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tor of Philosophy and entitled An Eikonal Model for Multiparticle production

in Hadron-Hadron Scattering

Month and Year of Submission: November 2002

The purpose of this thesis is the introduction of a model for multiparticle pro-

duction in hadron-hadron interactions.

An introduction to the broad issue of perturbative Quantum Chromodynamics
(QCD) is presented in the first chapter with special emphasis on the concepts of renor-
malization, asymptotic freedom and scaling violation. In addition non-perturbative
concepts such as Regge theory and Regge pole parametrisation of the total cross sec-

tion are mentioned.

The second chapter is a broad introduction to the Monte Carlo techniques used
in event generators and numerical integrators with special emphasis on the methods

used in the HERWIG event generator.

The third chapter contains a brief overview of the main physics and methods

used in HERWIG for simulation of large momentum transfer collisions between two
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hadrons.

In Chapter 4 we introduce the physics of the underlying event and adopt a sim-
ple jet definition used by the CDF collaboration in the analysis of charged particle
component of jets simulated by HERWIG in three different topological regions. For
hard scattering proton-antiproton collisions we simulate the underlying event activ-
ity in each region using HERWIG’s Underlying Event model and compare it to the
experimental data. We thus independently confirm results obtained by the CDF col-

laboration.

In Chapter 5 we present the Multiparton Interaction model used as a substitute
to the HERWIG Soft Underlying event model. We examine whether the addition of
secondary hard scatters to the main hard interaction improves the simulated data on
the underlying event. We propose to tune the value of the proton radius used in the
Hard Multiparton Interaction model in order to obtain a good agreement with the

experimental data.

In Chapter 6 we introduce a new Eikonal Monte Carlo model in order to simulate
multiparticle production in hadron-hadron interactions. The model contains a single
phenomenological input the total cross section for pp and pp scattering. We show a
broad agreement between our model predictions and experimental data. We discuss
its main advantages over the two underlying event models used in chapters 4 and 5.
Finally we use the new Eikonal model to predict the underlying event activity which

should be expected at the LHC.
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1.1 Introduction

In this chapter we present a brief overview of the main concepts used in Quantum
Chromo Dynamics, the theory of strong interactions. Most of the concepts presented in
the following sections are implemented in the HERWIG Monte Carlo Event generator,
our principal tool for data simulation. Furthermore in this thesis we will propose
and use a new model with HERWIG as its kernel. Thus it is essential that the main
concepts and approximations used in HERWIG (as a “faithful” representation of the
perturbative QCD part) are transparent to anyone who is going to use it. What are
the advantages of using a Monte Carlo event generator in our simulations 7 First it
is particularly suitable for describing complex final states that traditional analytical
techniques are not capable of, second it is particularly convenient since we can impose
on our final states the same experimental cuts as those used in the experiment. Thus a
Monte Carlo event generator is an interesting tool that is particularly important if we
are to estimate the accuracy of perturbative QCD predictions in this particular case,
or more generally to simulate the physics of the Standard Model as a background to

some new physics.

The structure of this thesis is as follows: in Chapter 2 we present an overview of
the most important Monte Carlo techniques used in Monte Carlo event generators, in
Chapter 3 we describe the main assumptions and approximations used in HERWIG
for simulating two-to-two parton-parton scattering, in Chapter 4 we compare data
simulated with HERWIG QCD Monte Carlo event generator to those of experimen-
tal proton-antiproton collisions at 1.8 TeV involving a hard scattering and focus on
whether our ‘default’, Monte Carlo model describes correctly the ‘underlying event’ in
hard jets. In Chapter 5 we present an overview of the Hard Multiparton interaction
model and examine whether this alternative model describes better the ‘underlying
event’. In Chapter 6 we propose a new model for simulating the ‘underlying event’
based on an eikonal approach and compare it to HERWIG’s default Underlying Event
model and the Hard Multiparton Interaction model results. Finally we test the pre-

dictability of our model by comparing our simulated data to the experimental UA1
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measurement at /s=630 GeV.

1.2 QCD

The theoretical and experimental study at high energies of hadron-hadron, lepton-
lepton and lepton-hadron interactions has led to a description of properties of the
strong force. The strong force is one of the four fundamental forces in nature and
is responsible for nuclear binding and hadron-hadron interactions. Quantum Chromo
Dynamics (QCD) is considered today as the most correct theoretical description of

strong interactions.

The QCD Lagrangian is formulated in terms of its fundamental fields, quarks and
gluons. Each fundamental particle of QCD carries, together with the usual quantum
numbers an additional degree of freedom, named colour. Colour was introduced to
explain the wave function for the doubly charged A™* baryon, having the spin of 3/2.
If we are to construct a AT wave function, using three identical quarks in their ground
state, we will obtain a symmetrical wave function of space, spin and flavour SU(3);
degrees of freedom. However as quarks have spin 1/2, Fermi-Dirac Statistics dictates a
totally anti-symmetric wave function for the A** baryon. By adding the colour degree
of freedom (with three possible values) to quarks, the A™* baryon wave function can
be made totally anti-symmetric in colour. The elementary fundamental particles of
QCD cannot be observed in experiments as such, only their bound states, such as
hadrons are. QCD in consequence exhibits a particular behaviour, at small distances
the fundamental particles can be essentially considered as free (i.e small coupling
constant) and at large distances (=~ 1fm) and large coupling constant, quarks and
gluons form bound states. The decrease of the coupling constant at small distances
is known as asymptotic freedom and the mechanism forcing quarks and gluons into
asymptotic states is known as confinement. Furthermore because coloured states are
not detected in experiments, one additional constraint is required, that only colour

singlet states can exist in nature. The behaviour of the coupling constant at large
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distances prevents perturbative QCD calculations from predicting asymptotic final

states.

The idea of colour was checked in early experimental tests, for example the rate
of decay 7% — ~v or the ratio of the e*e~ hadronic total cross section to the cross
section for the production of a muon pair. The evidence for the existence of approxi-
mately point-like particles was provided by the early electron deep inelastic scattering
experiment at SLAC showing the scaling behaviour of the measured cross section.
The point-like particles inside hadrons were termed partons and identified later with

quarks and gluons.

1.2.1 QCD Lagrangian

The expression for the QCD Lagrangian density, invariant under SU(3) local gauge
phase transformations, can be written as
S= () (7 (n_ 1
L= Z ¢£f)(zp - m)ab’lvbb - ZFEVFOILW + Lgauge fixing + Lghost- (11)
f
The quark and gluon fields are represented by 1) and A respectively. D is the
covariant derivative (Dy)ap = 0udas + ig(t“AS) e acting on triplet quark fields and
(Dp)ap = 0udap + ig(TCAf)AB on octet gluon fields. The flavour number, f in eq.1.1,
runs over all ny quark flavours. Fyj, is the field strength tensor derived from the gluon

field

Fi = 0,A — 0,A% — gfABCAB AT, (1.2)

The indices A, B, C run over 1,..., N2 — 1 colour degrees of freedom of the gluon field
and a, b, c run over the triplet representation of the colour group, f45¢ are the SU(N,)
group structure constants, g is the coupling constant which determines the strength
of the interaction between the coloured quanta and N, is the number of colours in the

theory. We mention here, without going into further details, that the choice of gauge is
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necessary for defining the gluon propagator and the ghost term cancel the unphysical

degrees of freedom which would otherwise propagate in the covariant gauges.

1.2.2 Renormalization

Feynman rules can be directly deduced from the Lagrangian in eq.1.1. At higher
orders, divergences will appear in loop integrals, when the momentum in the loop
integral goes to infinity (ultra-violet divergences) or when the outgoing partons are in
the soft or collinear limit (infra-red divergences). In the case of infrared divergences
the loop and soft and collinear contributions cancel each other*, making their sum ’in-
frared’ finite. However for loop integrals such as shown in fig.1.1, the infinite integrals
need first to be regularized before the infinite (ultra-violet) divergences are absorbed.
One way to regularize an infinite integral would be to introduce a momentum cutoff
and then absorb the divergent term into newly redefined fields or parameters. The re-
definition of the fields and parameters after absorption of the divergent term is known
as renormalization. We give here an outline of the renormalization of the bare strong

coupling ¢ (for more details see [3]).

If we are to compute the effective strong coupling at one loop level we would get

3 2
Gert = s (QY) = g — b2 lln Q—] +0(g”), (1.3)

where A is the ultraviolet cutoff, for A—00, ges/(Q?) is divergent (i.e. g.rr(Q*)—00).
The procedure now consists of introducing a renormalization scale p? at which the
renormalized coupling (as opposed to bare) for some choice of Q* = p? will be fixed
to a particular finite value. The new effective (measured) coupling g.;;(Q?) becomes

then a function of the renormalization scale ;2 and can be expressed as

N 9 ggff(:u2) 2 5
Gerr(Q7) = Gepp(p”) — 5327% lnﬁ +O(ge5y)- (1.4)

An often used method for regularizing infinite integrals is dimensional regular-

ization. The idea is that the loop integral is only divergent in four dimensions, for

*Initial-state collinear divergencies do not cancel but can be factorised and replaced by
non-perturbative parton distribution functions
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smaller number of dimensions the integral is finite. Thus by integrating in D = 4-¢ (e
> 0) dimension a finite result should be found. The one-loop contributions shown in

fig.1.1, contain respectively integrals of the form [1]

= =
o [
I = /(3:374/?2’ (1.7)
L= (;ijrl;k?(kiq)Q' (18)

For an expression with two factors in the denominator we first introduce Feynmann

parameters x and y defined as

AB Q/ uA+1fqg =A3MWMx+y—n@Z{§§F (1.9)
We can now express eqs.1.5-1.8 respectively as
L= /01 dx/d4l(271r)4 (12 _CIA/)z’ (1.10)
= /01 d”“"/d4l(271r)4 (P f)IA)z’ (1.11)
Iy = /01 dx/d4l(271r)4 G _EIA)Q, (1.12)
I = /01 da:/d4l(271r)4 7 f’A)Z’ (1.13)

where | = k + zq, A’ =m? — (1 — 2)¢* and A = —z(1 — x)q°.

