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1 Introduction

The purpose of this paper is to present FILTRANE, a new Fortran 95 package in the GALA-
HAD library (see Gould, Orban and Toint, 2003¢) for solving the general smooth feasibility
problem, that is the problem to find a vector z € IR" such that

ce(z) =0, (1.1)

and
cz(z) >0, (1.2)

where cg(z) and cz(z) are smooth functions from IR" into IR™ and IR?, respectively. If such
a point cannot be found, it is desired to find a local minimizer of the constraint violations.
We choose here to consider the Eucliden norm of these violations, that is to find a local
minimizer of the function

min 16(z)]1%, (1.3)

where we define

def [ ce(x)
¥ (0 Yem "

with || - || denoting the Euclidean norm, with p = m + ¢ and [cz(z)]- = min[0, cz(z)],
the minimum being taken componentwise. An important special case of this problem is
when ¢ = 0, which gives systems of smooth nonlinear equations. The problem under
consideration is therefore not only fairly general, but also practically important because
a large number of applications can be cast in this form. Moreover, solving the feasibility
problem may also occur as a subproblem in practically more complicated contexts, such as
the the “restoration” phase in the solution of the nonlinear programming problem using
filter methods (see Fletcher and Leyffer, 2002, Fletcher and Leyffer, 1998, Fletcher, Leyffer
and Toint, 20026, Gonzaga, Karas and Vanti, 2002 or Fletcher, Gould, Leyffer, Toint and
Wichter, 2002a, amongst others).

The method of choice for solving (1.1)—(1.2) or (1.3) is Newton’s method, because of
its fast convergence properties. However, as is well-known, Newton’s method must be
safeguarded to ensure that it converges to a solution even from starting points that are
far from the solution, a feature that is not automatic otherwise. Various safeguarding
techniques are known, including the use of linesearches (see Ortega and Rheinboldt, 1970,
Dennis and Schnabel, 1983, Toint, 1986, Toint, 1987, ...) or trust regions (see Moré
and Sorensen, 1984, Nocedal, 1984, or Chapter 16 of Conn, Gould and Toint, 2000). More
recently, Gould, Leyffer and Toint (2003a) have proposed a method that combines the basic
trust-region mechanism with filter techniques: not only did they prove global convergence

for the algorithm, but they also reported very encouraging initial numerical experience.
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Our current objective is to describe the FILTRANE package that results from this research,
and to investigate some of its properties and features in substantially more detail.

The paper is organized as follows. Section 2 presents the filter algorithm and some
of its variants whose performance we wish to study. Section 3 discusses the numerical
results obtained with the package and its variants, compares them whenever possible, and
analyzes the sensitivity of their performance as one varies some of its important algorithmic

parameters. Some conclusions are finally drawn in section 4.

2 The filter algorithm and its algorithmic options

2.1 The objective function, its models and the step

In order to subsume both (1.1)—(1.2) and (1.3) in a single description, we consider an

algorithm which aims at minimizing

f(@) = 3[0(z)]*.

For simplicity of exposition, we start by assuming that the problem only contains nonlinear
equations (¢ = 0). In this case, we may build two distinct local quadratic models of f(x)
in the neighbourhood of a given iterate zj. The first is the Gauss-Newton model, and is
given by
m
mi™ (@ +8) = 1 D lleg; (zx) + Je; (zr)s]?, (2.1)
i=1

where Jg, (zx) is the Jacobian of cg(z) at zx. The second is the full second-order Newton

model »
my(zk +8) =mp (v +s) + 1 Z z cj(zE)(s, VQCj(.Z‘k)S>, (2.2)
i=1jeé&;
(with & = {1,...,m}) which includes an additional term involving the curvature of the

equality constraints.
In FILTRANE, we have chosen to compute the step s by minimizing one of these models

in some region surrounding the current iterate zy, defined by the constraint
Iskllk < Tk, (2.3)

where Ay is a trust-region radius which is updated in the usual trust-region manner (see
Chapters 6 and 17 of Conn et al., 2000, for instance), and where 7, > 1 is a real parameter
which is adjusted from iteration to iteration. The effect of this parameter is allow for steps
that potentially extend much beyond the limit of the trust region itself, in the case where

convergence seems satisfactory. The precise mechanism for determining 7, will be discussed
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in more detail below. The || - ||y norm appearing in (2.3) is the preconditioned Euclidean

norm, that is
Isli = (s, Py 's),

where Py is a symmetric positive-definite preconditioning matrix that is used at the k-th
iteration. The solution of the subproblem of minimizing mg™N(zy + s) or my (z + s) subject
to (2.3) is computed approximately using the Generalized Lanczos Trust-Region (GLTR)
method of Gould, Lucidi, Roma and Toint (1999) as implemented in the GLTR module of
GALAHAD (see Gould et al., 2003¢). This procedure guarantees the familiar Cauchy point
condition

[l

(k) — g (T + 55) > Fmacl|ge]| min [ﬁ Ak] , (2.4)
GN

where my, is either mg™ or mp, g = Vmy(2), Kmae is a constant in (0,1), and f is a
positive upper bound on the norm of the Hessian of my.

