The archived SAO explorer
solution could also then be deposited in the DCC
registry repository of representation information
thereby providing a solution which can be re-used by
hundreds of ionosphere monitoring station which are
active globally.

Conclusions

We can see that there are good reasons to consider the
preservation of software. Further, we have established
a reference framework to discuss software preservation
in terms of an abstract performance model. Software is
not an independent entity in its own right, but only can
be judged to be adequately preserved in the context of
the satisfactory preservation of its target data objects.
Different preservation approaches can be adopted
which can execute binaries directly, can emulate the
software, or carry out software migration by
recompiling source code, or even recoding. All can in
different circumstances support good preservation, and
the proposed performance model can be used to judge
the adequacy of the preservation approach. This
adequacy test is akin to the software testing process
familiar to software engineers. Indeed, good software
engineering practice is likely to be a fruitful source of
techniques for good software preservation.

Software engineering best practice shares many of
the concerns of software preservation in order to
produce quality software which can be maintained and
reused in the future, such providing version control,
dependency analysis and good documentation. We

10

 http://ulcar.uml.edu/SAO-X/SAO-X.html

consider how software preservation can be integrated
into the software lifecycle to systematically capture
those properties required for preservation and an
adequate replay of the software.

Acknowledgements

This work was carried out under the UK JISC study
into the Significant Properties of Software and also the
JISC sponsored Tools and Guidelines for Preserving
and Accessing Software Research Outputs. The SAO
Explorer case study was undertaken in conjunction
with the DCC Scarp project. We would like to thank
our colleagues David Giaretta, Steven Rankin and
other members of the Digital Curation Centre and
CASPAR projects for their advice and discussions.

References

The Cedars Project. 2002. The Cedars Guide to Digital
Preservation Strategies. Retrieved July 29, 2008, from
http://www.leeds.ac.uk/cedars/guideto/dpstrategies/dps
trategies.html

Conway, E,; Giaretta, D.; and Dunckley, M.. 2009.
Curating scientific research data for the long term: a
preservation analysis method in context. In
proceedings of iPres 2009, The 6th International
Conference on Preservation of Digital Objects

Giaretta, D.; Matthews, B.; Bicarregui, J.; Lambert, S.;
Guercio, M,; Michetti, G.; and Sawyer, D. 2009.
Significant Properties, Authenticity, Provenance,
Representation Information and OAIS. In proceedings
of iPres 2009, The 6th International Conference on
Preservation of Digital Objects

Heslop, H.; Davis, S.; and Wilson, A. 2002. An
Approach to the Preservation of Digital Records,
National Archives of Australia, 2002. Retrieved July
29, 2008, from http://www.naa.gov.au/Images/An-
approach-Green-Paper_tcm2-888.pdf

ISO 2002. Reference Model for an Open Archival
Information System (OAIS). Recommendation for
Space Data Systems Standard, CCSDS Blue Book.
http://public.ccsds.org/publications/archive/650x0b1.p
df

Matthews, B.M.; Bicarregui J.C.;. Shaon, A.; and
Jones, C.M. 2009a. A Framework for the Significant
Properties of Software . JISC Tools and Methods for
Software Preservation Project report
http://epubs.stfc.ac.uk/work-details?w=51076

Matthews, B.M.; Shaon, A.; Bicarregui J.C.;. Jones,
C.M.; and Woodcock, J. 2009b. An Approach to
Software Preservation. In proceedings PV 2009
Ensuring Long-Term Preservation and Adding Value
to Scientific and Technical Data, to appear.

Zabolitzky, J.G. 2002. Preserving Software: Why and
How. Iterations: An Interdisciplinary Journal of
Software History, 1. Retrieved July 29, 2008, from
http://www.cbi.umn.edu/iterations/zabolitzky.html

http://ulcar.uml.edu/SAO-X/SAO-X.html
http://www.leeds.ac.uk/cedars/guideto/dpstrategies/dpstrategies.html
http://www.leeds.ac.uk/cedars/guideto/dpstrategies/dpstrategies.html
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://epubs.stfc.ac.uk/work-details?w=51076
http://www.cbi.umn.edu/iterations/zabolitzky.html