We perform the Wick rotation of the variable | and define the Euclidean 4-
momentum variable [y as

1°=il%, 1=1g. (1.14)

The integrals from eqs.1.10-1.13 can now be evaluated in four-dimensional spherical

coordinates using the general expression

1 1 1
I= 1 1.1
/0 d"“"/d "y (& A (1.15)
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el

a)

b)

<)

Figure 1.1: One loop Feynman diagrams.

which is badly ultraviolet divergent. This integral can however be regularized using

dimensional regularization.

In d dimensions the integral in eq.1.15 can be written as [1]

a1 1 1 T(@2-d/2) [1\*Y?
I_/dlE(Qw)d(l%—l—A)Q_(47r)d/2 NE) (z) - 0w

Defining € = 4 — d, near d = 4 we use the approximation,

d 2
r(g--) :r<5> = Z b+ O(e), (1.17)
2 2 €
where vg /~ .5772 is the Euler constant and the integral in eq.1.16 becomes then for
d—4

11 12
1=[a e G BT AE ~ (i (Z—logA—’yE+log(47r)+O(e)> (1.18)

The divergence in the loop integral now shows as a pole in e. The pole in € can

be removed by adding counter terms to the Lagrangian and re-interpreting the new
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terms as the renormalized fields and coupling. If the counter terms exactly cancel the
e pole then this defines the minimal subtraction scheme (M.S). However if additional
constant terms (such as vy — log (47)) are also removed then this defines a modified
M S scheme known as MS. One drawback of the dimensional regularization is that the
coupling being dimensionless in d=4 acquires dimensions in d # 4 and the subtraction

scale p is introduced and factors of u¢ keep appearing.

1.2.3 Asymptotic freedom

A physical observable should not depend on the choice of the renormalization scale.
This statement can be formulated as the renormalization group equation (RGE) (see
for example [2]),

d 0 da, 0
2 @ 2/ 2 — 1,2 Y 2 Ults
lu dMQ ®(Q /,LL I Oés) - llu a,u2 + /‘L a/LQ 8053

] 0=0 a,=L (1.19)

where ©(Q?/1?, ;) is a dimensionless physical observable with physical scale @*. The

expression in eq.1.19 can be rewritten as

0 0
-5+ 80 e | Blex ()0 =0 (1.20)
where the variables t and () are defined as
Q’ da
t=1In (ﬁ) , Blag) = 'u28,u2' (1.21)

The first order differential equation in eq.1.20 can be solved by defining the running
coupling a,(Q?) as

_ (@) du 2y _
t—/as S @) = s (1.22)
By differentiating eq.1.22 we can check that
0o (Q%) _ oy 005(Q%) _ Blas(@?))
0 Blas(Q%)), dos ~ Bloy (1.23)

and that O(1, as(Q?)) is a solution of eq.1.20.

The running of the coupling constant «; is thus determined by the RGE

= Blas). (1.24)
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In QCD, (as) in eq.1.20, can be expanded pertubatively [2] as

Blas) = —=baZ(1 + Va, + O(a?)). (1.25)

At one loop level, graphs from fig.1.1.(a,b) are used to obtain the value of b which

can be expressed as [2]

1ICA—2nf (33—2nf)
= = . 1.2
b 127 127 (1.26)

At higher order ¥ is calculated to be [2]

b, _ (17031 - 5CAnf — 3Can) _ (153 - 19nf) (1 27)
2m(11C 4 — 2ny) 2m(33 — 2nyg) '

If higher order terms to one loop level in eq.1.25 are neglected, eq.1.24 can be rewritten

as

da (QQ)

QQTQQ = —ba?(QQ), (1.28)

which gives as solution

2 2
2 O‘s(u ) Q
=—F—— t=In|—=%]. 1.29
@) = = () (1.29)

The role of the running coupling a,(Q?) in eq.1.29 can be seen as twofold, first it
compensate for the ©(Q?/u?, a,) dependence of the renormalization scale yu, second
it regulates the ©(Q?/u?, o), Q* scale dependence. From eq.1.29 we notice that the
running coupling a,(Q?) decreases and tends to zero as @ (i.e. t) increases. This

property of QCD is known as asymptotic freedom.

The renormalization scale 1 can be removed from the running coupling by intro-
ducing a scale Agcp at which the coupling will diverge (i.e. a; will become strong)

by setting [2]

2 00 d
w9 Ja (1.30)
AQCD 0.(Q2) B(u)
The integral in eq.1.30, at one loop level, leads to [2],
a,(Q*) = 21 BT (1.31)
bIn (Q?/A§ep)
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where Agep is of the order of 200 MeV and indicates the boundary for ) ~ 1GeV
below which a,(Q?) becomes large and perturbative calculations break down. The
value of Agep is determined from the measurement of o, and will depend on the
number of flavours used in loop calculations and the renormalization scheme. The
often used value of Agcp is the 5-flavour QCD scale AS)C? performed in the modified
minimal subtraction scheme [4]. In fig.1.2 we show various experimental tests of the

running coupling in good agreement with the theoretical predictions. The average

0.5 -
| Th 3 &
eory | © 2 &
Data 2 Z =
OLS(Q) : . Z Z =
Deep Inelastic Scattering A
0.4 ete” Annihilation o e
* Hadron Collisions o 7
Heavy Quarkonia [
\Jeavy Q )
A(I\S/T)S O('S(MZ)\
251 MeV --- 0.1215
0.3 | 213 MeV — 0.1184]
178 MeV — - 0.1153
J
002 r ]
0.1} i
1 100

Figure 1.2: Experimental tests of the QCD running coupling [5].
world value for the coupling constant at the Z° mass is

as(Mz) = 0.118 = 0.002, (1.32)
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from which the value of AS)C? can be deduced to be

ASES = 20825 MeV. (1.33)

1.2.4 The proton structure and the naive parton model

The information about the proton structure is extracted from deep inelastic lepton-
hadron scattering (DIS) experiments. The two incoming particles (usually electron and
proton), shown in fig.1.3, are pictured as exchanging a virtual photon (or Z° boson)
with large transverse momentum squared during which the proton breaks down into

a struck quark and remnant jets of hadrons.

p

Figure 1.3: Hlustration of an DIS collision.

In fig.1.3 the incoming and outgoing lepton (electron) four-momenta are labeled
k" and k' the incoming hadron (proton) four momentum as p* and the momentum

transfer as ¢* = k* — k'*. The standard deep inelastic variables can be defined as

Q= —¢
M? = p?,
v=p-q,
2
@
2v
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L)
i)

y = (1.34)

>~
’E .

The inclusive spin averaged cross section for lepton-hadron scattering can be

written as
Aot Ao’
2d0? ~ 201 [xy2F1(x, Q) + (1 — y) Fy(x, QQ)} , (1.35)

in which the mass of the proton can be neglected and where o? is the electromagnetic

coupling constant. In eq.1.35 F} and F, are gauge invariant functions called structure
functions parametrizing the structure of the hadron probed by the virtual photon. In
the leading order perturbative QCD picture the photon is considered to scatter from
a point-like constituent of the proton moving parallel to it and carrying a fraction ¢ of
the proton momentum. At leading order (7*¢q — ¢) the form of the structure functions

is given by
1
2F (2,Q%) = —F2 (z,Q% Z / de q(e)d(z — ¢) Zeqq (1.36)

where ¢(z) is a quark momentum distribution which describes the probability that the
struck quark carries a fraction x of the proton’s momentum p. Thus at the leading
order the structure functions depend only on x; this is known as Bjorken scaling (i.e.
partons behave as point-like particles) as shown in Fig.1.4. The relation between both
structure functions is known as the Callan — Gross relation and is the consequence

of quarks being spin 1/2 particles.

1.2.5 Scaling violation and the Altarelli-Parisi equations
In this section we show how QCD gluon radiation introduces a Q? dependence of the
F, structure function.

Adding next to the leading order terms (v*q — ¢g) to the leading order (v*q — q)

as shown in fig.1.5 the F, structure function is modified to

lF2 (z,Q?) Zeqq q e as /1 dz (a:) (1.37)
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Figure 1.4: Scaling of the F; structure function taken from [2]

d(—1)C

1o Q-2 |

/%2 . l11+z2 2(1 4 2Q?)
0

where the quark momentum fraction is expressed as

o QF Q? @

and variables with a hat indicate that we are considering a process at the partonic

level and z is the usual Bjorken variable.

The expression in eq.1.37 has two singularities. The first singularity arises when

z — 1 and corresponds to the limit

— 0. (1.39)

This singularity is known as infrared soft and corresponds to the emitted gluon with
momentum k£ = 0. We will explain how the soft infrared singularity cancels with loop

vertex corrections, for now we regularize it with a cutoff at z,,5< 1.
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y 2
+
q

Figure 1.5: Real part of the NLO contribution to v*q¢ — ¢.

q

The second singularity in eq.1.37 arises as ¢ — 0 and is known as the mass
or collinear singularity. The collinear singularity corresponds to the incident quark
emitting a collinear gluon while itself remaining on the mass shell. We regularize the
collinear singularity with a cut off at # = — 2, which will be absorbed into the bare
quark distribution. Keeping only leading logarithms, the F; structure function can

now be expressed as

1 2 s [Zsoft d 2
EFQ(,ZE’ QQ) — zq: €3q({17) + zq: egi [ ?Zq <§> P, (z)In <Q2—) (1.40)

Heoll

We can chose to set p2,, equal to the renormalization scale y? at which the coupling

a is defined, and express F; as

L0 = St + £ 950 [ (Y pyom (L),

2 1

where P, represents the probability,

2
P, = Cp (1+Z ) (1.42)

1—2
of a quark to emit a gluon with a momentum fraction 1 — z, and where the colour

factor Cr = %.