Besides using Py, = I (i.e. no preconditioning at all), FILTRANE can also be instructed
to use a diagonal preconditioning that is obtained by extracting the diagonal of the matrix
H, def Je, (zr)Jg, (xx)?, or a banded preconditioning matrix of semi-bandwidth 5 obtained
by extracting the corresponding part of Hj and modifying it if necessary to ensure its
positive definiteness (see Conn, Gould and Toint, 1992 for details of that procedure). The
package also allows the use of a user-defined preconditioning via its reverse communication
interface.

Note that the subproblem is convex whenever the Gauss-Newton model (2.1) is used,
but that this is not necessarily the case if Newton’s model (2.2) is used, since the matrices
V2Cj($k) may be indefinite. In this last case, using 7, > 1 in (2.3) is inappropriate, and
we impose that 7, = 1. Unfortunately, non-convexity of the model is only discovered in the
course of its mimimization: when this happens for 7, > 1, we then simply use the re-entry
feature of the GLTR module, which computes, at modest cost, the minimum of the model

on the Krylov space explored so far for a shorther value of the radius (7, = 1).
2.2 The filter-trust-region mechanism
Once the step sj is computed, we may define the trial point to be

Ty =z + sg (2.5)

and consider the question of deciding whether or not it is acceptable as our next iterate

Zx+1. In order to define our filter, we first say that a point z; dominates a point xo whenever
|0i(x1)| < |0i(x2)| for all ¢ € &;.

Thus, if iterate x;, dominates iterate zy,, the latter is of no real interest to us since xy,

is at least as good as xy, for each 7. All we need to do now is to remember iterates that
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are not dominated by other iterates using a structure called a filter. A filter is a list F of
m-tuples of the form (04|, ..,|0mk|) such that, for k # £,

i k| < |0i.| for at least one i € &;.

Filter methods then accept a new trial iterate x;c" if it is not dominated by any other iterate
in the filter. While the idea of not accepting dominated trial points is simple and elegant,
it needs to be refined a little in order to provide an efficient algorithmic tool. In particular,
we do not wish to accept a new point z; if 6;" o 6(z;") is too close to being dominated
by another point already in the filter. To avoid this situation, we slighly strengthen our
acceptability condition. More formally, we say that a new trial point :1:,"; is acceptable for

the filter F if and only if

Vo e F o 3ie & |0i(z)l < |05l —voS(0ell, 165 11) (2.6)
_|_

where g € (0,1/4/m) is a small positive constant, [w]; = max[0,w], and where §(-,-) is

one of the following;:

8([16e ] 161 = N16ell (2.7)
S([16ell, 16711 = 1671, (2.8)

or
S([10ell, 16, 11) = min([16el], 1167 1)- (2.9)

The upper bound of 1/4/m on 7, ensures that the right-hand side of (2.6) is always positive
for some j for the choices (2.7) and (2.9), and thus that points acceptable for the filter
always exist in these cases. Note that such points must exist if (2.8) is considered provided
|0¢]| > 0, but a small value for 7y clearly makes it more likely that (2.6) holds for a given
;.

In order to avoid cycling, and assuming the trial point is acceptable in the sense of (2.6),
we may wish to add it the to the filter, so as to avoid other iterates that are worse, that is

we perform the simple operation
F <+ FU {Gk}

This may however cause an existing filter value 8, to be strongly dominated in the sense
that

30, € F Vie{l,...,p} |0 > 104

— 76|0e |- (2.10)

If this happens, we simplify later comparisons by removing 6, from the filter. (Note that
8; ¢ > 0,4 is sufficient in this last condition if we restrict our choice to 6(||0.||, |16} [)) = 116 1].)
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If the trial point is not acceptable for the filter, it may nevertheless be acceptable for
the usual trust-region mechanism. This requires that ||si|| < A and that pj is sufficiently
positive, where p; is the familiar ratio of achieved to predicted reduction defined by

flay) — f(=)

 my(mg) — my(a))

(2.11)

Our algorithm therefore combines the filter and trust-region acceptability criteria to allow

a potentially larger set of trial points to be accepted.

2.3 Penalty for inequalities

Inequality constraints are treated in way entirely similar to that used for equalities: as
already mentioned in (1.4) we define  to measure the violation of the inequality constraints.
This causes the /5-penalty function (1.3) to have discontinuous second derivatives on the
boundary of the set of vectors satisfying the inequality constraints, which creates some

problems that we discuss below.

2.4 An outline of the algorithm and some further details
2.4.1 The algorithmic framework

We are now ready to outline the FILTRANE algorithm using the ideas developed above.
This outline is presented as Algorithm 2.1, page 6. This outline leaves a number of points

to be clarified, which is the object of the remainder of this section.

2.4.2 An adaptive model strategy

The first issue that we examine is how the model my is chosen. As we discussed above,
two natural choices are the Gauss-Newton and full Newton models given by (2.1) and (2.2),
respectively. The initial experiments reported in Gould et al. (2003a) indicate that the first
is very often preferable, but that the latter sometimes brings significant efficiency gains,
in particular in the case where ||0|| is significantly different from zero at the solution. The
default version of FILTRANE therefore includes an adaptive model choice that attempt to
exploit the best of these two models.

