
RAL-TR-2009-027

December 23, 2009

J. D. Hogg, J. K. Reid and J. A. Scott

Design of a multicore sparse Cholesky
factorization using DAGs

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

Design of a multicore sparse Cholesky factorization using DAGs

J. D. Hogg , J. K. Reid and J. A. Scott1

ABSTRACT

The rapid emergence of multicore machines has led to the need to design new algorithms that are efficient

on these architectures. Here, we consider the solution of sparse symmetric positive-definite linear systems

by Cholesky factorization. We were motivated by the successful division of the computation in the dense

case into tasks on blocks and use of a task manager to exploit all the parallelism that is available between

these tasks, whose dependencies may be represented by a directed acyclic graph (DAG). Our algorithm is

built on the assembly tree and subdivides the work at each node into tasks on blocks, whose dependencies

may again be represented by a DAG. To limit memory requirements, updates of blocks are performed

directly.

Our algorithm is implemented within a new solver HSL MA87. It is written in Fortran 95 plus OpenMP

and is available as part of the software library HSL. Using problems arising from a range of practical

applications, we present experimental results that support our design choices and demonstrate HSL MA87

obtains good serial and parallel times on our 8-core test machines. Comparisons are made with existing

modern solvers and show that HSL MA87 generally outperforms these solvers, particularly in the case of

very large problems.

Keywords: Cholesky factorization, sparse symmetric linear systems, DAG-based, parallel, multicore,

Fortran 95, OpenMP.

AMS(MOS) subject classifications: 65F05, 65F50, 65Y05

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,

Oxfordshire, OX11 0QX, UK.

Email: jonathan.hogg@stfc.ac.uk john.reid@stfc.ac.uk jennifer.scott@stfc.ac.uk

Work supported by EPSRC grants EP/F006535/1 and EP/E053351/1.

Current reports available from http://www.numerical.rl.ac.uk/reports/reports.html.

December 23, 2009

1 Introduction

Many problems require the efficient and accurate solution of linear systems

Ax = b (1.1)

where A is a large, sparse, symmetric positive-definite matrix of order n. A number of direct solvers

using the Cholesky factorization A = LLT have been developed for this problem in recent years, including

the serial codes MA57 [8] and HSL MA77 [24] from the HSL software library [17] and CHOLMOD [6] as

well as the parallel codes MUMPS [1], PARDISO [25], PaStiX [15], TAUCS [18], and WSMP [14]. A

detailed comparison of serial codes is provided by Gould, Hu, and Scott [12]. We summarise the main

features of the parallel codes later in this section. They each have three phases: analyse the structure,

factorize the matrix A, and solve sets of equations (1.1). Moreover, they each rely on an assembly tree

that is constructed by nested dissection and/or other ordering strategies, followed by node amalgamation

to make more effective use of Level-3 BLAS at the expense of additional entries in L and operation counts.

Some are multifrontal codes (see [9], sections 10.7 and 10.8), relying on temporary storage for the frontal

matrices at the active nodes of the assembly tree and the generated-element matrices from their child

nodes. Others subdivide the generated-element matrix at each node and add the parts directly into the

columns of L associated with the ancestors of the node.

The rapid emergence of multicore machines has led to the need to design new algorithms that are able

to effectively exploit these architectures. These architectures differ from traditional SMP by having shared

caches and shared links to memory, making efficient reuse of data in (shared) cache more important. Our

approach uses the assembly tree and is non-multifrontal. Inspired by recent multicore solvers for dense

positive-definite linear systems [4, 5], we aim to achieve good parallelization on a multicore architecture

by breaking the computation into tasks that are of modest size while being large enough for good Level-

3 BLAS performance on each core and scheduling these with the aid of a task manager. The directed

acyclic graph (DAG) that represents the data dependencies between these tasks is an extension of the

assembly tree. Both the independence of operations at nodes that do not have an ancestor/descendant

relationship and the independence that is available between operations within a single node is exploited

within this framework. Further, additional parallelization is available from the independence of updates

of blocks of an ancestor node from the node’s descendants. Being non-multifrontal avoids the need to hold

generated-element matrices that are waiting for assembly at their parent nodes; this reduces the memory

requirements.

Our algorithm is implemented within a new sparse Cholesky solver HSL MA87 that we have developed

for inclusion within HSL. HSL is a Fortran library and so HSL MA87 is written in Fortran 95 with the widely

available extension of allocatable components of structures, part of Fortran 2003. To provide a portable

approach that allows the exploitation of shared caches, HSL MA87 uses OpenMP.

In recent years, there has been significant interest in the development of parallel sparse symmetric

algorithms and solvers. To help put our work into context, we briefly summarise the key algorithmic

features of five well-known parallel codes that offer facilities for sparse symmetric positive-definite systems

and may be run on multicore machines.

MUMPS (MUltifrontal Massively Parallel Solver) [1] is a multifrontal Fortran/MPI package. While it is

designed to solve symmetric and non-symmetric linear systems on distributed-memory machines, it

can be run on shared-memory machines. It allocates the nodes of the assembly tree to threads during

analyse. Large nodes other than the root of the tree are subdivided into block rows, which may be

processed during the factorize phase by separate “slave” threads. The root node is processed by all the

threads using ScaLAPACK [3]. Load and memory balancing are achieved by the dynamic scheduling

of slave threads, taking account of the current load and memory demands on all the threads. In the

solve phase, MUMPS uses the ScaLAPACK parallelism at the root and the parallelism implied by

the assembly tree at other nodes.

1

PARDISO [25] is a non-multifrontal Fortran/C/OpenMP package for solving large sparse symmetric and

non-symmetric linear systems of equations on shared-memory multiprocessors. It chooses a set of

independent subtrees and begins by processing these in parallel, one for each thread. The subtrees

are placed in a queue so that, when a thread has finished processing its subtree, it can request

another. The remaining nodes are placed in a queue in bottom-up breadth-first order and each is

processed by a thread as it becomes available. For nodes having a large number of eliminations,

the corresponding columns are subdivided into sets of columns termed “panels”, each of which is

updated by a single thread. For each panel, all the processing is performed by a single thread,

which means that good use is made of caching. The thread starts by applying all the updates that

are then available and applies the others as they become available. Once the updates have been

completed, the thread factorizes its diagonal block, then calculates its off-diagonal blocks of L, and

finally records that these blocks are available for later updates within ancestor nodes.

PaStiX [15] is non-multifrontal C/Pthreads/MPI code that is primarily designed for positive-definite

systems. It uses blocks defined by the variables of the nodes of the assembly tree, with large nodes

subdivided. Zero rows within these blocks are held explicitly unless they are leading or trailing

rows. Data distribution is as a block column (when the number of variables at the node is small)

or as a block, each owned statically by a thread during factorize (when the number of variables at

the node is not small). A block-column task involves everything for the block column, including

calculating update matrices for later blocks. A block task is to factorize a diagonal block, calculate

an off-diagonal block of L and send it to other block owners in the block column, or calculate the

update matrices that involve the block. If a thread does several updates to the same block from

different block columns, it accumulates them locally. The distribution is found during analyse by

simulating all the costs. The sequence of tasks performed by each thread during factorize is fixed

then. Recently, in [11], a dynamic scheduling designed for multicore and NUMA (Non-Uniform

Memory Access) architectures was added.