At this point we introduce virtual gluon corrections to the leading order v*q — ¢

process as shown in fig.1.6.

The sum of the amplitudes squared of fig.1.5 and fig.1.6 leads F5 to be expressed

as

R0 =%4 [ Za(%) (5(1 —+ S (Q2>> ()

z

1.2. QCD
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e

Figure 1.6: Virtual part of the NLO contribution to v*q¢ — gq.

In eq.1.43 the soft singularities have been canceled by the virtual corrections to v*q¢ —
g process, in doing so the splitting function P,, has been modified and now includes a

term which removes its original singularity. F,, can now be expressed as

1+22 3
ﬁ + 50}?5(1 - Z), (144)

where the (+) prescription is defined as

/dz /d 1—z fE) =) (1.45)

In eq.1.43 in addition to the x dependence, the structure function F,, now has a

P, =Cp

logarithmic Q? dependence which violates Bjorken scaling with u the cutoff scale for
collinear gluon emissions. The Q? logarithmic dependence can be absorbed into the

quark probability distribution function and eq.1.43 can be rewritten as

éFQ(z,QQ) = Z / e) + Aq(e, Q )) <1—§>
= Ze (a(2) + Aq(, Q%)) , (1.46)
where ) )
Ag(r, @) = 2y, (Q—2) [ Earr (2. (1.47)

27 0

From eq.1.47 the quark density ¢(z, @*) now depend on Q? and its evolution as

function of Q% can be written as

d s(u?) 1d
ale.@) = 2 ['E e @, (2), (1.43)

The expression in eq.1.48 is the direct consequence of quarks interacting through the

gluonic field. As the scale of photon-quark interaction increases, the number of partons
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sharing the proton momentum is increased and so the probability of finding a quark at
small z. Furthermore because high-momentum quarks lose momentum through gluon

radiation the chance of finding a quark with high x should decrease.

To the diagram in fig.1.5 we should also add contributions from the gluon anni-

hilation process (7*g — ¢q) shown in fig.1.7. The F; structure function contains thus

P q

+

gQ@ qbar qbar

Figure 1.7: NLO contribution from gluon annihilation.

an additional contribution

iFQ(x,QQ) = Zeq /ml d€g( )0432(7/:2)qu <m> In (Q2), (1.49)

q 3

where g(¢) is the gluon density in the proton and where

n(©)-3(E+0-9) 0

is the probability for a gluon to annihilate into a ¢g pair.

The complete quark evolution equation can now be written as

CHHLQQ(H(SE,CP) 52(7r )/: d; ( (e, Q)P <§> 496, QY)P, <§>)’ (1.51)

for each quark flavour f and is valid for any massless quark and antiquark. The full

expression in eq.1.51 is known as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
6, 7, 8, 9] equation. The DGLAP equation describes a quark with momentum fraction
x coming from a parent quark with larger momentum fraction £ which has radiated a

gluon. The corresponding equation for the gluon distribution can be written as

@)= [ (Zw@ (§)+g<e,Q2>ng(§)), (152
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where
1 1—2)?
qu—cF< =y ) (1.53)
and
1—=z z
Py, =2C4 ~ + a=2. +2(1—2) | +27b (1 — 2), (1.54)

are respectively the gluon-quark and gluon-gluon splitting functions, and where b is

given in eq.1.26. In fig.1.8 we show data on the structure function F4? and prediction

from the DGLAP evolution equations using MRS [10] parton distribution function set.
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Figure 1.8: QCD fits to muon-proton DIS F; taken from [2]
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1.2.6 Parton distribution functions

Parton distribution functions are obtained from accurate measurements of the struc-
ture functions Fy(x, Q?). The procedure consists of performing a QCD fit to the entire
experimental data set. The QCD fit starts by assuming a certain parametrized form in
x for the different parton distribution at low %, parton distributions are then evolved
up in Q? with a particular value of Ajzz through the DGLAP evolution equations to
the values of ? where the structure function has been measured. The initial set of
parameters is then chosen to correspond to the best fit to the experimental data. In

fig.1.9 we show a set of parton distribution functions at Q2 = 20 GeV?2.

1.2. QCD



Chapter 1. Introduction 44

2 0 T T T T 17T T T T T 17T T T T T 17T T T T 11T
MRST partons Q2:20 GeVv?
15 —
N/-\
4
>
=
>
1
0.5
O -l il 1| LLLLL 1 >
107 107 1072 107" 1
X

Figure 1.9: Parton density distributions as functions of z for Q? = 20 GeV? taken
from [11].

1.3 Regge Theory and Total cross sections

1.3.1 Two body scattering

In this section we give a brief overview of the concepts that we use to derive the
remarkable unitarity relation called the “optical theorem”. In fig.1.10 we show the

general expression for two-to-two particle scattering processes. The scattering process
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Figure 1.10: The scattering process in the s channel of eq.1.55.

between two particles in the s channel can be written as

a(p1) + b(p2) — ¢(ps) + d(pa), (1.55)

where p; (i=1,...4) are the respective 4 momenta of particles a, b, c and d. The Mandel-
stam variables s, ¢, u, which are invariant under Lorentz transformations, are defined

as

s = (p1+12)°, (1.56)
t=(p1 —p3)°, (1.57)
u= (p. — ps)*. (1.58)

For massive particles the Mandelstam variables satisfy the relation

4
s+t+u=>Y m, (1.59)

13
which leaves us with only two independent variables which we choose to be s and ¢.
For the s-channel process ¢ represents the momentum transferred and the scattering

angle between particles 1 and 3 can be expressed as

t = mf + mg — 2p1p3, (1.60)

= mi +m3 — 2E,E3 + 2|p1]||ps] cos (0). (1.61)
Thus for an elastic process

a(p1) + b(p2) = alp1) + b(p2), (1.62)
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in the forward direction (i.e. = 0) t is zero.

The scattering process in eq.1.55, and hence its scattering amplitude A,;, should
be Lorentz invariant, thus the scattering amplitude can be expressed as a function of

the Mandelstam variables s and ¢.

The differential cross section for the process in eq.1.55 can be expressed as

_ s, 0)

d
4 F

dQ, (1.63)

where F' is the flux of the incoming particles and d() is the Lorentz invariant phase

space factor which for two body scattering is given by

d’ps d’py
(27)32F5 (2m)32E,’

dQ = (27)*6" (ps + ps — p1 — p2) (1.64)

where free particles are represented by plane waves with the normalization of 2F

particles per unit volume. We express the flux factor F' in eq.1.63 as

F = 4/[(pip2)? — mim3]. (1.65)
which in the high energy limit becomes F' ~ 2s.

In the center-of-mass frame where |p1| = |p2| and |ps| = |p4| the differential
cross section is expressed as

do - 1 |p3|

= iy | Ae I (1.66)
where for spinless particles
dQem = d(cos (0))d¢ = de). (1.67)
2|p1|/ps]

The Lorentz invariant expression in eq.1.66 can now be expressed as

do 1
E = m|¢4ab(s,t)|2. (168)

1.3.2 The S-matrix, unitarity and the optical theorem

The scattering operator .S is such that its matrix elements between the initial and final

states (f | S| ) squared give us the probability Py; that | f) will be the final state

1.3. Regge Theory and Total cross sections
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resulting from | i) i.e.

Py = (f| S ]4) P= (| ST F)f 1S ]), (1.69)

where ST is the Hermitian adjoint of S. The S — matriz can be expressed as the sum
of two parts, the non-interaction part (the identity operator) and the interaction part

(containing the dynamics of strong interactions)
Sfi = 5fi + 'ini- (170)

For strong interactions with high momentum transfer the scattering matrix elements
can be calculated using standard perturbative QCD techniques where the T — matrix

is usually defined as
(f 1T |4y = i)' 6D ps — - pi)Asis (1.71)
and where Ay; is the scattering amplitude for the state | i) to end in the state | f).

The S — matrix contains the following assumptions:

Postulate(i)

The scattering process and hence the S — matriz is Lorentz invariant.

Postulate(ii)
The scattering S — matriz is unitary. By using the conservation of probability, if we
are to start with some initial state | i) the probability that there will be some final
state | f) must be unity. From eq.1.69 this translate to

D P o= 1 n] S P=320 1S n)(n]S]i)

n

= (i]S1S]1), (1.72)

where free particle states | n), constitute a complete orthonormal set of basis states

satisfying the completeness relation,

Yo ln)nl=1. (1.73)

n

Since eq.1.73 must be true for any state | i) we have

STS =1=285" (1.74)
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Postulate(iii)
The scattering amplitude is assumed to be an analytic function of the Mandelstam

variables s and t regarded as complex variables.