A first choice strategy is to start with the Gauss-Newton model, but to evaluate pj at
each iteration, not only for the model currently in use (Gauss-Newton, initially), but also

for the model not being used. Thus we obtain pg™ and py. Each iteration for which
e~ =1 < o — 1] (2.12)

casts a vote in favor of the Gauss-Newton model, while a vote in favor of the Newton

model is recorded otherwise. After n, iterations, the model credited with a majority of the
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Algorithm 2.1: Outline of the Filter-Trust-Region Algorithm

Step 0: Initialization.
An initial point zy and an initial trust-region radius Ay > 0 are given, as well
as constants 0 < o < 1 <1 <72, 9 € (0,1//p), 0 <m < n2 < 1. Compute
co = ¢(zg) and 6. Set k=0, F =0, and select 79 > 1.

Step 1: Test for termination.
If either 0 or ||V f(zy)|| is sufficiently small, stop.

Step 2: Choose a model and a norm.

Choose a norm || - || for (2.3). Set my to be either mg™ or my.

Step 3: Determine a trial step.
Compute a step s; that satisfies (2.3) and (2.4), using the GLTR algorithm. If
the model is found to be nonconvex and 7, > 1, reenter the GLTR algorithm

with 7, = 1. Compute the trial point x; =T + Sk-

Step 4: Evaluate the residual at the trial step.
Compute c(z;') and 6" = 6(z;"). Define py according to (2.11).

Step 5: Test to accept the trial step.

o If ac}c" is acceptable for the current filter:
Set xx11 = x;, select 7541 > 1 and add 0,:“ to F if either pr < m1 or
[skll > A

o If xz is not acceptable for the current filter:
If ||sg|| < Ak and pg > 1, set T4 = :ck+ and select 7,11 > 1. Else, set
Tk4+1 = T and T4 = 1.

Step 6: Update the trust-region radius.
If ||sk|| < Ag, update the trust-region radius by choosing

[YoAr, 11 Ak] i pr <m1,
Apt1 €9 [11Ak, Ag] if pi € [1,1m2)
[Ag, Y22k if pg > mo;

otherwise, set A1 = Ag. Increment k£ by one and go to Step 1.

corresponding n, votes is used for the next n, iterations. The parameter n, represents the

“inertia” of the model choice mechanism and prevents a rapid model change. The choice
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n, = b is made by default.
FILTRANE also provides an optional alternative strategy, which differs from the default
only in that the condition (2.12) is replaced by

P > P (2.13)

2.4.3 Filter management

We now turn to issues related to the way in which the filter technique is implemented.

2.4.3.1 Pre-filtering Since condition (2.6) has to be tested, at each iteration, for the
trial point and each filter entry, we may wish to make this test reasonnably efficient. We
therefore maintain a list of entries currently in the filter, arranged by order of increasing
Euclidean norm. When a new H(x:) is tested for filter acceptability, the tests are performed

by comparing it to the successive filter entries in that list. If, for some £,

10z < 116ell = Yov/p 3(02, 116 1)-

then the current filter point lies inside the largest sphere that is tangent (up to the margin)
to the £-th filter entry in the list, and (2.6) must hold. Moreover, since the list is organized
by increasing values of ||@||, the same must be true of all remaining filter entries in the list,

and x: may be declared acceptable for the filter without further testing.

2.4.3.2 The value of 7, One of the advantages of the filter algorithm presented above is
the possibility of taking steps whose norm exceeds the trust-region radius, without affecting
the convergence properties of the method. In practice, this is most useful in the first few
iterations, while imposing some limitation on ||sk|| turns out to be a reasonable stabilization
scheme later. We thus have chosen to set 79 = 10?° and impose 7 € [1, 7] initially, while
we strengthen this condition to 73 € [1, Tmax], With Tmax = 1000, as soon as it has been reset
at least once. The actual value of 7, varies gradually in this interval: it is doubled at each
iteration where py > 72 until it reaches its upper bound, but is halved (with a lower bound
of 1) if the new point is acceptable for the filter, but py < 7. This somewhat involved

compromise appears to balance performance and reliability reasonably.

2.4.3.3 Unsigned filter entries As was suggested in Gould et al. (2003a), we may
also extend our filter definition by considering 0(zj) instead of |#(zg)|. In this case, the

acceptability condition (2.6) becomes

Ve F 3Jje{l,...,m} such that
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cither  0< 0;(a7) < [0 — 0010l 16¢ 1)
+ (2.14)
or 0> 0,(af) > |0+ w8(100], 1671)

(Condition (2.10) can be adapted in the same manner.) This makes the trial point poten-
tially more often acceptable, as this condition is obviously weaker than (2.6). We refer to
this extension as using unsigned filter entries and discuss its impact in Section 3.4. Note

that it does not affect the prefiltering technique just discussed.

2.4.3.4 The filter margin The default choice in FILTRANE are

1
50161, 116:711) = ||6¢|| and o = min |eg, ——| ,
(0ell, 16 11) = ll6el gl b
where ¢g = 0.001 by default, but the two other choices for § can be specified by the user.
The effect of an alternative choice of § or ¢4 is discussed in Section 3.4.