TAUCS [18] is a C/Cilk library of sparse linear solvers. In particular, it offers a multifrontal sparse

symmetric positive-definite solver. Cilk supports spawning of tasks as special procedure calls that

can execute in parallel independently of the caller until synchronization in the caller. This is done

recursively at the nodes of the assembly tree for each of the children, with synchronization before

processing the frontal matrix at the node. Large nodes are partitioned recursively and the blocks are

factorized recursively, which allows Cilk to manage parallelism dynamically both within and between

the nodes. A recursive block data structure is used to limit cache movement.

WSMP [14, 13] is a Fortran/C/Pthreads multifrontal package. It is comprised of two parts: one for

solving symmetric systems (both LLT and LDLT factorizations are offered) and one for general

systems. On a shared-memory machine, it assigns all the threads to the root node and recursively

assigns the threads of each parent node to its children to balance the load. At the nodes of the

assembly tree that are assigned more than one thread, the dense operations on the frontal matrices

are parallelized. The threads are managed through a task-parallel engine [19] that achieves fine-grain

load balance via workstealing.

The outline of the remainder of this paper is as follows. In Section 2, we provide a short description

of the recent developments for dense linear systems that we will adapt to the sparse case. Section 3

describes the algorithm implemented within our DAG-based sparse Cholesky solver HSL MA87, highlighting

the features that distinguish it from the five codes that we have just described. Results of experiments

with HSL MA87 and comparisons with a number of the above solvers on selected problems from practical

applications are given in Sections 4 and 5. Finally, in Section 6, we make some concluding remarks and

comment on the availability of HSL MA87.

Our algorithm was developed independently of PaStiX, but employs similar concepts. Our contribution

is to establish the algorithm as an extension to those used in the dense case, to develop a version designed

2

primarily for shared rather than distributed memory and to remove a substantial constraint on the

blocking used within the algorithm. We then implement the algorithm using a series of task scheduling

techniques from the dense case to exploit cache reuse, all leading to substantial performance improvements

on multicore machines.

2 Dense DAG solvers

Recent research by Buttari et al. [4, 5] into efficiently solving dense linear systems of equations on multicore

processors has shown that significant parallel speedups may be obtained by subdividing the computation

into block operations and performing these in parallel, subject only to their interdependencies.

A blocked Cholesky factorization of a dense matrix A divides A into square blocks Aij of order nb and

then divides the work into a number of tasks:

• factorize block factorizes a block on the diagonal, Akk = LkkLT
kk, where Lkk is lower triangular.

• solve block solves a triangular set of equations LT
kkLik = Aik to obtain an off-diagonal block Lik

of the Cholesky factor.

• update block updates a block of the remaining submatrix Aij ⇐ Aij − LikLT
jk, i ≥ j > k.

Traditionally, these tasks have been ordered in one of these two ways:

right-looking For each block column k in sequence, the factorize block is performed, then the solve blocks

for the column are performed, and then all the update blocks involving the blocks Lik, i > k.

left-looking For each block column k in sequence, the update blocks to the blocks Aij are performed

using the blocks Lij , i ≤ j < k, then the factorize block for the block column is performed, then the

solve blocks for the block column are performed.

For example, ScaLAPACK uses a right-looking algorithm and relies on the parallelization of the updates

for most of its speed-up.

The dependencies between the tasks are:

• factorize block must wait for its block Akk to be fully updated.

• solve block must wait for its block Aik to be fully updated and for the factorize block Akk = LkkLT
kk

to be completed.

• update block must wait for solve block to be complete for both its blocks Lik and Ljk.

These dependencies may be represented by a directed acyclic graph (DAG), with a node for each task and

an edge for each dependency. A task is ready for execution if and only if all tasks with incoming edges

to it are completed. The first node corresponds to the factorization of the first diagonal block and the

final node corresponds to the factorization of the final diagonal block. While tasks must be ordered in

conformance with the DAG, there remains much freedom for exploitation of parallelism.

Hogg [16] recently implemented a dense Cholesky factorization that takes advantage of all this freedom.

He uses a single task pool from which all threads draw tasks to execute and in which new tasks are placed

when the data they need become available. The choice of which available task to execute will clearly affect

the overall execution time.

To guide this choice, Hogg used the time for a factorize block (about nb3/3 flops) as his unit of time,

which means that solve block (about nb3 flops) takes 3 units and update block (about 2nb3 flops for an

off-diagonal block) takes 6 units. By solving some recurrence equations, he was able to show that with

sufficient parallel threads, the least time needed is 9(n/nb− 1) units, and he constructed a corresponding

schedule that initiates each task as late as possible. He noted that the assumption of sufficient parallel

threads is valid in the important late stages of the factorization when there is insufficient parallelism

3

to keep all threads busy. In Hogg’s implementation with a given (probably small) number of threads,

whenever a node has to be chosen from a set of candidates, one that is earliest in the schedule is chosen. If

there are several such nodes, one that reuses data is preferred, which reduces the transfer of data between

caches. Hogg compared his strategy with other strategies for choosing a task from those available and

found that it was the most satisfactory, though the performance gains were modest.

Hogg’s code is written in Fortran 95 with OpenMP and is available in HSL as HSL MP54. He reports

[16] near perfect speedups on an 8-core machine for sufficiently large problems.

The DAG-based approach offers significant improvements over utilising more traditional fork-join

parallelism by block columns. It avoids the time wasted waiting for all threads to finish their tasks

for a block column before any thread can move on to the next block column. It also allows easy dynamic

worksharing to cope with the case where execution by another user or an asymmetric system load causes

some threads to perform significantly slower than others. Such asymmetric loading can be common on

multicore systems, caused either by operating system scheduling of other processes on a core that is

executing the application or by unbalanced triggering of hardware interrupts.

3 DAG-based sparse direct solver

The sparse factorization work described in this paper was motivated by the aim of applying the ideas of

the previous section to the sparse case. In particular, we aimed to work with tasks of a sufficient size

for efficient execution on a single thread using Level-3 BLAS while seeking to take advantage of all the

potential parallelism available between such tasks.

We chose a non-multifrontal implementation in order to avoid the memory overheads of the multifrontal

method and to avoid update operations emanating from a node having to wait for its parent to be active

(the TAUCS approach) or until memory for the parent frontal matrix is allocated.

3.1 Nodal matrix data structure

The columns of L associated with a node of the assembly tree consist of a trapezoidal matrix that has

zero rows corresponding to variables that are eliminated later in the pivot sequence at nodes that are not

ancestors. We have chosen to compress this matrix in the traditional manner (see [9], Section 10.5) by

holding only the nonzero rows, each with an index held in an integer. We refer to this dense trapezoidal

matrix as the nodal matrix.