The Optical theorem is a consequence of the unitarity of the S — matriz. From
S=1+1T, (1.75)

and using eq.1.74 we obtain
—i(T = T" =TT". (1.76)

The matrix elements of eq.1.76 between particles states | 7) and | f) can be written as

GITT 1 =S (1] Ghegy ) 1T I Tl 0

using the definition in eq.1.71 we can now write eq.1.77 as

CilAp— A = 3 (ﬁl/ (f;gé Q{E) (1.78)

n

A p Ani X (2%)45(4)(2 p; — Zp,)
For identical initial and final state we can write eq.1.78 as

2 m(Au(s, t = 0)) = Z/dQn | A 2. (1.79)

Dividing the right hand side by the high energy limit flux factor F' (see eq.1.65) we

obtain the expression known as the optical theorem,

1
Otot = glm(Ael(Sa 1= 0)) (180)

This relation (as shown in fig.1.11) is well known in non-relativistic potential scattering
where, due to conservation of probability, the magnitude of the wave function in the
'shadow’ behind the target at (/=0) must be reduced relative to the incoming wave
by an amount equal to the total scattering in all directions. The expression in eq.1.80

is just the extension of the same conservation requirement to the relativistic situation.

Using eq.1.80 we can now rewrite eq.1.68 as

2

=0 = féj’;(l + ) (1.81)

daela

dt

where (3 is the ratio of the real to the imaginary part of the elastic amplitude.
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Figure 1.11: The optical theorem.

1.3.3 Regge Theory

The idea of Regge poles was introduced in non relativistic potential theory by Regge
[12]. Regge poles are poles of the partial wave amplitude a(.J, s) in the analytically
continued complex angular momentum plane .J. Such poles define trajectories a(s)
which are functions of the momentum squared k% = (s — 4m?)/2. The scattering am-
plitude in the relativistic case, for s — oo and ¢t < 0 fixed, can be expressed as the
exchange of a sum of poles in the ¢-channel

& eXp 1Ty, s\ k)
A(s, 1) = Y L Seexp (t)%(t)( ) , (1.82)

—~ sin (max(t)) S0

where 7(t) are the residue of the pole and & is known as the signature, defined as
& = (=1)771/2 for baryons and &, = (—1)” for mesons. Each Regge pole corresponds
to a family of exchanged particles belonging to the same trajectory ay(t), which is an
analytic function of . The value of a4 (t) is equal to the spin of the particle whenever
t takes the value of its mass squared. Regge poles are ordered into different families
according to their quantum numbers. For Regge poles with quantum numbers of

mesons one observes remarkable agreement with data by using linear trajectories
a(t) = a(0) + a't, (1.83)

as shown in fig.1.12 with «(0) the intercept and o the slope. The Regge pole
parametrization gives a very good phenomenological description of the bulk of data on
high-energy scattering at small momentum transfers, |t| < 1 GeV? and s > t. Using
the optical theorem and the expression in eq.1.82 the total cross section can be written
as [12]

s a(0)—1
G1or = 5~ I (A(s, £ = 0)) ~ (-) . (1.84)

S0
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Figure 1.12: The p (o), w (O), ¢ (A) and 7 (e) trajectories. The p trajectory has
been continued as measured in 7~ p — nn taken from [13].

At high energies, the process is dominated by the term with the largest value of
a,(0), the so-called pomeron trajectory with the quantum numbers of the vacuum
(J=0, I=0, C=+1). Since at high energies, processes with the exchange of quantum
numbers die out there are no known hadronic bound states on this trajectory (although
some candidates have been proposed such as glue-balls) and its explanation in terms
of QCD remains unknown [14]. It has been shown in [15] that a remarkably good
description of hadron-hadron scattering data at high energies and small momentum

transfers can be obtained with the exchange of one pomeron, with a Regge trajectory
ap(t) = 1.0808 + 0.25t. (1.85)

With the pomeron trajectory alone contributing to the Regge expansions in eq.1.82
the energy dependence of the total cross section is given by

S > 0.0808

Utot(S) = Utot(SU) <—

- (1.86)

1.3. Regge Theory and Total cross sections



Chapter 1. Introduction 51

Since the intercept in eq.1.85 is larger than one it would lead to a violation of the
Froissart-Martin bound o, < C In? (i) [16] for extremely high values of s, which

indicates that unitarity corrections must play an important role at high energies.

1.3.4 Conclusion

In this chapter we have described a number of concepts used in the theory of strong
interactions of both perturbative and non-perturbative nature. In the following two
chapters we give a brief overview of how some of the perturbative concepts can be im-
plemented in the form of a Monte Carlo event generator in order to simulate particle
collisions involving strong interactions. The total cross section and its parametrization
in terms of Regge trajectories will be particularly useful in Chapter 6 where we intro-
duce a new model based on an eikonal approach incorporating both the perturbative
and non-perturbative part in order to simulate the 'underlying event’ in jet events.
We consider our multiparticle interaction approach as a unitary correction to the hard

and soft Born-graph cross sections.
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2.1 Introduction

Monte Carlo techniques can be defined as methods which use random numbers to solve
problems of deterministic or analytic nature such as (multidimensional) integration
or to simulate complex physical phenomena of fundamentally random nature. In
high energy particle physics Monte Carlo techniques may be used for a variety of
purposes ranging from the detailed detector simulation to the full event generation
and total cross section integration. Monte Carlo techniques are seen as a powerful way

of performing calculations generally too complicated for a more classical approach.

In this chapter we present a brief overview of the Monte Carlo methods used
in HERWIG and compare this particular technique to other numerical integration
methods. We also show how to improve the efficiency of the Monte Carlo integration

method in few dimensions using two particular techniques of variance reduction.

2.2 Random Number Generators

A random variable is a variable that can take more than one value and for which any
particular value cannot be predicted in advance. A random number is just a particular
value of the random variable. In principle it is impossible to generate a true sequence
of random numbers using a mathematical formalism, since any algorithm would lead
to a strictly deterministic and consequently reproducible sequence of numbers. Since it
is not possible to generate a truly random sequence of numbers, we use pseudorandom
numbers in all of our calculations. They are generated according to a definite algorithm
which generats a sequence of numbers such as to be indistinguishable from a sequence
generated truly at random (a sequence of truly random numbers can be generated
by a random physical process such as radioactive decay for example). Thus when we
talk about random numbers in this thesis we really mean pseudorandom. For a more
detailed discussion we refer to [17] and for the update on more modern generators to

18].
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2.2.1 Multiplicative Linear Congruential Generators

In this section we will give an example of a simple random number generator. However
we must point out that it is plagued by a severe insufficiency and that a more modern

generator should be used instead [18].

MLCGs generate a sequence of random numbers by using the simple recursive
formula given below

rit1 = (ar; + ¢) mod m. (2.1)

This basic algorithm given a starting value or seed, will calculate a sequence of random
integers r; in the range (0, m-1) where m - 1 is usually, but not always, the largest
integer which can be represented on a given machine. The two other variables are a
the multiplier and ¢ an additional constant which usually can take two values 1 or
0 depending respectively on whether we want to generate an exact zero or not. The
integers obtained through eq.2.1 are then converted to floating point numbers in the
range [0,1) by dividing by m. In MLCGs pseudorandom number generators the entire
sequence of numbers will repeat itself after a certain period (this being a more general
property of pseudorandom generators). To improve MLCGs the early theoretical work
concentrated mainly on maximizing the period (the maximum period in MLCGs is
at most m since this is the maximum possible generated integer) of generators. To
improve MLCGs we can search for values of a which will achieve the maximum period
and try to minimize the amount of correlation between two successive points in the

recursive series (i.e between r; and r;41).

Marsaglia has shown that all types of MLCG generators have an important defect
[18]. If we take n-tuples as coordinates of points in n-dimensional space then all gen-
erated points will lie on a certain finite number of parallel hyperplanes. Marsaglia has
shown that for MLCGs the number of hyperplanes will be fewer than what would be
expected from numbers generated truly at random. Typically the number of hyper-
planes will be a function of n dimensions and the maximum possible integer number

generated by the machine as shown in eq.2.2. Marsaglia has also shown how to choose
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a best multiplier of the generator for a given m in order to maximize the number
of hyperplanes and the minimum number of dimensions in which the ordering would

become apparent.

To make the ordering of points on hyperplanes apparent we need to take a narrow
hyperslice through n-space taking only points which lie within it and project it on
the first two dimensions (i.e. = — y) plane. All the hyperplanes not parallel to the
hyperslice will then appear as bands in the z — y plane. If for example we take a 16
bits machine in n = 3, generated points will be distributed over 73 hyperplanes but
in n=10 only over 13, making the pattern of points less random. This progressive
‘ordering’ of points as we go up in number of dimensions can have several undesired

effects on our Monte Carlo calculations.

First, the uneven coverage of the integration volume introduces a bias which
may induce the integral to converge toward a numerical result different from the one

calculated analytically .

Second, in generating phase-space points with many dimensions and few hyper-
planes, the MLCG method will produce artificial correlations between parameters

which will show up in our final results.

Third if we have very few hyperplanes a large portion of phase space might not

be sampled at all and so we might lose some points in event generation.

The maximum number of hyperplanes using MLCGs is
Hyperplanes = (n!24)'/", (2.2)

where t is the machine word length (16, 32, 36 bits) and 7 is the number of dimensions.

2.2.2 Compound Multiplicative Congruential Generators

It is possible to improve the Marsaglia hyperplane problem by combining two MLCGs

(or more) together [17]. CMCGs generate an integer random number by combining
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two simple MLCGs using the last two seeds from the the sequence
riv1 = (ar; +bri_1 + ¢) mod m. (2.3)

This type of algorithm is used in HERWIG. The advantage of this method is to give
the same number of hyperplanes in n dimensions as the simple generator MLCG in
n/2 dimensions. The number of hyperplanes can be increased arbitrarily by adding

more terms to the recursive sequence in eq.2.3.