2.4.3.5 Grouping and balancing the violations Gould et al. (2003a) pointed out
that the constraint could be grouped in (potentially overlapping) subsets for which con-
straint violation would then be measured as a whole, using the Euclidean norm of the
vector containing all the violations of the constraints in the group. FILTRANE provides
a mechanism to specify these subsets, either automatically or according to a user’s pref-
erence. Furthermore, the automatic grouping can be chosen as to approximately balance
between the groups the aggregate violations at the starting point. When grouping is used,
the dimension of the “filter space” falls from m + g to the number of groups. Note that

unsigned filter entries are not available for groups containing more than one constraint.

2.4.4 Preconditioning and stopping

At each iteration, the subproblem solution may be preconditioned by a positive matrix
M}, (which amounts to specifying the trust-region norm | - ||z = /(-, Mk-), see Conn et
al., 2000, Section 6.7). Besides using no preconditioner at all (i.e. using My = I and
the Euclidean norm to define the trust region), FILTRANE also provides the choice of
diagonal preconditioning, or preconditioning using the a band submatrix of adjustable semi-
bandwidth that is extracted from the problem’s Hessian. Both the diagonal and the banded
submatrix are modified to make them positive definite if necessary (see Gould et al., 2003c¢).

FILTRANE is successfully terminated as soon as
10(zk)lloc < e or [[Vaf(zk)lk < eavn,

where the default values are e = eg = 107°%, and where || - [ = (-, M ') is the dual
norm of || - ||x (see Conn et al., 2000, Section 2.3.1). Observe that this choice makes the



FILTRANE, a filter-trust-region package for nonlinear feasibility problems 9

stopping criterion dependent on preconditioning, which is justified by the observation that
termination is indeed best decided for the scaled problem. On the other hand, this prevents

directly comparing variants using different preconditioners.

2.4.5 Subproblem accuracy

The subproblem of minimizing my subject to (2.3) can be solved more or less exactly. In
FILTRANE, the default setting is to stop the conjugate-gradient/Lanczos process as soon as

IVamy(zx + )| < min[eqrrr, max [[|[Vamg(z) |, vem]] (| Vamp (i), (2.15)
or
|V sm(zr + 3)|| < min [\/enr, Legv/n] (2.16)

where, by default, egrrr = 0.01 and eg = 1, and where €;; is the machine precision. The

effect of loosening or tightening this requirement is discussed in Section 3.3.

2.4.6 Other issues

In an attempt to make trial points acceptable as often as possible without compromising
the global convergence properties of the algorithm, Gould et al. (2003a) also suggested that
:1:; may be deemed acceptable whenever the reduction in the objective function is at least
as large as some fraction of its value. This possibility is offered as an option in FILTRANE:

if it is activated by the user, the trial point is then accepted if
16kl — 116 ] > 0.1 min [1, [|6["]. (2.17)

The effect of using this option is discussed in Section 3.5.
Finally, some constants related to trust-region management remain to be defined. In-

spired by Conn et al. (2000), Section 17.1, our implementation uses the constants
vo=0.0625, m =025 y9=2 g =001, 7 =09, Ay=1,

FILTRANE is written as a standard Fortran 90 module, integrated in the GALAHAD
library (see Gould et al., 2003¢). The user interface uses reverse communication, i.e. re-
turns control to the user whenever user-defined preconditioner must be applied or func-

tion/derivative information is requested.

3 Numerical experience

We now turn to the discussion of the numerical experience with FILTRANE, with particular

emphasis on the advantages and drawbacks of its various algorithmic options. To conduct
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these experiments, we selected 122 significant problems from the CUTEr collection of test
problems (see Gould, Orban and Toint, 2003b). Table A.1 reports the names and charac-
teristics of these problems. In these tables, the column heading ng indicates the number of
free variables, np, the number of variables that are bounded on one side (above or below), n,
the number of variables that are bounded both from above and below (often called “range”
variables), and ng the number of fixed variables (problem parameters). The selection pro-
vides a variety of cases including small and large problems, linear and nonlinear, equality
and/or inequality constrained.

All experiments reported in this section were run on a Dell Latitude C840 portable
computer (1.6 MHz, 1Gbyte of RAM) under the Fujitsu frt Fortran compiler with default
optimization. All attempts to solve the test problems were limited to a maximum of 1000
iterations or 1 hour of CPU time.

In what follows, we compare several variants of FILTRANE for reliability and efficiency.
Remarkably, all test problems except SEMICON1, CHEMRCTB, FLOSP2HM and FLOSP2TM could
be solved (within the prescribed iteration and time constraints) by the default variant of
FILTRANE or one of its (diagonal or 5-banded) internal preconditioned variants, which
indicates good global reliability of the package. The first two failures were caused by
arithmetic errors in the comutation of the objective function and the last two by the lack of
a suitable preconditioner. Furthermore, detailed analysis showed that some variants were
very close to the problem solution despite them reporting that no further progress could be
made(!). These occurences are counted as successful in our discussion.

Efficiency comparisons are made after the problems for which different local solutions
were found by different variants are removed(®. They use the performance profiles intro-
duced by Dolan and Moré (2002). Suppose that a given variant i from a set A reports
a statistic s;; > 0 when run on example j from our test set 7, and that the smaller this

statistic the better the variant is considered. Let

1 if s<os*

k(s,s*,0) =
( ) {O otherwise.