As in the dense case described in the previous section, we subdivide this matrix into blocks under the

control of a parameter nb. This is illustrated in Figure 3.1(a). We divide the computation into tasks in

which a single block is revised (details in Section 3.2). If the number of columns nc in the nodal matrix

is small, this may yield tasks that are too small to justify their associated overheads. Therefore, if nc is

less than nb, we base the block size on the value nb2/nc, rounding up to a multiple of 8 to avoid overlaps

between cache lines. PaStiX also treats nodal matrices with few columns differently; it treats such a matrix

as a single entity. We discuss the (small) effect of our approach on the factorize time in Section 4.5.

We store the nodal matrix using the row hybrid blocked structure of Anderson et al. [2] with the

modification that “full” storage is used for the blocks on the diagonal rather than storing only the actual

entries. This is illustrated in Figure 3.1(b). Using the row hybrid scheme rather than the column hybrid

scheme facilitates updates between nodes by removing any discontinuities at row block boundaries (we

explain the importance of this in Section 3.2). Storing the blocks on the diagonal in full storage allows us

to exploit efficient BLAS and LAPACK routines. This structure is illustrated in Figure 3.1(b). Note that

the final block on the diagonal is often trapezoidal, to allow the other blocks of its block row to be square.

3.2 Tasks

Following the design of our dense DAG-based code (Section 2), we split the work involved in the sparse

factorization of A into the following tasks (illustrated graphically in Figures 3.2 to 3.4):

4

Figure 3.1: Row hybrid block structure for a nodal matrix.

1

4 5

7 8 9

10 11 12 25

13 14 15 27 28

16 17 18 29 30

19 20 21 31 32

22 23 24 33 34

(a) Graphical view (b) Indices of entries

Figure 3.2: factorize block(diag) and solve block(Ldest)

Ldiag

Ldiag

Lrect

Ldiag

Ldest

(a) factorize block(diag) (b) factorize block(diag)

Lrect ⇐ LrectL
−T
diag

(c) solve block(Ldest)

Ldest ⇐ LdestL
−T
diag

factorize block(Ldiag) computes the Cholesky factor Ldiag of the triangular part of a block diag that

is on the diagonal using the LAPACK subroutine potrf. If the block is trapezoidal, this is followed

by a triangular solve of its rectangular part

Lrect ⇐ LrectL
−T
diag

using the BLAS-3 subroutine trsm, see Figures 3.2(a) and 3.2(b).

solve block(Ldest) performs a triangular solve of an off-diagonal block Ldest by the Cholesky factor Ldiag

of the block on its diagonal,

Ldest ⇐ LdestL
−T
diag

using the BLAS-3 subroutine trsm, see Figure 3.2(c).

update internal(Ldest, scol) Within a nodal matrix, performs the update of the block Ldest from the

block column scol

Ldest ⇐ Ldest − LrL
T
c ,

where Lr is a block of the block column scol and Lc is a submatrix of this block column. If the Ldest

is not in the final block column of the node, Lc is block of scol, see Figure 3.3(a); otherwise, Lc is

5

the submatrix that corresponds to the columns of Ldest, see Figure 3.3(b). If Ldest is an off-diagonal

block, we use the BLAS-3 subroutine gemm for this. If Ldest is on the diagonal, we use the BLAS-3

subroutine syrk for the triangular part and gemm for the rectangular part, if any.

update between(Ldest, snode, scol) performs the update of the block Ldest from the block column

scol of a descendant node snode

Ldest ⇐ Ldest − LrL
T
c

where Lr and Lc are submatrices of contiguous rows of the block column scol of the node snode that

correspond to the rows and columns of Ldest, respectively. Unless the number of entries updated

is very small, we exploit the BLAS-3 subroutine gemm (and/or syrk for a block that is on the

diagonal) by placing its result in a buffer from which we add the update into the appropriate entries

of the destination block Ldest, see Figure 3.4.

Figure 3.3: update internal(Ldest, scol), Ldest ⇐ Ldest − LrL
T
c

Lc

Lr Ldest

Lc

Lr Ldest

(a) Ldest not in last block (b) Ldest in last block

Note that the submatrices Lr and Lc in Figure 3.4 are determined by the block Ldest and are probably

not blocks of the block column scol. Storing the blocks by rows and continuously (see Figure 3.1(a))

allows us to access the submatrices Lr and Lc needed for update between as whole arrays.

We could have cast update between as an operation from a pair of blocks, but this would often cause

the same destination block to be updated more than once from the same block column. This is undesirable

since contested writes cause more cache misses than contested reads (a write may invalidate a cache line in

another cache but a read cannot). As we are updating a single block, the number of operations is bounded

by 2nb3, so we are not generating a large amount of work per task, though we do risk generating very

little computation.

The tasks are partially ordered; for example, the updating of a block of a nodal matrix from a block

column of L that is associated with one of the node’s descendants has to wait for all the rows of the block

column that it needs becoming available. At a moment during factorize, we will be executing some tasks

while others will be ready for execution. We store the tasks that are ready in local stacks, one for each

cache, and a global task pool. We explain how this is managed in Section 3.3. Initially, the task pool is

given a factorize block task from each leaf node of the assembly tree.

In practice, it seems that the update between tasks are by far the most demanding of computer

resources. In Figure 3.5, we show the percentages of flops needed for the different kinds of tasks for

the test problems of Section 4.

We now explain how we determine when a task is ready without needing to represent the whole DAG

explicitly. During analyse, we calculate a count for each block of L. If the block is on the diagonal, the

6

Figure 3.4: update between(Ldest, snode, scol)

r

c

TLcLr
Ldest

scol
snode

BufferL

L

1. Form outer product LrL
T
c into Buffer.

2. Distribute the results into the destination block Ldest.

count is the number of updates, update internal or update between, that will be applied to it. If the block

is not on the diagonal, the count is one more than the number of updates that will be applied to it. During

factorize, we decrement the block’s count by one after the completion of each update for it. When the

count for a block on the diagonal reaches zero, a factorize block task for it is stored. When a factorize block

task completes, we decrement the count of all the blocks in its block column. This ensures that when the

count for an off-diagonal block reaches zero, all its updates are complete and the factorize block for its

block column is complete, which means that its solve block task is ready and may be stored.

When a factorize block or solve block task completes, we decrement its count to flag this event with

a negative value. A column lock is set and we store each update task that depends on the completion of

this task and does not depend on a task that has not yet completed. Once this has been done, the lock is

released. The column lock and the counts ensure that each update task is added exactly once. Note that

the negative count value is needed for a trapezoidal block on the diagonal since its factorize block task

includes a triangular solve.

3.3 Task dispatch engine

In the dense case (Section 2), we found that complex prioritization schemes that take optimal schedules

into account offer very limited benefit. In HSL MA87, we therefore use a simpler prioritization scheme that

favours cache awareness by using local task stacks and a single global task pool. For each shared cache,

there is a small local stack holding tasks that are intended for use by the threads sharing this cache.