2.3 Distribution functions and Non-Uniform Gen-

erators

Let f(z)dz be the probability P(z) of finding a random variable z in the interval
[z,z + dz], f(z) is then called a probability density function (pdf) of variable z. Since
z must lie somewhere in the range [—o0o ,+00] the probability density function can be

normalized to unity as

/_:O f(z)dz = 1. (2.4)
We define also
1 ‘; F(a)da' = F(z), (2.5)

the cumulative distribution function. To construct a random variable z uniformly
distributed in the range [x,z5] the probability density function of z can be expressed

as

o 1 <@ <1
flw) = (2:6)

0 otherwise

the random variable z sampled from
x; =21 + (T2 — 2115 (2.7)

Because a certain confusion is made between the two notions of randomness and

distribution, we would like to stress that a random variable may have any distribution

2.3. Distribution functions and Non-Uniform Generators



Chapter 2. Monte Carlo Methods o7

we like and that a uniformly distributed sequence of numbers may not be random at

all.

In the following sections we will present two techniques used in event generators

for producing non-uniformly distributed random variables.

2.3.1 Transformation method

It is possible to construct a non-uniformly distributed random variable z(r) from a
random variable 7 uniform in [0,1] by using the inversion technique (or transformation

method). To generate a non-uniform random variable z(r) we require that

P(r<r) = Pz <uz(r)),

[ ater=r = [ tayar = peae) o

where g(r) is the uniform distribution of r in [0,1]. By setting F'(z(r)) = r and solving
for z(r) (i.e. x = F~!(r)), =(r) will be distributed according to f(z).

An example of the inversion technique is given below:

e generate x(r) between 0 and 4 according to f(z)=2""/%
me x/—1/2dx/
Jik =172y "
— generate x according to x(r) = 4r* (2.9)

This method can only be applied to functions with invertible integrals.

2.3.2 Rejection Method

This is the method used in event generation (see Chapter 3.4.1). This method can
be quite inefficient and can be improved by variance reduction techniques. If we want
our random variable x to be distributed according to some probability distribution
function f(x) we can choose z uniformly in the integration region [z, z5] and reject
it if

r > f(x)/ fmaa; (2.10)
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where 7 is uniformly distributed random number in the range [0,1] and f,q, is the
largest value of f(x) within the integration region. The choosing of x and the test in

eq.2.10 are carried out until x is accepted.

2.4 Integral evaluations

In the following section we will briefly review numerical methods used for integral

evaluation.

Consider the following integral in one dimension,

I:/f(z)dz. (2.11)

There are a number of numerical quadrature methods which we can use to estimate the
above integral (which can then be generalized further to d dimensions), the trapezium
rule and Simpson’s method for example consist of evaluating f(z;) at evenly spaced
points, z;, on a grid. Using these two methods the integral in eq.2.11 can be estimated

as

>N, wif(xi).

N
i=1 Wi

I (r - ) (212)

The weights w; in the sum of eq.2.12 may be different for each sampling point z;,
depending on the quadrature method used. In the trapezium rule, the weights are
all equal to one except for the first and the last, which are half. The trapezium rule
can integrate all first-degree polynomials exactly and the uncertainty on the integral
for any function is proportional to 1/N? for large N. The Simpson rule is a higher
order quadrature (it requires three points on a given interval). Its alternate sampled
points have respectively weights of one and a half and it is guaranteed to integrate
all third-degree polynomials exactly. The uncertainty on the integral is proportional
to 1/N* for large N. The highest efficiency is however achieved with the higher-order
Gaussian quadrature method. Gaussian quadrature at the mth order involves at least

m points with (non-uniform) positions and weights derived from the function to be
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integrated. For the function to be integrated the mth differential of the integrand
must exist and be continuous. This method is guaranteed to integrate (2m - 1)-degree

2m—1

polynomials exactly, and converges as 1/N( ) for sufficiently large N.

An alternative numerical technique of integration is to approximate the integral in
eq.2.11 by choosing sampled z; points at random leading to the Monte Carlo estimate

of the integral (also known as crude Monte Carlo),

1
Ive = ($2—$1)N2f($1‘),
i=1

(zg — 1) f, (2.13)

Q

where f is the arithmetic mean of values of the function f(z) estimated at each sam-
pling point z;. Given a uniformly distributed random number r; on the interval [0,1],
sampled points z; are chosen according to eq.2.7. If we assume N is large, we can use
the Central Limit Theorem to show that the distribution of f will tend to a Gaussian

with standard deviation given by

oOpC — (214)

B

where B
o? o f\;l[f(x't) - f]2
N -1 '

(2.15)

L

ope in eq.2.14 is the statistical error in the Monte Carlo estimate of the integral.
This error goes as \/Lﬁ and is independent of the dimensionality of the integral. For a
Monte Carlo method to be efficient the integrand f(z) in eq.2.13, must be integrable
everywhere, finite and at least piecewise continuous. Under such conditions the Monte
Carlo Method estimate will converge to the true value of the integral as N becomes

large (the law of large numbers).

2.4.1 Monte Carlo vs quadrature

In our three different examples of quadrature methods (trapezium rule, Simpson’s rule

and Gaussian quadrature) we have argued that the integral estimate will converge in
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1
N4

one dimension as %, and W respectively. We can extend these rules to
multidimensional quadrature rules in d dimensions where the convergence rate will
slow down according to a 1/d factor in the exponent. The integral estimates will now
converge in accordance with n = N'/¢ (the number of points along each axis) leading
respectively to ﬁ, ﬁ and m convergence. The Monte Carlo method will
then show a faster convergence than any of the quadrature methods in d = 4, 8, and
4m - 2 dimensions. This property of the Monte Carlo method is particularly useful in
particle physics where integrals are evaluated over 5 or more dimensions. Although
Gaussian quadrature converges much faster than a Monte Carlo method when d is
low, it is much more difficult to give the uncertainty on the estimate for the former
since formulas for calculating the error on the integral are given in terms of values
of higher derivatives of the function, which are much harder to calculate than the
integral itself. Also, while in the Monte Carlo approach combining results is done by

taking the weighted mean (as in experimentally measured quantities) for Gaussian

quadrature we must throw away the lower order results and keep only the higher.

In addition to faster convergence in many dimensions, the Monte Carlo approach
is particularly suitable for integral estimation of complex integration regions, since we
can enclose any region in the smallest hyperrectangle and throw away the points that
fall outside the inner region. This is somehow inefficient but allows us to deal in a
quite straightforward way with any finite region. This technique cannot be used in
numerical quadrature. Furthermore because of computer resources we are limited to
a certain maximum number of function evaluations we can make, this feasibility limit
is reached except for very low order Gaussian rules before the crossover point where
Monte Carlo converges faster than the higher-order Gaussian numerical quadrature,

thus making the full convergence of the higher-order rules purely theoretical.

Finally if the 'growth rate’ is defined as the smallest number of additional func-
tions evaluations needed to improve the current estimate, with Monte Carlo this can
be done by adding a single point while Gaussian quadrature will require going to a

higher-order rule, with (m + 1)? additional points.
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2.5 Variance reduction

The biggest disadvantage of Monte Carlo integration is its slow convergence in few di-
mensions and since the accuracy of the estimate goes as eq.2.14, it is in our advantage,

to reduce o and thus improve the accuracy of our Monte Carlo estimate.

2.5.1 Stratified Sampling

The idea of the stratified sampling method is to divide a volume of integration into
a large number of sub-volumes and then calculate integrals separately, using crude
Monte Carlo, in each sub-volume. Thus if we divide the integration region into n

sub-regions the additive property of the integral operator gives for the Monte Carlo

estimate
Ivc =) _ 1. (2.16)
The oj7¢ uncertainty in I is then given by
n
Vi
Thie =2 ¥ (2.17)

where
Vi= 7'1‘2 (Z f'iQ - (Z fz)2> ) (2.18)

and 7;, I;, V;, N; are respectively the volume, integral, variance and number of sampled
points of each sub-region. By choosing the sub-regions and the number of points in

each, it is possible to optimize the accuracy of Iy;c by reducing o3,..

2.5.2 Importance Sampling

Monte Carlo calculation can be performed by choosing random numbers from any
arbitrary probability distribution. Often Monte Carlo calculations can be quite ineffi-
cient if we are to use a uniform distribution in the integration of more peaked or sloped

functions since we would sample regions of phase space not necessarily contributing
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much to the total integral. Instead of choosing points from a uniform distribution we
can then choose a distribution which will concentrate the points where the function
being integrated is large. Thus eq.2.11 can be rewritten as

I= %u(x)dx, (2.19)
where the u(z) is chosen to be a reasonable approximation to f(z). The integral is
then calculated by choosing points sampled from the probability distribution u(z)
and evaluating f(z;)/u(x;) at these points. The average of these evaluations gives an

estimate of I as

f: f(xf). (2.20)

Inie = ($2—SE1)

We can also choose to define dU = u(z)dz and express the integral in eq.2.19 as

v f(z(U))

"= Jo (@ (@)

du, (2.21)

where the limits of integration correspond to the change of variable. In this method

we choose values for U randomly and uniformly in the range [0,1], we then invert for

each value of the integral x(U) and solve for z to finally evaluate iggggg, the average of
these evaluations gives an estimate of the integral in eq.2.21. If u(z) has been chosen
of similar shape to f(z) the new integrand in eq.2.21 will be close to unity and its

variance will be much smaller than that of f(z).

Several conditions need to apply for u(z):

1. u(z) is usually a probability distribution function normalized to unity and must be

non-negative everywhere in the integration region.

2. The integral U(z) should be known analytically. If u(z) is a pdf normalized to

unity, then U(z) increases monotonically as a function of z, from zero to one.

3. Either U(z) can be inverted or it is possible to generate random numbers with a

distribution u(z).
x

4. The ratio (—; needs to be as close as possible to unity thus giving the smallest

(z

I3

possible value for the variance.