Then, the performance profile of variant 4 is the function

Z' k(Si,',S*,U)
pil0) = =R

(U > 1)7

where s; = min;c 4 s;;. Thus pi(1) gives the fraction of the number of examples for which
variant i was the most effective (according to statistics s;;), p;(2) gives the fraction of

the number for which variant ¢ is within a factor of 2 of the best, and lim, . p;(o)

(I This occured the unpreconditioned variants on problems ARGLBLE and ARGLCLE.
()This occured for problem PFIT2, and, for some variants, for problems ARTIF and GROWTH.
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gives the fraction of the examples for which the variant succeeded. We consider such a
profile to be a very effective means of comparing the relative merits of our algorithmic
variants, but have limited the range of the horizontal axis to 10, de facto identifying (in the
figure) a performance beyond 10 times worse than the best with failure. When comparing
CPU times, we also take into account inaccuracies in timing by considering run-times as

indistinguishable if they differ by less than 1 second or less than 5%.

3.1 Filter vs. pure trust-region algorithms

We first examine the impact of using the multidimensional filter technique in addition to the
trust-region mechanism, by comparing the default version of FILTRANE described above
with a variant where the trust-region constraint is enforced at every step and the filter
mechanism is not used for deciding on the acceptability of the trial point as a new iterate.
The resulting algorithm then conforms to the usual monotone trust-region framework (see
Chapter 6 of Conn et al., 2000).

The first observation is that the default FILTRANE is more reliable than the pure trust-
region variant, as its solves 110 of the 123 test problems (within the prescribed CPU and

iteration limits) while the pure trust-region variant solves 101.

0.7+ q

Bosl 4
= 0.5
0.4 b
03r- 4
0.2 b
0.1+ -
Default
Trust region
0 L L L L L L L I
1 2 3 4 5 6 7 8 9 10

o

Figure 3.1: Iteration performance profile for the default FILTRANE variant (including filter)

and the pure trust-region variant (no filter)

Figures 3.1 and 3.2 also illustrate that the default FILTRANE is typically considerably
more efficient on the problems that could be solved by both variants, both in iterations and
CPU time. This comparison therefore confirms the findings of Gould et al. (2003a).
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0.2+ q

0.1~ .

Default
Trust region
0 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

a

Figure 3.2: CPU time performance profile for the default FILTRANE variant (including

filter) and the pure trust-region variant (no filter)

3.2 Model choice and inertia

We next compare the default FILTRANE with two variants that use the Gauss-Newton
model (for the first) or the full Newton model (for the second) at every iteration. In terms
of realiability, the default and pure Gauss-Newton variants are best (109/122) while the
pure Newton variant is substantially behind (87/122). If we now consider efficiency, the
performance profiles presented in Figures 3.3 and 3.4 indicate that the adaptive default
strategy is about as efficient as the Gauss-Newton strategy and considerably better than

the pure Newton.

Although the unsatisfactory performance of the pure Newton model had already been
noticed in Gould et al. (2003a) for the solution of sets of nonlinear equations, this character-
istic appears to be reinforced when considering problems that involve inequality constraints.
The discontinuity of the second derivatives of the objective function (1.3) indeed makes a
prediction of objective decrease based on the full Newton model relatively unreliable. In-
terestingly, this phenomenon does not occur if the Gauss-Newton model is used because
the model then attempts to find a root of the linearized inequality constraints instead of a
minimum of its squared violation.

As the default variant uses the adaptive model choice, it is useful to verify that the
default choice of inertia (n, = 5) behaves well compared to other values. We therefore
tested four additional variants, with n, = 3,4,6 and 7. A first observation is that the last 3

of these variants share the same reliability as the default (109/122), while the variant using
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Default
Pure Gauss—Newton
— — Pure Newton
T T

7 8 9

10

Figure 3.3: Iteration performance profile for the default FILTRANE variant (including adap-

tive model choice) and the pure Gauss-Newton and Newton variants
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Pure Gauss—-Newton
— — Pure Newton
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4
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10

Figure 3.4: CPU time performance profile for the default FILTRANE variant (including
adaptive model choice) and the pure Gauss-Newton and Newton variants

ny, = 3 solves 108 problems. Their relative efficiencies are very comparables, as shown by

Figures 3.5 and 3.6.

We also performed the same tests on a variant of FILTRANE that chooses its adaptive
model using the “best reduction” criterion (2.13) instead of the default “best fit” (2.12).
The reliability of this variant (108/122) is very nearly as good as that of the default, and
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0.9 T
=
0.8 4
071 E
0.6 Bl
Bosl 4
= 0.5
0.4 B
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0.2 N
Default
Model inertia = 3
0.1 — — Model inertia =4 H
Model inertia = 6
—— Model inertia =7
0 1 1 1 1 1 1 T T
1 2 3 4 5 6 7 8 9 10

a

Figure 3.5: Iteration performance profile for the default FILTRANE variant (n, = 5) and

variants with neighbouring inertia

0.9 f ===
0.8 Bl
0.7 b
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Default
Model inertia = 3
0.1F — — Model inertia =4 [
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Figure 3.6: CPU time performance profile for the default FILTRANE variant (n, = 5) and

variants with neighbouring inertia

its performance is comparable, although slighlty worse in terms of iterations, as shown by
Figures 3.7 and 3.8.
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Figure 3.7: Tteration performance profile for the default “best fit” and the “best reduction”
FILTRANE variants
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Figure 3.8: CPU time performance profile for the default “best fit” and the “best reduction”
FILTRANE variants