During the factorization, each thread adds or draws tasks from the top of its local stack. It is a stack

rather than a more complicated data structure because this gives all the properties that are needed. Each

stack has a lock to control access by its threads.

When a thread completes the last update block for a diagonal block, it executes the factorize block task

for this block at once without putting it on its stack. This promotes both cache reuse and the generation

of further tasks. When a thread completes a solve block task, it first places any update between tasks

generated on its stack, then places any update internal tasks generated. Both will be above any stacked

solve block tasks. Since some of the data needed for an update is likely to be in the local cache, cache

reuse is encouraged naturally without the need for explicit management.

7

Figure 3.5: Percentage of flops in the different kinds of tasks.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Problem Index

P
er

ce
nt

ag
e

of
 fl

op
s

factorize_block + solve_block
update_internal
update_between

If a local stack becomes full, a global lock is acquired and the bottom half (that is, the tasks that have

been in the stack the longest so that their data are unlikely still to be in the local cache) is moved to the

task pool. We give the tasks in the task pool different priorities, in the descending order factorize block,

solve block, update internal, update between, but our experience has been that this does not significantly

improve the execution time over using a single stack for all the tasks in the task pool. To understand

why this should be the case, note that, as already observed, a factorize block task is executed as soon as

it is generated and so never reaches the pool. When a factorize block task completes, several solve block

tasks may be placed on the stack, one of which is probably executed immediately. When an update task

completes for an off-diagonal block, a single solve block task is placed on the stack and probably executed

immediately. Few solve block tasks therefore reach the pool. It follows that prioritization mainly affects

the update tasks and update internal tasks will have already been favoured by the order in which they are

added to the local stacks.

When establishing update between tasks, it is convenient to search the path from the node to the root

through links to parents. This leads to the tasks being placed on the stack with those nearest the root

uppermost, so that these will be executed first. This is the opposite to the order that will lead to early

availability of further tasks. We tried reversing this order and indeed found that the number of available

tasks increased. This led to a larger task pool being needed and to an increase in execution time. It seems

that as long as there are sufficient tasks available to keep the threads active, this is sufficient. On the basis

of numerical experimentation, we have set the default value for the initial size of the task pool to 25,000

(the size of the pool is increased whenever necessary during execution). For many of the test problems of

Section 4, the task pool size did not exceed 10,000; the largest was approximately 22,000.

If a local task stack is empty, the thread tries to take a task from the task pool. Should this also be

empty, the thread searches for the largest local stack belonging to another cache. If found, the tasks in

the bottom half of this local stack are moved to the task pool (workstealing). The thread then takes the

task of highest priority from the pool as its next task.

To check the effect of having a stack for each cache, we tried two tests while running the problems of

Section 4. First, we ran with a stack for each thread. This led to a small loss of performance (around 1%

to 2% for the larger problems). Second, we disabled processor affinity, which means that the threads are

not required to share caches in the way the code expects. This led to a similar loss of performance.

We also tried the effect of using the global lock to control the local stacks as well as the global pool.

We found that this had no noticeable effect on execution time on our test machine.

8

3.4 Improving cache locality in update between

It is desirable for the efficiency of an update between task that the rows of Lr and Lc correspond to rows

and columns of Ldest that are in the same order and that many of these rows and columns of Ldest are

contiguous. This reduces cache misses and assists hardware prefetching. To ensure that they are in the

same order, we permute the index lists at each node to pivot order.

The elimination order is usually determined during analyse by a depth-first search of the assembly

tree, and we follow this practice. Let n1, n2, . . . , nk be a path of the assembly tree in which each node

other than nk is the first child of its successor. The index list at n1 may be written as v1, v2, . . . , vk where

vi indexes those of its variables that are eliminated at ni, i = 1, 2, . . . , k (some of these lists vi may be

empty). The corresponding part of the pivot sequence is v1, w1, s1, v2, w2, s2, . . . where wi lists the other

variables eliminated at node ni (w1 is empty) and si lists the variables eliminated at siblings of ni and

their descendants. Therefore, the variables indexed in each of the sets v1, v2, . . . are contiguous in the pivot

sequence, which is desirable for updates between node n1 and each of the nodes n2, . . . , nk. It is not all

we would like; for example, updating the off-diagonal part of the matrix at n2 involves the rows indexed

by the lists v2, v3, . . . and in general there is a gap in the pivot sequence between each of these lists and

the next. However, we can apply the same argument to a subsequence ni, ni+1, . . . , nk, and the lists are

likely to get progressively larger as we approach the root.

This property does not extend to a node n1 that is not a first child because some of the indexes v2

may also index variables of its first-child sibling and be scattered among other indices for the first-child

sibling. For example, if the variables indexed 7,8,9 are eliminated at the parent and the index list of the

first child is (7, 8, 9, . . .), the index list of the second child might be (7, 9, . . .).

To exploit this property, it is desirable for the length of the list of each first child, excluding its

eliminated variables, to be long. At every node, we have therefore made the child with the greatest such

length be first. The effect of this strategy is reported on in Section 4.2.

4 Numerical results

In this section, we present numerical results for our new sparse Cholesky code HSL MA87. In common with

other solvers, HSL MA87 offers a number of options through the use of control parameters. These include

parameters that control node amalgamation (Section 4.3) and the size of the blocks (Section 4.4). We

present numerical experiments that support our design choices for HSL MA87 as well as the default settings

for the control parameters.

4.1 Test environment

The experiments we report on throughout this section were performed on our multicore test machine fox,

details of which are given in Table 4.1. Note that the sharing of level-2 caches and memory buses, makes

speed-up near 2 on 2 cores much easier to obtain than speed-up near 4 on 4 cores, which in turn is much

easier to obtain than speed-up near 8 on 8 cores.

The sparse test matrices used in our experiments are listed in Table 4.2. This set comprises 32 examples

that arise from a range of practical applications. In selecting the test set, our aim was to choose a wide

variety of large-scale problems. Each problem is available from the University of Florida Sparse Matrix

Collection [7]. In our tests, we use the nested dissection ordering that is computed by METIS NodeND

[20, 21]. In Table 4.2, we include the number of millions of entries in the matrix factor (denoted by

nz(L)) and the number of billions of floating-point operations (Gflops) when this pivot sequence is used

by HSL MA87 without node amalgamation (see Section 4.3).

Unless stated otherwise, runs were performed using all 8 cores on our test machine fox and all control

parameters used by HSL MA87 were given their default settings. All times are elapsed times for the

factorization phase, in seconds, measured using the system clock. Unfortunately, we found that when the

elapsed time on 8 cores was less than a second, it could vary by 20% to 30% between runs. Occasionally,

9

Table 4.1: Specifications of our 8 core test machine fox.