Although importance sampling is a widely used technique to reduce the variance it
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has some drawbacks. First u(z) needs to be integrable and analytically invertable and
there are simply not many such functions. The inversion can be done numerically, but
this is usually slow and sometimes inaccurate. Second multidimensional importance
sampling is difficult to handle except for the simplest functions and except one dimen-
sion at a time. Third u(z) should not go to zero in the integration region since the

variance then becomes infinite(unless f(x) also goes to zero in the same way).

Variance reduction techniques are essential for making a Monte Carlo calculation
really efficient. Without them the convergence of Monte Carlo integrals will be too
slow and not very useful. In many dimensions the benefit of variance reduction is even
greater since the reduction factor in number of points to be sampled multiplies for

each new dimension.

2.6 Conclusion

In this chapter we have shown the main advantages of using Monte Carlo methods in
event generators such as HERWIG. In the next chapter we will give a more detailed

overview of how these techniques are used in QCD event generation.
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3.1 Introduction

In this chapter we will give a brief overview of the main physics and methods used
in HERWIG [19] to simulate a collision between two hadrons with large momentum
transfer. We first present a brief theoretical description of high transverse momentum
interactions in hadron-hadron collisions and give the expression of the leading order
inclusive jet cross-section. We then present an overview of the initial and final state
parton shower algorithms implemented in HERWIG and discuss some key features
of the model such as colour coherence and hadronisation. Finally we present a time
line of an event generation in HERWIG leading to a complete event simulation of a

hadron-hadron interaction with high momentum transfer.

3.2 Hadron-Hadron interactions

Pz/ f
X, P, =
/ 2727P,

Short-distance cross section
for the scattering of partons
of typesiandj.

Figure 3.1: The parton model description of a hard scattering process

A high-energy interaction between two hadrons is described by the QCD improved par-

ton model [2]. The model describes the interaction between the two incoming hadrons

3.1. Introduction



Chapter 3. Event generators 66

as the interaction between their constituent partons (quarks and gluons). Partons
with momenta py, pe, as shown in fig.3.1, inside each incoming hadron (A, B with mo-
menta P, and P,) are distributed through parton distribution functions f4;(z1, ,u?c)
and fp (w2, 7). Each parton distribution function fa;(z1, u7) and fp (@2, p13) is ob-
tained from QCD fits to the entire deep inelastic scattering data-set (as explained in
Chapter 1.2.6) and subsequently evolved using the DGLAP equations (with a particu-
lar value of Agrg) up to a factorization scale p. The cross section for a hard scattering

process between two hadrons (A, B) with four-momenta P, and P, can be written as

o(P, P) = Z/dxldx2fA,i(x17N?‘)fB,j(SEQ:,u?f)éi,j(plap%as(:u?‘): Q/u3), (3.1

(2%
where p; = x1P; and py = 9P, are the momenta of the partons involved in the hard
interaction at some scale @), Ozs(u?) is the value of the strong coupling constant at the
factorization scale ,u?c and &;; is the short distance cross section for the scattering of
two incoming partons ¢ and j. At high energy scale of interaction (@ > 1 GeV) due
to the asymptotic property of QCD, the strong coupling «; is small and the short-
distance cross section can be calculated perturbatively and expressed as a power series

in the running coupling «;(p%) function of the renormalization scale % as

R = (as(p2)\" Q? Q2
J’i,j = Z (M> O-Z(’]) (plap?;_Q;T , (32)

n=ng m Ky MR
where ng = 2 for a two-to-two hard subprocess. In the leading order approximation
the short distance cross section 0;; in eq.3.2 is identical to the Born cross-section
61@. In higher orders the perturbative parton scattering cross-section contains long
distance interaction terms which are factorised into the parton distribution functions
and absorbed into the description of the incoming hadrons. In this way the remaining
hard part of the interaction with high momentum transfer is insensitive to the physics
of the low momentum scale and allows the short distance cross section not to depend
on the details of the hadron wave function or the type of the incoming hadron. This

separation of the hard part of the cross section from the low momentum physics is

known as factorization and has been proven to all orders in perturbation theory [20]
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The separation between the long and short distance interactions is determined
by the parameter ji, the factorization scale. A parton emitted with transverse mo-
mentum below p; is considered as part of the hadron and is absorbed in the parton
distribution. A parton with transverse momentum above pif is considered as part of
the perturbative interactions. For convenience it is usual to choose the factorization
and the renormalization scale equal to the scale of interaction (). This however does

not need to be the case, the three scales are in principle independent.

The main theoretical justification for QCD Monte Carlo simulations lies in the
factorization theorem. Without the factorization theorem it would be too difficult
to construct an efficient algorithm. The factorization theorem greatly simplifies the
algorithm by factorizing probabilities for separate parts of the event. It is then possible
to simulate an event knowing its initial condition, step by step using a sequential Monte
Carlo simulation. In HERWIG this particular method is used both with the parton

shower formalism (see below) and the hadronisation model.

We will now turn our attention to the particular subprocess used in HERWIG to

simulate jet production in hadron-hadron collisions.

3.2.1 The inclusive jet cross section in LO approximation

In two to two parton-parton subprocesses the two incoming partons, with negligible
transverse momenta, interact at some scale ¢ to produce two final state outgoing
partons, each with transverse momentum p;~(). Due to momentum conservation the
two outgoing partons are produced with equal and opposite momenta in the subprocess
centre-of-mass frame. If only two partons are produced, and the relatively small
transverse momentum of the incoming partons is neglected, the two outgoing partons
will give rise to two jets of particles, back-to-back in azimuthal angle and balanced in

transverse momentum in the laboratory frame.

*Violations of factorization are expected to be suppressed by inverse powers of Q?
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To write the two jet cross-section we start first by writing down the cross-section
for two to two parton-parton scattering subprocesses. In the massless limit we label

the two to two parton-parton scattering as
parton; + parton; — partony + parton,, (3.3)

and we define the Mandelstam variables as § = (p; + p;)%, ¢ = (pi — pp)? and @ = (p; — pi)?

with p;, pj, pi, pi being respectively 1, j, k, [ parton four momenta.

The scattering cross-section for two to two parton-parton scattering in their centre
of mass frame can be written as

~QCD [~ 3
dagjak,l(sa t)

_ 1S ge
A (34)

d cos (B

where | A | represent leading order matrix elements squared for two to two parton-
parton scattering subprocess and Y denotes the average and sum over initial and final
state spins and colours respectively.

We give below expressions for the LO matrix elements squared [21, 22] used in eq.3.4.

® q¢ — qq
482+ 42
2
el 3.5
355" 39
.qq—>qq 2 2 2 72 2
4 (2442 241 8 3
PO Bl i T (3.6)
9 12 12 27t
® g7 —q'q o
42 + 14
2
2 3.7
3] a7)
.qq%qq 2 2 72 ~2 ~2
agési—u tj—u _8u_A (38)
9 2 52 27 §
® g7 — g9
o [3282 4+ a2 812 + ? (3.9)
127 i 3 & ‘
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® g9 — qq
72 ~2 72 ~2
2 |1 ST (3.10)
16 ta 8 g2
® g9 — gq
452 +0%2 02+ &2
2
= - 3.11
O‘Sl 9 s 2 (38:11)
® g9 — gg
9 ta  su &t
2
33— - = 3.12

The triple differential inclusive two-jet cross section for hadronic interactions can

be written as

ar acD -
% B ]2,;[ 1 +15k’l Fai(zy, 12) f.5(22, u2)cwi’jﬁd—ktil(s’t), (3.13)
since )
t= —s C;)S (GCM))a (3.14)
where won
W = ;T—QZMIQ, (3.15)

and p? is set equal to @Q? (the scale of interaction). The two-jet cross section in
eq.3.13 is written as a sum of terms each representing a particular combination of
initial (¢, j) and final (k, ) state partons. We note that the relative importance of
each subprocess in the calculation of the inclusive two-jet cross section is dominated

by processes involving gluons because of their large colour charge.

HERWIG estimates the total cross section for hadronic interactions involving
transverse momenta greater than a certain cutoff (pynm > Agep) by Monte Carlo
integration of the integral

s/4 ) da.hard (S)
, P dz,dzodp?

tmin

ah‘“"d(s, Dimin) = / drdxs, (3.16)
P
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where p, is the transverse momentum of the outgoing partons. The py,i, cutoff in the
integral in eq.3.16 is necessary since in the limit p;—0 the perturbative cross-section

diverges.

3.3 Final and Initial state parton showers

In a semi-classical picture partons involved in the hard scattering undergo a phase of
acceleration or deceleration in which they might radiate coloured gluons. The par-
ton radiation needs to be taken into account in the calculation of the cross section.
In principle the cross section for hard scattering could be calculated to all orders
using perturbative QCD, although the complete perturbative calculations have been
completed only to next-to-leading order. Nevertheless it is possible to calculate a cor-
rection to the leading order cross section, to all orders, for partons emitted in the soft
and collinear limit. This is possible since the divergences encountered in the integral
for soft and collinear partons cancel with appropriate virtual loop diagrams leaving
us with a finite result (see comment on page 30). However because of kinematic con-
straints the cancellation is not perfect and the final result will include large logarithms
which will dominate the cross section. If we keep only the leading logarithmic terms
(the Leading Logarithmic Approximation, LLA) the final result will be in a factorised
form, where the original cross-section is convoluted with process independent splitting
functions. Because splitting functions are process independent any subsequent emis-
sions can be repeated in the same way as the first one with the upper scale of each new
emission set by the scale of the previous. In this way emissions follow a semi-classical
time-ordered picture with the time scale of each new emission longer than the previous
one. Algorithms which simulate such emissions in QCD are called “parton shower”

algorithms.
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3.3.1 Final State Parton Shower

In this section we describe the parton shower procedure used in the HERWIG Monte
Carlo [23, 24, 25] event generator.