3.3 Accuracy of the subproblem solution

Another important algorithmic parameter is the minimum reduction in the norm of the
model’s gradient that is required for terminating the GLTR step calculation. We therefore
tested variants with egrrr = 0.1,0.001 and \/ear as well as eg = 0.5 in (2.15). Some of
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these variants found different local minima for GROWTH, and this problems was therefore
excluded from the comparisons reported in this paragraph. The default version (using
(egLTr,€rR) = (0.01,1)) proved to be the most reliable (108/121 problems solved), fol-
lowed by the choices (egrTr, €r) = (0.01,0.5) with 107/121 problems solved, (egLTR, €R) =
(0.001,1) and (0.001,0.5) with 105/121, and the choices (egrTr,€r) = (0.1,1) and (0.1, 0.5)
with 104/121. The variant using full accuracy (eqrrr, €r) = (v/€um, 1)) solved 98 problems.

*******

Default
Subproblem accuracy = (0.1,1.0) M
| — — Subproblem accuracy = (0.1,0.5)
| Subproblem accuracy = (0.01, 0.5)
0.1+ —— Subproblem accuracy = (0.001,1.0) -
| — - Subproblem accuracy = (0.001,0.5)

| Full subproblem accuracy
I I

0 | | | | |
1 2 3 4 5 6 7 8 9 10

o

Figure 3.9: TIteration performance profile for the FILTRANE variants depending on the

requested subproblem accuracy

The iteration and CPU time performance profiles (Figures 3.9 and 3.10) indicate that
the default version and that using egzrr = 0.001 (and eg = 1) behave similarly. Requiring
full accuracy typically results in a smaller number of iterations but longer CPU time. The
looser accuracy choice (egrrr = 0.1) appears to be globally less efficient. The full-accuracy

version excels in terms of iteration numbers, but pays a heavy price in computing time.

3.4 Filter management

We now turn to the numerical appraisal of the various filter management issues, and start
with the value of Ty ax, the maximal trust-region relaxation parameter. The default value
Tmax = 1000 again provides the best reliability together with the choice 7,,x = 10000,
but the difference is slight with the variant using 7, = 100, which solves 108 of the
122 problems. The choice Tmax = 1, which amounts to imposing the trust-region constraint
(although using the filter to accept new iterates) is less reliable (103/122). These conclusions

are reinforced by the performances profiles of Figures 3.11 and 3.12.



FILTRANE, a filter-trust-region package for nonlinear feasibility problems

| Default
0.2+ Subproblem accuracy = (0.1,1.0)

| — — Subproblem accuracy = (0.1,0.5)

| Subproblem accuracy = (0.01, 0.5)
01 —— Subproblem accuracy = (0.001,1.0) H

| — - Subproblem accuracy = (0.001,0.5)

| Full subproblem accuracy

T T

0 I I I I I
1 2 3 4 5 6 7 8 9 10

17

Figure 3.10: CPU time performance profile for the FILTRANE variants depending on the

requested subproblem accuracy
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Figure 3.11: Tteration performance profile for the FILTRANE variants depending on the

trust-region relaxation factor

Interestingly, enforcing the trust-region constraint (rmax = 1) seems to be globally

advantageous if one wishes to reduce the number of filter entries, as is shown in Figure 3.13.

We next consider the numerical effect of extending the definition of filter entries by

allowing them to be unsigned (see (2.14)). Our experiments show a slightly increased

reliability (109/122 versus 106/122) with a modest gain in efficiency, both in iterations and
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Figure 3.12: CPU time performance profile for the FILTRANE variants depending on the
trust-region relaxation factor
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Figure 3.13: Filter size performance profile for the FILTRANE variants depending on the

trust-region relaxation factor

time, as indicated in Figures 3.14 and 3.15. Figure 3.16 shows that this gain is obtained at
the cost of including more entries in the filter, as can be expected.

In our default variant, we selected the choice (2.7), which can be seen as using the
filter entry violation to prescribe the filter margin size. We nevertheless tested variants

using (2.8) (using the current violation instead), and (2.9) (using the smallest of these two
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Figure 3.14: Tteration performance profile for the FILTRANE variants using signed or un-
signed filter entries
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Figure 3.15: CPU time performance profile for the FILTRANE variants using signed or

unsigned filter entries

violations). The appear to be slightly less reliable (107/122), and, in Figures 3.17, 3.18 and
3.19, to be marginally less efficient.