2-way quad Harpertown (fox)

Architecture Intel(R) Xeon(R) CPU E5420

Operating system Red Hat 5

Clock 2.50 GHz

Cores 2 × 4

Theoretical peak (1/8 cores) 10 / 80 Gflop/s

DGEMM peak (1/8 cores1) 9.3 / 72.8 Gflop/s

Level-1 cache 32 K on each core

Level-2 cache 6 M for each pair of cores

Memory 32 GB for all cores

BLAS Intel MKL 10.1

Compiler Intel 11.0 with option -fast
1 Measured by using MPI to run independent
matrix-matrix multiplies on each core

a time would be greater by much more than this1. In each experiment, we therefore averaged over ten

complete runs of each of the problems except for the slowest five, each of which requires more that 500

Gflops to factorize A and always took longer than 10 seconds. We will refer to these five problems as the

slow subset. For these cases, we averaged the times over two runs.

4.2 Effect of reordering the children

In Section 3.4, we explained our strategy for choosing, at each non-leaf node of the assembly tree, which

child node to order as the first child. Note that this does not change the flop count or the number of entries

in L. The effect of our strategy on the factorize time is illustrated in Table 4.3, which includes results

for the slow subset together with three other problems from our test set, chosen to show the range of

behaviours found. Though reasonably modest, of particular note is that the performance gains in parallel

are often much more than merely an eighth of the serial gains, leading to better speedups. Throughout

the remainder of the paper, all results are obtained using the child reordering strategy.

4.3 Effect of node amalgamation

Node amalgamation (see Section 4 of [10]) has become well established as a means of improving

factorization speed at the expense of the number of entries in L and the operation counts during factorize

and solve. The original strategy relied on a postorder generated by a depth-first search of the tree. A parent

and child that were adjacent in this order were merged if both involved fewer than nemin eliminations. A

more powerful version is used in [24], involving the recursive merge of any child/parent pair if both involve

fewer than nemin eliminations. We have chosen to use this more powerful version.

In a new environment, a new exploration is needed for the most suitable value of the parameter nemin.

This is the purpose of this subsection. We expected the best value to be in the range 8 to 64 so ran with

the values 8, 16, 32, and 64. To illustrate the value of amalgamation, we also run with the value 1.

In Table 4.4, we show the factorize times for the slow subset and for three others that represent the

three kinds of behaviour that we saw: flat (problem 3), nemin = 1 much slower (problem 16), and U-

shaped (problem 22). The two biggest problems showed flat behaviour, but nemin = 64 was best for

problems 28 to 30.

1We believe that the occasional very slow runs were caused by an executing thread being asked to perform a system task

when there were few tasks waiting to be executed.

10

Table 4.2: Test matrices factorized without node amalgamation. nz(A) is the number of entries in the

lower triangular part of A; nz(L) is the number of entries in L.

n nz(A) nz(L) Flops

Identifier (103) (106) (106) (109) Application/description

1. CEMW/tmt sym 726.7 2.9 30.0 9.38 Electromagnetics

2. Schmid/thermal2 1228.0 4.9 51.6 14.6 Unstructured thermal FEM

3. Rothberg/gearbox∗ 153.7 4.6 37.1 20.6 Aircraft flap actuator

4. DNVS/m t1 97.6 4.9 34.2 21.9 Tubular joint

5. Boeing/pwtk 217.9 5.9 48.6 22.4 Pressurised wind tunnel

6. Chen/pkustk13∗ 94.9 3.4 30.4 25.9 Machine element, 21 noded solid

7. GHS psdef/crankseg 1 52.8 5.3 33.4 32.3 Linear static analysis

8. Rothberg/cfd2 123.4 1.6 38.3 32.7 CFD pressure matrix

9. DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector/contact

10. DNVS/shipsec8 114.9 3.4 35.9 38.1 Ship section

11. DNVS/shipsec1 140.9 4.0 39.4 38.1 Ship section

12. GHS psdef/crankseg 2 63.8 7.1 43.8 46.7 Linear static analysis

13. DNVS/fcondp2∗ 201.8 5.7 52.0 48.2 Oil production platform

14. Schenk AFE/af shell3 504.9 9.0 93.6 52.2 Sheet metal forming matrix

15. DNVS/troll∗ 213.5 6.1 64.2 55.9 Structural analysis

16. AMD/G3 circuit 1585.5 4.6 97.8 57.0 Circuit simulation

17. GHS psdef/bmwcra 1 148.8 5.4 69.8 60.8 Automotive crankshaft model

18. DNVS/halfb∗ 224.6 6.3 65.9 70.4 Half-breadth barge

19. Um/2cubes sphere 101.5 0.9 45.0 74.9 Electromagnetics

20. GHS psdef/ldoor 952.2 23.7 144.6 78.3 Large door

21. DNVS/ship 003 121.7 4.1 60.2 81.0 Ship structure—production

22. DNVS/fullb∗ 199.2 6.0 74.5 100 Full-breadth barge

23. GHS psdef/inline 1 503.7 18.7 172.9 144 Inline skater

24. Chen/pkustk14∗ 151.9 7.5 106.8 146 Civil engineering. Tall building

25. GHS psdef/apache2 715.2 2.8 134.7 174 3D structural problem

26. Koutsovasilis/F1 343.8 13.6 173.7 219 AUDI engine crankshaft

27. Oberwolfach/boneS10 914.9 28.2 277.8 282 Bone micro-finite element model

28. ND/nd12k 36.0 7.1 116.5 505 3D mesh problem

29. JGD Trefethen/Trefethen 20000 20.0 0.3 90.7 652 Integer matrix

30. ND/nd24k 72.0 14.4 320.6 2054 3D mesh problem

31. bone010 986.7 36.3 1076.4 3876 Bone micro-finite element model

32. audikw 1 943.7 39.3 1242.3 5804 Automotive crankshaft model
∗ indicates only the sparsity pattern is provided.

Table 4.3: The effect of reordering the children on the HSL MA87 factorize times on 1 and 8 cores. Default

values are used for all parameters.

Without reordering With reordering

1 8 speedup 1 8 speedup

9 5.14 1.01 5.08 5.09 0.93 5.50

16 14.5 2.73 5.30 14.1 2.54 5.55

18 11.5 1.93 5.95 11.4 1.89 6.02

28 83.3 13.1 6.36 80.0 12.3 6.49

29 120. 20.1 5.99 120. 19.8 6.03

30 333. 51.8 6.44 317. 48.0 6.62

31 519. 73.1 7.10 507. 70.8 7.17

32 788. 113. 7.06 760. 106. 7.18

11

In Table 4.4, we also show the number of entries in L and the solve times. The examples illustrate the

kinds of behaviour that we saw for the solve times: flat (problems 28, 29), rising slowly (problems 31, 32),

rising less slowly (problems 3, 16, 22), and nemin = 1 much slower (problem 16).

These considerations led us to choose 32 as our default nemin value. However, if the number of entries

in L increases slowly with nemin, it can be advantageous to use a larger value. This is the case, for

instance, with problem 30. However, if a large number of solves is to follow the factorization, we would

recommend using a smaller value of nemin (for example, nemin = 8).