We define DGLAP splitting functions Dy (2, Q%) in eqs.2.17-2.20 as represent-
ing the momentum fraction distribution of parton b inside parton a as a function of

the energy fraction z carried by the observed parton and the momentum scale () of

observation.
Dy/o(z, Q¥)dzd@Q? = 05: dg% (1+1-2?), (3.17)
Dyjo(2,Q%)dzdQ* = CQF: dg (ld_zz) (1+22), (3.18)
Dy/y(2,Q*)d2dQ* = Tg: dgdz (2 +1-2)?). (3.19)
Dyl Q)dzdQ® = N;: dg Z(ldf S (1-2:0- 2+ 21— 2) . (320)

where Cp = (N& —1)/(2N¢) and T = 5 with N¢ = 3 colours and Ny the number of
flavours which varies with the scale. The four DGLAP component from above may be

written in a more general form as

Co, dg*
2 ()2

where P,/,(2), the splitting function, represents the probability distribution for find-

Da/b(za QQ)dQQ =

Poy(2), (3.21)

ing parton a inside parton b. In the Monte Carlo implementation of branching the
cancellation between the divergent part of the splitting function and the virtual loop
diagrams is handled by the introduction of a resolution scale parameter Q2 below which
any branching is indistinguishable from no branching at all. In HERWIG the resolu-
tion branching scale is chosen to be equal to the hadronisation scale. By considering
the conservation of probability (the sum of branching plus no-brunching probabilities
is one at each vertex) the cancellation of divergences is handled implicitly since both

the probability for emission and no emission is finite.

We can write a probability that a parton of type b carrying energy fraction z,

0<21(Q?, Q?)<2<22(Q? Q?)<1 at some scale Q* will not radiate another parton before
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reaching the resolution infrared cut-off scale Q?, as one minus the n-emission proba-
bilities summed over all n > 0. The probability of nonemission Ay(Q? Q?) (known as

the Sudakov form factor [26]) in the same interval can then be written as

ANQLO —exp< > /Qz a#’ / (’;jfpa/b(z)) (3.22)

Thus the probability distribution for the first branching below scale Q2

scale Q% is

to be at

max

d 2 C s p
P Qi @) = X [ P M@rn D). (329

We can then choose the value of Q? from the distribution in eq.3.23 by inverting its

integral (giving us precisely the form factor in eq.3.22) and solving

AI)(Q)?rwm:a QQ) = (324)

in Q? corresponding to the emission of parton at scale Q* above cutoff scale Q? >
A57g, if the parton is emitted below the cutoff scale, the branching is terminated (since
this correspond to no resolvable emission). This procedure is recursively applied to

each of the outgoing partons with the upper scale set equal to Q2.

The algorithm constructed according to the above prescription correctly treats
all leading collinear logarithms (from the dQ% term), but large logarithms come also
from the % term. They correspond to the emission of soft gluons which may not be
necessary collinear (i.e. partons with momentum small compared with the scale @
but still large compared with the QCD scale Ag7g). In [27] it was shown that the soft
gluons are actually emitted coherently in an angular ordered manner. This property
is due to the strongly destructive interference between different configurations of soft
gluons contributing to the same final states. After these contributions are averaged
over azimuthal orientations they will interfere in a completely destructive manner,
leading to large angle emissions from the parent partons and small angle emissions

from the split pairs (i.e the angle between the two emitted partons is smaller than

that of the previous branching) [25, 27].
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In HERWIG the coherence of emitted soft gluons is introduced by the ordering
of scale Q? through
Q? = E?, (3.25)

where € = ¢; - q;/E;Ej ~ 1 — cos0; ; is the angular variable. Thus the ordering of Q?

scale will correspond to coherent angular ordered, emissions.

In the parton showering algorithm the energy fraction z is defined as the energy

fraction between the upper limit of the successive emission Q2 , = 22Q? and the

maz,i

infrared cutoff. Thus the energy fraction of a branching is defined as,

z > 2= QOi/Qa
z < z9=1-Qu;/Q,
Q> > Q2= (Qui + Qo;)* (3.26)

where the partons i and j are allowed to have different infrared cutoffs.

The full leading logarithmic coherent parton showering algorithms in HERWIG
also treats correctly correlations in azimuth of the gluon emission (i.e determines
correctly the azimuthal angle distribution of gluon emissions to leading infrared order),
due to their spin (the splitting functions above are averaged over spin and azimuth)
and due to coherence (the angular ordered implementation of coherence is exact only
in the azimuthally averaged case). It sums correctly single logarithmic and double
logarithmic terms associated with soft emission and thus should correctly describes

parton distributions to leading infrared order and intra-jet distributions.

3.3.2 Initial State Parton Shower

The structure of the shower is essentially the same as in the final state process although
the initial state parton shower works its way backward [30], starting from the hard
process and working back toward the on-shell incoming parton [25], with the scale
decreasing at each step. The correct prescription takes into account the parton density

functions f(zy_1,Qy) for choosing a parton at the next scale @y (where k is the kth
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emission counting from the hard subprocess). The probability of backward evolution

for a parton without branching between (Qy_1,zr_1) and (Qg,xk_1) is given by

f@p—1,Qr)  A(Qr-1)
A(Qk) f(Ik—l,Qk—ﬂ’

A(Qp, Qr—1; 1) = (3.27)

with P(zy) replaced by

Pla) = f (P2 Qu) Pla). (3.2)

k
Thus instead of the Sudakov form factor A(Qx) a modified Sudakov form factor is

used A(Qr)/f(z, Q). The value of @, and energy fraction is then chosen by inverting
the modified form factor in eq.3.27 and solving eq.3.29

A(Qr, Qr—1321) =T (3.29)

The lower and upper limit on z are chosen between x; 1 < zx < 1 — Q/Qy to keep xy
below 1 and z below the infrared cutoff. If @y is less than some scale Q.. (at which
the parton distribution functions have been measured or evolved to) the emission is
terminated with £ — 1 emissions. Usually the ().,; scale is different from the infrared
cutoff scale ().. If the evolution has not been terminated a new value for z is chosen
and the above procedure is repeated. Once the ()., scale or the infrared cutoff scale is
reached the emitted partons produce final state parton showers with their upper scale
given by Q. If the backward evolving parton is not a valence quark it is forced to
be evolved back to a gluon and a valence quark. The presence of structure functions
in eq.3.27 for each parton type is to enforce the correct development of the backward
parton shower evolution. In the large z limit this coherent initial state branching
algorithm correctly sums not only leading but also the next-to-leading logarithmic

contributions.

3.3.3 Hadronisation Process

Using the parton shower formalism described in the previous two sections the outgoing
partons are evolved in energy through successive parton emissions until they reach a

typical low energy scale ~ 1 GeV known as the hadronisation scale ()y. At this scale
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long distance effects of non-perturbative nature become important. One of these effects
is the conversion of outgoing partons into observed hadrons. Since the hadronisation
scale is low compared to the scale of the hard interaction, the evolving partons have
had a long time to branch into new ones before reaching it. One property of parton
showers is to tend to inhibit the separation of the colour charges forming a singlet.
This preconfinement effect of parton showers causes emitted partons to end up close
in momentum space to their respective opposite colour (anticolour) partners [31, 32].
Although perturbative QCD does not give any information about the confinement
phase of partons the two partons forming the colour singlet entity can be converted
locally in phase space into hadrons at the hadronisation scale )y independently of the
hard interaction scale @) (for large @)). This local conversion of partons into hadrons
(i.e. hadrons will inherit their momentum and space-time structure as well quantum
numbers from partons locally) is named Local Parton Hadron Duality. A consequence
of LPHD is that, if gluon emission is treated correctly, a simple hadronisation model

should be enough to explain the experimental data.

HERWIG implements the hadronisation phase through the cluster model [25,
24]. The cluster model uses the property of preconfinement of colour due to parton
branching processes. Once the outgoing gluons from the parton shower have reached
the hadronisation scale, they are split non-perturbatively into ¢g pairs. Neighbouring
(in colour) quarks and antiquarks are then combined into singlet clusters. The cluster
mass distribution falls rapidly at high mass. Each cluster is decayed into a pair of
hadrons, with branching ratios determined simply by density of states. The advantage
of combining the non-perturbative hadronisation model with the perturbative parton
shower algorithm is to have a realistic model for event generation which could be

compared directly with the experimental data.
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3.4 Event Generators

An event generator is a program designed to simulate a given physical process. An
event generator based on Monte Carlo methods in particle physics is particularly suit-
able since it mimics the inherent randomness of the natural process and allows us
to make a direct comparison between simulated phase-space points and real events.
Monte Carlo models are widely used today in particle physics experiments as tools in

data analysis.

3.4.1 Event generation

Each event or each specific physical process (with its set of phase space points) carries
with it a probability with which it should happen. The probability is just a weight
in the overall integral of the ensemble of events. Generating events with different
weights would be inefficient since we would also generate events with low weight thus
contributing very little to the bulk of the processes. In HERWIG a rejection tech-
nique is used for generating events with the same weight (i.e. unweighted events),
thus reducing the variance to zero. This is done by finding a maximum weight W,
by a Monte Carlo search of the phase-space in the first instance, followed by a test
of whether to keep or reject each event with the probability W /W,,.,. All accepted
events are then given a weight W, calculated from the Monte Carlo integral over all
the generated events (not just the accepted ones). Although HERWIG is a general
purpose event generator, in this thesis we will really concentrate on one particular

subprocess the hard two to two parton-parton scattering [33].
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3.4.2 Event generation description

Initialization

HERWIG starts first by checking the input parameters and calculates the values for
parameter dependent variables (for example computes look-up tables of Sudakov form
factors for the evolution of initial and final-state parton showers). Then a number
of phase space points are generated and the maximum weight in the phase space is
determined. Subsequently an estimate of the cross section for the selected process is

given.