We complete our investigation of filter management by considering the impact of the
choice of the filter margin constant ey. The default variant uses ¢y = 0.001, but we also

tested variants with ¢ = 0.1,0.01 and 0.0001. The default choice once more provides the
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Figure 3.16: Filter size performance profile for the FILTRANE variants using signed or

unsigned filter entries
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Figure 3.17: Iteration performance profile for the FILTRANE variants according to the choice

of the violation that prescribes the margin size

best reliability, but all other choices still solved 108/122 problems. The excellent perfor-
mance of the default version is illustrated in Figures 3.20 and 3.21, but the differences

between variants remain small.
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Figure 3.18: CPU time performance profile for the FILTRANE variants according to the

choice of the violation that prescribes the margin size
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3.5 Weak acceptance criterion

The weak acceptance rule (2.17) does not appear to bring any improvement since the de-

fault variant compares favourably with the variants that use it with ejy = 1, 2 or 3, both in
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Figure 3.20: Tteration performance profile for the FILTRANE variants depending on the

filter margin constant
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Figure 3.21: CPU time performance profile for the FILTRANE variants depending on the

filter margin constant

reliability (109/122 versus 107, 106 and 108, respectively) and efficiency (see Figures 3.22
and 3.23).
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Figure 3.22: Tteration performance profile for the FILTRANE variants depending on the trial

point acceptance rule
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Figure 3.23: CPU time performance profile for the FILTRANE variants depending on the
trial point acceptance rule

3.6 Preconditioning

Although clearly crucial in practice, the question does not lend itself to much discussion
here, since we have mentioned the fact that different preconditioning-dependent stop-

ping criteria make efficiency comparisons hard to interpret. We may compare the relia-
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bility scores of the default (unpreconditioned) variant (109/122) with its diagonally pre-
conditioned version (103/122) or its variant using a banded matrix of semi-bandwidth 5
(107/122), but these measures obscure the fact that some problems (GLIDER, CAMSHAPE,
ROCKET, FLOSP2TL, ROTDISC, CHEMRCTA, FLOSP2HH and FLOSP2TL) simply require pre-
conditioning to be solved, while preconditioning prevents convergence on others (POWELLSQ,
TRAINF, CORKSCRW, YATP2SQ). Experience with specific classes of problems therefore re-
mains the ultimate deciding factor, but the fact that FILTRANE allows preconditioning

(user-defined included) is clearly valuable.

3.7 Other issues

We conclude our experimental analysis of the FILTRANE package by briefly mentioning
some remaining issues.

We also investigated whether keeping dominated filter entries in the filter might save
time at the expense of memory, but we could not isolate any significant difference, possibly
because the pre-filtering technique described above is already fairly efficient in saving time
in the process of comparing trial and filter points.

We finally tested grouping equations or inequalities and balancing those groups, as
described in Gould et al. (2003a), but obtained results entirely parallel to those reported in
that reference. These indicate that keeping as many groups as possible appears beneficial,

and that the effect of balancing the groups is limited on the CUTEr test problems.

4 Conclusion

We have presented FILTRANE, a new Fortran 95 package for the solution of the nonlinear
feasibility problem, and have shown that the main feature of the underlying algorithm (use
of a mutidimensional unsigned filter) produces significant reliability and efficiency gains
compared to a more classical trust-region approach. FILTRANE is available as part of the
GALAHAD library at http://galahad.rl.ac.uk/galahad-www/.

Extensive numerical experience was also used to investigate the dependence of the pack-
age on some of its algorithmic constants, which was shown to be very moderate. This inves-
tigation also provided the opportunity to study, for the first time, the relative importance
of some parameters that are imbedded in filter methods, and to indicate that such methods
may not depend too strongly on suitable choices for these parameters.

As always, the true potential of the FILTRANE package will only be correctly assessed
with its continued use in a variety of applications, but the results presented here are clearly

encouraging.
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Test problem characteristics

Table A.1: The test problems and their characteristics

Problem Ny np Ny Nfx m q
AIRCRFTA 2 0 0 3 5 0
ARGAUSS 3 0 0 0 15 0
ARGLALE 200 0 0 0 400 0
ARGLBLE 200 0 0 0 400 0
ARGLCLE 200 0 0 0 399 0
ARGTRIG 200 0 0 0 200 0
ARTIF 4998 0 0 2 5000 0
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Table A.1: The test problems and their characteristics

(continued)
Problem e np Ty ey m q
ARWDHNE 500 0 0 0 998 0
BATCH 0 2 46 0 12 61
BDVALUE 100 0 0 2 100 0
BDVALUES 10000 0 0 2 10000 0
BOOTH 2 0 0 0 2 0
BRATU2D 4900 0 0| 284 4900 0
BRATU2DT 4900 0 0| 284 4900 0
BRATU3D 3375 0 0| 1538 3375 0
BROYDN3D 5000 0 0 0 5000 0
BROYDNBD 5000 0 0 0 5000 0
BROWNALE 200 0 0 0 199 0
CAMSHAPE 800 0 0 0 0| 1603
CBRATU2D 2888 0 0| 312 2888 0
CBRATU3D 2000 0 0 | 1456 2000 0
CHAIN 800 0 0 2 400 0
CHANDHEQ 100 0 0 0 100 0
CHANNEL 9598 0 0 2 9598 0
CHEMRCTA 5000 0 0 0 5000 0
CHEMRCTB 5000 0 0 0 5000 0
CHNRSBNE 50 0 0 0 98 0
CLNLBEAM 5001 0 | 9998 0 10000 0
CLUSTER 2 0 0 0 2 0
COOLHANS 9 0 0 0 9 0
CORKSCRW 2497 0 | 2000 9 3000 500
CUBENE 2 0 0 0 2 0
DECONVNE 61 0 0 0 40 0
DRCAVTY1 961 0 0| 264 961 0
DRCAVTY?2 3969 0 0| 520 3969 0
DRCAVTY3 961 0 0| 264 961 0
DRUGDISE 100 300 | 199 4 500 0
EIGENA 110 0 0 0 110 0
EIGENB 110 0 0 110 0
EIGENC 462 0 0 0 462 0
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Table A.1: The test problems and their characteristics