Table 4.4: Comparisons of times on 8 cores for nemin in the range 1 to 64. Default values for other

parameters. The factorize times within 3% of the fastest are in bold.

nz(L) (millions)

1 8 16 32 64

3 37 39 41 44 49

16 98 119 139 172 228

22 74 76 79 86 101

28 117 117 118 119 121

29 91 92 94 96 99

30 321 322 323 326 331

31 1076 1090 1108 1135 1183

32 1242 1257 1275 1303 1359

Factorize times Solve times

1 8 16 32 64 1 8 16 32 64

3 0.91 0.83 0.86 0.83 0.89 0.27 0.27 0.29 0.31 0.34

16 5.00 2.77 2.59 2.61 3.04 1.52 1.09 1.24 1.49 1.80

22 2.70 2.57 2.59 2.64 2.89 0.50 0.51 0.53 0.58 0.66

28 22.5 15.3 13.7 12.3 11.1 0.75 0.74 0.74 0.76 0.74

29 119.9 40.8 27.5 19.9 15.7 0.62 0.58 0.59 0.65 0.61

30 80.4 58.4 53.1 48.0 44.1 2.05 2.02 2.03 2.08 2.03

31 72.0 71.0 70.7 70.8 71.4 6.82 6.86 7.00 7.19 7.39

32 109. 107. 106. 106. 106. 7.82 7.85 8.01 8.23 8.43

4.4 Block size

The block size nb was discussed in Section 3.1. In Table 4.5, we report the factorize time for a range of

block sizes on a single core and on 8 cores. As in Table 4.4, we show results for the slow subset and three

cases representing the behaviour of the others for both factorize and solve times. The fastest times and

those within 3% of the fastest are again shown in bold. On a single core, there was never much difference

in the times for nb in the range 256 to 448, but the times for smaller nb were usually greater by more than

3%. On eight cores, 256 almost always gave times within 3% of the best. These considerations led us to

use 256 as our default value.

4.5 Rectangular blocks

We explained in Section 3.1 the merits of using rectangular blocks when the number of columns nc in the

nodal matrix is less than nb. We use the block row size nb2/nc, rounded up to a multiple of 8. To assess

the efficacy of this, we ran our tests with a fixed block size of 256. The most significant change was that

the factorize time for problem 29 on 8 cores increased from 19.8 (adaptive size) to 25.2 (fixed size). For

one problem, the time reduced by about 7% with a fixed size while for another it increased by about 8%.

Otherwise, the changes were not greater than 4% and in both directions. Throughout the remainder of

this paper (and within HSL MA87) rectangular blocks are used.

12

Table 4.5: Comparison of the factorize times for different block sizes nb. Default values for other

parameters. The factorize times within 3% of the fastest are in bold.

Single core factorize times 8-core factorize times

128 192 256 320 384 448 128 192 256 320 384

3 4.30 4.13 4.09 4.08 4.06 4.06 0.77 0.80 0.82 0.84 0.94

15 10.07 9.58 9.36 9.33 9.30 9.25 1.67 1.63 1.63 1.67 1.77

22 17.5 16.3 16.1 15.9 15.8 15.8 2.79 2.60 2.61 2.69 2.69

28 90.9 82.6 80.0 79.0 79.2 80.1 14.5 12.6 12.3 12.4 13.1

29 148. 125. 120. 117. 117. 116. 23.8 20.5 19.8 19.7 20.6

30 394. 331. 318. 313. 312. 316. 63.8 50.3 48.0 48.1 50.1

31 580. 528. 508. 499. 492. 488. 82.9 73.4 70.9 69.5 69.6

32 884. 794. 761. 747. 735. 729. 128. 110. 106. 104. 103.

4.6 Local task stack size

In Section 3.3, we discussed the use of local task stacks. We have performed experiments without local

task stacks and with local task stacks of size in the range 10 to 300. Except for the slow subset, we

found improvements in the factorize time in the approximate range 10% to 20% over running without

local stacks. In Table 4.6, we report the results for three representative problems that gave gains at the

ends and middle of the range 10% to 20%. For the slow subset, there was a gain but of less than 10%.

These experiments led us to use 100 as the default size.

Table 4.6: The factorize times on 8 cores for different local task stack sizes. Default values for other

parameters. The times within 3% of the fastest are in bold.

No local Stack size

stack 10 50 100 200 300

3 0.92 0.86 0.86 0.82 0.84 0.85

15 1.80 1.74 1.63 1.63 1.59 1.61

16 3.14 2.80 2.60 2.58 2.58 2.61

28 12.8 12.7 12.4 12.3 12.2 12.1

29 20.3 20.3 20.0 19.8 19.7 19.5

30 49.9 49.5 48.7 48.0 47.4 47.2

31 74.0 73.6 71.3 70.9 70.7 70.8

32 110. 110. 107. 106. 106. 106.

For three of the slow problems, we show in Table 4.7 the number of leaf nodes (initially a factorize block

task is put into the global task pool for each leaf), the total number of tasks, the number of tasks taken

directly from the local stacks, the number of tasks sent to the global task pool because a local stack became

full, and the number of tasks moved to the global task pool by workstealing. We see that the number of

tasks moved by workstealing is small. Provided the stack size is at least 100, a good proportion of the

tasks are executed directly.

For the smaller problems, the local stacks became full for only eight cases when the stack size was 100.

This happened most often for problem 19, shown in Table 4.7. Next was problem 26, where 750 tasks were

moved to the pool because of a full stack. For a further 6 problems, fewer than 400 tasks were moved to

the pool because of a full stack. For the remaining smaller problems, none of the local stacks became full.

With a stack size of 200, a local stack became full only for problem 22 and only 100 tasks were moved to

the task pool because of this.

Although the workstealing figures in Table 4.7 are small, workstealing is important for load balance

13

Table 4.7: Tasks taken directly from local stacks, moved to pool because of a full stack, and moved to

pool because of workstealing. 8 cores with different local stack sizes. Default values for other parameters.

Leaves Tasks Stack Direct Full Workstealing

(103) (103) size (103) (103) (103)

19 0.88 48 10 19 28 0.14

50 40 7 0.30

100 45 1 0.43

200 46 0 0.54

300 46 0 0.47

28 0.06 124 10 19 105 0.16

50 45 78 0.47

100 66 56 0.81

200 92 30 1.61

300 108 13 1.83

29 0.06 241 10 21 221 0.13

50 46 195 0.39

100 63 177 1.25

200 97 144 0.89

300 119 121 1.76

32 5.58 772 10 232 534 0.16

50 573 192 0.92

100 703 60 2.84

200 751 11 3.57

300 759 4 3.95

and its importance increases with the local stack size. To illustrate this, in Table 4.8 we present times on

8 cores with and without workstealing using local stack sizes of 10 and 100.