(continued)
Problem e np Ty ey m q
EIGMAXA 101 0 0 0 101 0
EIGMAXB 101 0 0 0 101 0
EIGMAXC 202 0 0 0 202 0
EIGMINA 201 0 0 0 201 0
EIGMINB 301 0 0 0 301 0
EIGMINC 302 0 0 0 302 0
FEEDLOC 0 0 87 3 19 240
FLOSP2HH 2763 0 0| 120 2761 0
FLOSP2HM 2763 0 0| 120 2761 0
FLOSP2HL 2763 0 0] 120 2761 0
FLOSP2TM 2763 0 0] 120 2761 0
FLOSP2TL 803 0 0 64 803 0
GASOIL 10398 3 0 2 10398 0
GAUSSELM 20501 39 | 1599 0| 61542 0
GLIDER 1006 200 | 101 7 1208 0
GOTTFR 2 0 0 0 2 0
GROWTH 3 0 0 0 12 0
HAGERA4 2500 | 2500 0 1 2500 0
HATFLDF 3 0 0 0 3 0
HATFLDG 25 0 0 0 25 0
HEART®6 6 0 0 0 6 0
HEARTS 8 0 0 0 8 0
HELSBY 741 649 18 0 1399 0
HIMMELBA 0 0 0 2 0
HIMMELBC 0 0 0 2 0
HIMMELBD 0 0 0 2 0
HIMMELBE 0 0 0 3 0
HYDCARSG6 29 0 0 0 29 0
HYDCAR20 99 0 0 0 99 0
HYPCIR 2 0 0 0 2 0
INTEGREQ 500 0 0 0 500 0
JUNKTURN 9996 0 0 14 7000 0
LEAKNET 80 70 6 0 153 0
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Table A.1: The test problems and their characteristics

(continued)
Problem e np Ty ey m q
LEWISPOL 0 0 6 0 9 0
MANNE 0| 4749 | 1250 1 0| 4000
MARINE 11200 15 0 0 11192 0
METHANBS 31 0 0 0 31 0
METHANLS 31 0 0 0 31 0
METHANOL 11997 5 0 3 11997 0
MRIBASIS 0 24 0 12 51 3
MSQRTA 1024 0 0 0 1024 0
MSQRTB 1024 0 0 0 1024 0
NGONE 0 496 1 3 31373
NONMSQNE 49 0 0 0 49 0
NYSTROMS5 15 0 0 3 18 0
OPTMASS 3006 0 0 4 2004 501
OPTCDEG2 1500 | 1499 | 1500 3 1500 | 1500
ORTHREGA 8197 0 0 0 4096 0
ORTHREGD 10003 0 0 0 5000 0
ORTHREGF 30033 2 0 0 10000 0
PFIT1 1 0 2 0 3 0
PFIT2 1 0 2 0 3 0
PFIT3 1 0 2 0 3 0
PFIT4 1 0 2 0 3 0
PINENE 8795 5 0 5 8795 0
POLYGON 0 198 0 2 0| 5049
POROUS1 3844 0 0| 252 3844 0
POROUS2 3844 0 0| 252 3844 0
POWELLBS 2 0 0 0 2 0
POWELLSQ 2 0 0 0 2 0
PT 2 0 0 0 0 501
QR3D 590 20 0 0 610 0
QR3DBD 1552 33 0 0 1650 0
RECIPE 3 0 0 0 2 0
ROBOTARM 1999 | 2400 0 12 3202 0
ROCKET 802 801 | 800 4 2002 0
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Table A.1: The test problems and their characteristics

(continued)
Problem e np Ty ey m q
ROTDISC 180 181 | 531 13 360 721
RSBRNE 2 0 0 0 2 0
SEMICON1 5000 0 0 2 5000 0
SEMICON2 5000 0 0 2 5000 0
SINVALNE 2 0 0 0 2 0
SMMPSF 0 720 0 0 240 23
SNAKE 2 0 0 0 0 2
SPMSQRT 10000 0 0 0 16664 0
STOCFOR3 0 | 15965 0 0 8829 | 7846
STEERING 1597 0| 401 7 1600 0
TRAINF 2000 0 | 2000 8 2002 0
TRIGGER 6 0 0 1 6 0
TRUSPYRI1 3 8 0 0 3 0
TWIRIBG1 0 0| 3127 0 922 317
VANDERM1 100 0 0 0 199 0
VANDERM2 100 0 0 0 199 0
VANDERM3 100 0 0 0 199 0
WOODSNE 4000 0 0 0 3001 0
YATP1SQ 123200 0 0 0 || 123200 0
YATP2SQ 123200 0 0 0 || 123200 0
YFITNE 3 0 0 0 17 0
ZANGWIL3 3 0 0 0 3 0