4.7 Speedups and speed for HSL MA87

One of our concerns is the speedup achieved by HSL MA87 as the number of cores increases. In Figure 4.1,

we plot the speedups in the factorize times when 2, 4, and 8 cores are used. We see that the speedup

on 2 cores is close to 2, on 4 cores it is at least 3 for all but four of the smallest test problems, and for

the largest problems (in terms of flops) it exceeds 3.6. On 8 cores, HSL MA87 achieves speedups of more

than 6 for many of the larger problems, reaching nearly 7.2 for the largest. For all but the three smallest

problems, the speedup exceeds 5. It is very encouraging to note that, as the problem size increases, so too

does the speedup achieved.

Of course, our primary concern is the actual speed. We show the speeds in Gflop/s on 8 cores in

Figure 4.2. Here we compute the flop count from a run with the node amalgamation parameter nemin

having the value 1 (that is, the flop count reported in Table 4.2). We note that for 14 of our 30 test

problems, the speed exceeds 36.4 Gflop/s, which is half the maximum dgemm speed (see Table 4.1).

Furthermore, for only the two smallest problems is the speed significantly less than 24.3 Gflop/s, which is

a third of the dgemm maximum.

5 Comparisons with other solvers

We now compare the performance of HSL MA87 with some of the recent solvers outlined in Section 1. The

solvers are listed in Table 5.1. Unless stated otherwise, all control parameters for each of the solvers are

set to their default settings and, where offered, the positive definite option is selected (so that none of the

14

Table 4.8: Factorize times with and without workstealing on 8 cores. Default values for other parameters.

The times within 3% of the fastest are in bold.

Stack size 10 Stack size 100

with without with without

2 1.24 1.30 1.23 1.28

17 1.86 1.96 1.71 2.05

27 7.54 7.67 7.10 11.08

28 12.7 12.8 12.3 16.3

29 20.3 20.2 19.8 21.9

30 49.5 49.8 48.0 49.7

31 73.6 73.7 70.8 85.9

32 109.7 110.0 105.8 139.3

Figure 4.1: The ratios of HSL MA87 factorize times on 2, 4 and 8 cores to its factorize time on a single core.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Problem Index

si
ng

le
 c

or
e

tim
e/

tim
e

8 cores
4 cores
2 cores

Figure 4.2: The speed of HSL MA87 factorize in Gflop/s on 8 cores.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Problem Index

G
flo

p/
s

15

codes performs any numerical pivoting). We provide HSL MA87 and PARDISO with the ordering generated

by METIS NodeND [20]. TAUCS has no option to input an ordering, but it calls METIS internally. This

may result in a slightly different ordering because of tie breaking. We tried supplying PaStiX with the

same ordering as HSL MA87 and PARDISO, but found this severely impaired its performance. Instead, for

PaStiX, we used its internal call to the SCOTCH nested dissection routine [22, 23]. TAUCS was run using

its multifrontal option as this is recommended in the user documentation.

We note that, because of various compilation issues, we were unable to use a single compiler for all our

tests. However, our experience of running HSL MA87 with both the Intel and gcc compilers was that this

made very little difference to the factorize times since most of the time was spent in the BLAS or other

small kernels that are equally well optimized by the versions of both compilers used.

Table 5.1: Sparse direct solvers used in our numerical experiments.

Code Date/version/compiler Authors/website

PARDISO 10.2009/ v4.0.0 O. Schenk and K. Gärtner

ifort 10.1 -fast http://www.pardiso-project.org/

PaStiX 04.2009/ v5.1.2 P. Henon, P. Ramet and J. Roman

icc 10.1/ifort 11.0 -fast http://pastix.gforge.inria.fr/files/README-txt.html

TAUCS 09.2003/ v2.2 S. Toledo

cilk 5.4.6/ gcc 4.1.2 -O3 http://www.cs.tau.ac.il/∼stoledo/taucs

5.1 Comparisons on one core of fox

Although the solvers are primarily designed to run in parallel, it is of interest to first compare their

performances on a single core. In Figure 5.1, the ratios of the factorize times for PARDISO, PaStiX

and TAUCS to the factorize time for HSL MA87 on fox (Table 4.1) are plotted for each of our 32 test

problems. We see that HSL MA87 is generally faster than both PaStiX and TAUCS. On the lowest numbered

test problems, PARDISO sometimes outperforms HSL MA87 but, on the largest problems, HSL MA87 is

consistently faster.

Figure 5.1: The ratios of the PARDISO, TAUCS and PaStiX factorize times to the HSL MA87 factorize

time (single core of fox).

0 5 10 15 20 25 30

1

2

4

Problem Index

T
im

e/
(H

S
L_

M
A

87
 ti

m
e)

PARDISO
TAUCS
PaStiX

16

5.2 Comparisons on eight cores of fox

In Figure 5.2, the ratios of the factorize times for PARDISO, PaStiX and TAUCS to the factorize time

for HSL MA87 on 8 cores of fox are given. In Figure 5.3, the speedup ratios are presented. We see that,

on 8 cores, HSL MA87 almost always outperforms the other solvers (the only exceptions being a number

of the small problems for which PARDISO is the fastest solver). For the largest problems (the last 5

problems), the performance of TAUCS comes closest to that of HSL MA87, while the the difference between

the performance of PARDISO and that of HSL MA87 (in terms of both time and speed up) becomes more

significant as the problem size increases.

Figure 5.2: The ratios of the PARDISO, TAUCS and PaStiX factorize times to the HSL MA87 factorize

time (8 cores of fox).

0 5 10 15 20 25 30

1

2

4

8

Problem Index

T
im

e/
(H

S
L_

M
A

87
 ti

m
e)

PARDISO
TAUCS
PaStiX

Figure 5.3: The ratios of HSL MA87 factorize speed-up to those of PARDISO, TAUCS and PaStiX (8 cores

of fox)

0 5 10 15 20 25 30

1

2

8

4

Problem Index

(H
S

L_
M

A
87

 s
pe

ed
up

)/
sp

ee
du

p

PARDISO
TAUCS
PaStiX

5.3 Comparisons on other processors

So far, the results have all been for our test machine fox (see Table 4.1). We end this section by presenting

runs on two further multicore machines, brief details of which are given in Table 5.2. Since the results

we have already reported indicate that, of the solvers tested, PARDISO most closely rivals HSL MA87, we

restrict our runs to these two solvers (MKL 11.0 version of PARDISO is used on both machines). The

17

ratios of the factorize times on a single core and 8 cores are given in Figures 5.4 and 5.5. We observe

that on both machines the performance of HSL MA87 compares favourably with that of PARDISO and, in

particular, on the largest problems running on 8 cores, HSL MA87 is significantly faster than PARDISO.

Table 5.2: Specifications of two further test machines .

Intel Nehalem AMD Shanghai

Architecture Intel(R) Xeon(R) CPU E5540 AMD Opteron 2376

Clock 2.53 GHz 2.30 GHz

Cores 2 × 4 2 × 4

Level-1 cache 128 K on each core 128 K on each core

Level-2 cache 128 K on each core 512 K on each core

Level-3 cache 8192 K shared by 4 cores 6144 K shared by 4 cores

Memory 24 GB for all cores 16 GB for all cores

BLAS Intel MKL 11.0 Intel MKL 11.0

Compiler Intel 11.0 with option -fast Intel 11.0 with options

-ipo -O3 -no-prec-div -static -msse3

Figure 5.4: Comparison of HSL MA87 and PARDISO factorize times on the Intel Nehalem architecture.

0 5 10 15 20 25 30

1

2

4

Problem Index

P
A

R
D

IS
O

 ti
m

e/
H

S
L_

M
A

87
 ti

m
e

1 core
8 cores

Figure 5.5: Comparison of HSL MA87 and PARDISO factorize times on the AMD Shanghai architecture.

0 5 10 15 20 25 30

1

2

4

Problem Index

P
A

R
D

IS
O

 ti
m

e/
H

S
L_

M
A

87
 ti

m
e

1 core
8 cores

18

6 Concluding remarks

The rapid emergence of multicore architectures demands the design and development of algorithms that are

able to effectively exploit the new architectures. In particular, the efficient solution of sparse linear systems

on multicore architectures is a challenging and important problem. In this paper, we have reported on

the development of a task DAG-based algorithm that we have implemented in a new sparse direct solver,

HSL MA87, for solving large-scale symmetric positive-definite linear systems on multicore machines. We

have described the main components of the algorithm and have used numerical experiments to support the

reasons behind our algorithm choices. In addition, we have presented numerical comparisons with other

state-of-the-art sparse direct solvers. These show that our code is performing well and, in particular, it

outperforms existing codes on the largest problems to which we had access for testing.

Our DAG-based sparse Cholesky solver HSL MA87 has been developed for inclusion in the mathematical

software library HSL. Versions exist for A real symmetric and positive definite and A complex Hermitian

and positive definite. All use of HSL requires a licence. Individual HSL packages (together with their

dependencies and accompanying documentation) are available without charge to individual academic

users for their personal (non-commercial) research and for teaching; licences for other uses normally

involve a fee. Details of the packages and how to obtain a licence plus conditions of use are available at

http://www.cse.scitech.ac.uk/nag/hsl/.

7 Acknowledgement

We would like to thank Iain Duff for carefully reading a draft of this paper and making helpful suggestions

for improving the presentation. We also thank three anonymous referees who reviewed an earlier version

of this paper. Their constructive criticism led to improvements both in HSL MA87 and this paper.

References

[1] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal

solver using distributed dynamic scheduling, SIAM J. Matrix Analysis and Applications, 23 (2001),

pp. 15–41.

[2] B. Andersen, J. Gunnels, F. Gustavson, J. Reid, and J. Wasniewski, A fully portable high

performance minimal storage hybrid format cholesky algorithm, ACM Transactions on Mathematical

Software, 31 (2005), pp. 201–207.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley,

ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[4] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov, The impact of

multicore on math software, in Proceedings of Workshop on State-of-the-art in Scientific and Parallel

Computing (Para06), 2006.

[5] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear algebra

algorithms for multicore architectures, Technical Report UT-CS-07-600, ICL, 2007. Also LAPACK

Working Note 191.

[6] Y. Chen, T. Davis, W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD, supernodal

sparse cholesky factorization and update/downdate, ACM Transactions on Mathematical Software, 35

(2008). Article 22 (14 pages).

[7] T. Davis, The University of Florida sparse matrix collection, Technical Report, University of Florida,

2007. http://www.cise.ufl.edu/∼davis/techreports/matrices.pdf.

19

[8] I. Duff, MA57– a new code for the solution of sparse symmetric definite and indefinite systems,

ACM Transactions on Mathematical Software, 30 (2004), pp. 118–154.

[9] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, 1986.

[10] I. Duff and J. Reid, The multifrontal solution of indefinite sparse symmetric linear systems, ACM

Transactions on Mathematical Software, 9 (1983), pp. 302–325.

[11] M. Faverge and P. Ramet, A NUMA aware scheduler for a parallel sparse direct solver, Parallel

Computing, (2009). Submitted.

[12] N. Gould, J. Scott, and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of

large, sparse, symmetric linear systems of equations, ACM Transactions on Mathematical Software,

33 (2007). Article 10, 32 pages.

[13] A. Gupta, WSMP: Watson sparse matrix package (Part-I: Direct solution of symmetric sparse

systems), Tech. Rep. RC 21886, IBM T. J. Watson Research Center, Yorktown Heights, NY, November

2000. http://www.cs.umn.edu/˜agupta/wsmp.

[14] A. Gupta, M. Joshi, and V. Kumar, WSMP: A high-performance serial and parallel sparse

linear solver, Technical Report RC 22038 (98932), IBM T.J. Watson Research Center, 2001.

www.cs.umn.edu/˜agupta/doc/wssmp-paper.ps.

[15] P. Hénon, P. Ramet, and J. Roman, PaStiX: A high-performance parallel direct solver for sparse

symmetric definite systems, Parallel Computing, 28 (2002), pp. 301–321.

[16] J. Hogg, A DAG-based parallel Cholesky factorization for multicore systems, Technical Report RAL-

TR-2008-029, Rutherford Appleton Laboratory, 2008.

[17] HSL, A collection of Fortran codes for large-scale scientific computation, 2007. See

http://www.cse.clrc.ac.uk/nag/hsl/.

[18] D. Irony, G. Shklarski, and S. Toledo, Parallel and fully recursive multifrontal sparse Cholesky,

Future Gener. Comput. Syst., 20 (2004), pp. 425–440.

[19] P. Kambadur, A. Gupta, A. Ghoting, H. Avron, and A. Lumsdaine, Modern task

parallelism for modern high performance computing, in SC09 (International Conference for High

Performance Computing, Networking, Storage and Analysis), 2009. PFunc URL: http://www.coin-

or.org/projects/PFunc.xml.

[20] G. Karypis and V. Kumar, METIS - family of multilevel partitioning algorithms, 1998. See

http://glaros.dtc.umn.edu/gkhome/views/metis.

[21] , A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Scientific

Computing, 20 (1999), pp. 359–392.

[22] F. Pellegrini and J. Roman, Sparse matrix ordering with SCOTCH, in Proceedings of HPCN’97,

Vienna, Austria. Lecture Notes in Computer Science, Vol. 1225, pp. 370-378, 1997.

[23] F. Pellegrini, J. Roman, and P. Amestoy, Hybridizing nested dissection and halo approximate

minimum degree for efficient sparse matrix ordering, Concurrency: Practice and Experience, 12

(2000), pp. 69–84.

[24] J. Reid and J. Scott, An out-of-core sparse Cholesky solver, ACM Transactions on Mathematical

Software, 36 (2009). Article 9, 33 pages.

[25] O. Schenk and K. Gartner, Solving unsymmetric sparse systems of linear equations with

PARDISO, Journal of Future Generation Computer Systems, 20 (2004), pp. 475–487.

20