Hard Subprocess Generation

For each hard subprocess a specific subroutine is called twice. In the first call a phase
space point is generated and the corresponding weight in the integral calculated. If the
event is accepted (using the rejection technique) a second call determines the structure
of the hard subprocess corresponding to the phase space point. It calculates values for
parton momenta, identifies colour connections in the hard subprocess, sets up colour
structure labels and various other pointers and spin vectors needed by later stages of

processing.

Parton Evolution
Initial and final state partons are evolved through perturbative branching, emitted

outgoing partons are then evolved in turn until they reach the hadronisation scale.

Hadronization

Once the parton shower phase is over all the outgoing partons are converted into
hadrons locally in phase space since the confinement phase is considered as local in
colour and independent of the hard scale of interaction. Hadrons then inherit their
momentum and space-time structure from partons as well as quantum numbers which
are also transferred locally. All the outgoing gluons are split non-perturbatively into
quark-antiquark pairs, and through the planar approximation T each outgoing parton

is connected to its colour partner with which it forms a colour-singlet cluster. Clusters

fThat is, to leading order in 1/N where N is the number of colours.
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have distributions of mass and spatial size that peak at low values, fall rapidly for large
cluster masses and sizes, and are independent of the hard subprocess scale. Finally

clusters are fragmented into hadrons on a phase space basis.

Particle Decays

The unstable hadrons produced after cluster hadronisation go through a secondary
decay. This is done through experimentally measured decay branching fractions based
on phase space arguments. Any quarks or gluons produced at this stage are evolved

and hadronised as above.

Underlying soft event

In hadron-hadron interactions (or hadron-lepton) the hard scattering is accompanied
by the two hadron remnants. The two remnants contain the spectators from the two
incoming hadrons which are colour connected to the parton showers. The underlying
soft event is modeled then as a soft collision between these two beam clusters. The
model is based on a parametrisation of the minimum-bias pp event generator of the
UA5 collaboration [34] modified for the use of the cluster fragmentation algorithm.
The model starts from the parametrisation of the pp inelastic charged multiplicity
distribution according to which clusters are produced and hadronised. The same
hadronisation model is used for clusters coming from both the ’soft’ interactions and
those coming from parton branching. The cluster momenta are generated from simple

phase-space distributions.

3.5 Conclusion

In this chapter we have presented an overview of the main theoretical features imple-
mented within the HERWIG program for jet event simulation. In the next chapter we
will turn our attention to testing how well HERWIG describes the growth and devel-
opment of charged particle jets produced in pp interactions. We will be particularly
interested in testing whether HERWIG correctly describes particle distributions away

from the leading jet (i.e. in the interjet region).
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4.1 Introduction

We begin this chapter by giving an overview of the main kinematic variables used
to describe final state particles followed by the definition of a jet of particles pro-
duced in high energy collisions. We briefly discuss the importance of determining the
value of the underlying event activity in jet measurements. The underlying event is
an interesting object which is difficult to model since it involves a mix of both non-
perturbative and perturbative physics. We adopt a simple jet definition and present
the analysis of the charged particle component of jets simulated by HERWIG in three
different topological regions. For hard scattering proton-antiproton collisions we sim-
ulate the underlying event activity in each region using HERWIG’s Underlying Event
model. Finally we compare the experimental analysis of the underlying event [35]
with theoretical simulated data using HERWIG’s Underlying Event model for both
low p;<50 GeV and high 50 GeV < p; < 300 GeV jets in two separate analyses. We
thus independently confirm the results obtained by the CDF collaboration [35].

4.2 Kinematic variables

The scattering of two hadrons can be seen as the scattering of two incoming beams of
partons each having a spectrum of longitudinal momenta determined by the parton
distribution functions. The CM of the two colliding partons is usually boosted relative
to that of the two incoming hadrons and connected to the momentum fractions of
the two hadrons carried by the colliding partons. For reasons of convenience, final
states should then be expressed in terms of variables which transform simply under
longitudinal boosts. In this respect the kinematics of final states are most suitably
described by the following set of variables; the transverse momentum p,, the rapidity
y and the azimuthal angle ¢. Using these three variables the four-momentum of a

particle of mass m can be expressed as

Pt = (Eapm:py:pz):

4.1. Introduction
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= (my coshy, p;sin ¢, p; cos ¢, my sinh y), (4.1)

with the transverse mass m; = 1/p? + m?2.

The particle rapidity y, which is additive under boosts along the z direction, is defined

1 E+p,
=—1 4.2
v=gm (), (42)

as

with rapidity differences being boost invariant. The pseudorapidity of the particle is
defined as

0
n = —Intan <§>, (4.3)
and in the m—0 limit is identical to its rapidity. From the experimental point of

view pseudorapidity is more convenient than the rapidity since the angle 6 (shown in

fig.4.1) of a particle is a directly measurable quantity in the detector.

Px

g Pbar
Pz

Figure 4.1: Coordinate system in the CM frame of the two incoming hadrons.
The transverse energy of a particle
E;, = Esiné, (4.4)

is also used in the experiment since it is F£; and not the p; of the particle which is

measured in the hadron calorimeter. In our jet algorithms (see below) the values of
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0 € [0,7] and ¢ € [0,27] are calculated according to
# = arccos (piz),
Vi + P2

and

¢ = arctan <&> (4.6)

Pz

4.3 Jets

High transverse momentum jets are often produced in high energy collisions at current
hadron-hadron and hadron-lepton colliders. Jet physics plays an important part in
particle physics and jet production has been used to measure the running of the strong
coupling constant «y, to measure parton distribution functions and to search for new
physics. Jets are composed of collimated beams of particles with large transverse
momentum produced in high energy collisions. Jets are not considered as funda-
mental QCD objects, but nevertheless they are crucial if we are to learn something
about the partons from hadronic final states. At the Fermilab collider jets are pro-
duced in a particular type of inelastic pp interactions. The inelastic interactions can
be separated into single diffractive, double diffractive and non-diffractive. The non-
diffractive collisions (sometimes called hard core interactions) characterize inelastic
events in which both the proton and antiproton break up as shown in fig.4.2. One
type of non-diffractive interactions is made of high p, jet events originating from hard

parton-parton interactions as shown in fig.4.2.a.

Jets in an experiment can be defined at two levels; calorimeter and particle. The
particle level jet energy is defined by applying a cone clustering algorithm (see below)
to final state particles before they reach the calorimeter material. At the calorimeter
level, the particle jet energy after being corrected for systematic effects can be directly

compared to Monte Carlo simulations. The overall correction to the raw jet energy
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Outgoing Parton with PT(hard)

Outgoing Parton Outgoing Parton PT (semi—hard)

b)

Figure 4.2: Tllustrations of a) a hard subrocess occurring in a pp collision with remnant-
remnant interactions and b) non-diffractive soft interaction in a pp collision.

such as; the effect of previous crossings (pile-up), contribution from additional pp
interactions, noise from the radioactive decay of the uranium absorber and others (for
a more complete overview on systematic effects see [36]) includes a correction due to the
physics of the underlying event. The underlying event can be defined as the sum of all
additional interactions not part of the main hard parton parton subprocess occurring
between spectator constituents carrying the residual energy of the parent hadrons.
For comparison between the experimental data and the perturbative QCD theoretical
calculations to be valid the extra energy generated by these additional interactions
needs to be subtracted from experimental jets (or added to the theoretical jets, but in

practice the former is always done). In experiments the energy due to the underlying
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event is determined by looking at the low luminosity minimum bias data triggering on
inelastic non-diffractive collisions. At DO [36] the energy Eyg to be subtracted from
a jet, is given by

Eyrp = DyrpAyg (4.7)

where Dy (GeV/ dnd¢) is the density of energy due to the underlying event and A, ,

is the area of the jet in 1 — ¢ space.

The uncertainty on the value of the underlying event activity at /s = 1800 GeV
represent the largest experimental error (for both CDF and DQ) for jets with E; < 50
GeV. The assumption that the underlying event is similar to the average energy found
in minimum bias interactions used by most of the experimental collaboration needs
to be reexamined. In [35] it is stated that the number of particles produced in the
underlying event was a factor of two larger than in soft proton-antiproton collisions
indicating that a greater activity is produced in remnant-remnant interactions than

in soft proton-antiproton interactions.

From the theoretical point of view we expect hadronic final states to be strongly
related to the physics at the parton level and a reliable jet definition is essential. For
a jet definition to be valid two main constraints need to be satisfied:

1. The jet definition should be collinear safe i.e. it should be independent of a particle
splitting into two parallel traveling partons which in theoretical calculations give rise
to collinear divergences.

2. The jet definition should be infrared safe i.e. it should not depend on the emission
of soft partons.

We mention that there are also experimental reasons for making the same requirements
(i.e if two particles are too close together or if a particle has too low energy they cannot

be reliably measured).
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4.3.1 CDF and DO Cone Algorithms and jet definition

The cone jet algorithms are the type of algorithms usually used to study jets in hadron-
hadron interactions. The cone jet algorithm builds a jet from its constituent particles
according to the Snowmass accord [37]. The transverse energy, Er, pseudorapidity, 7,

and azimuth, ¢, of the jet are given by

Erjes =Y Er; (4.8)
Erin;

Njet = Z —ETjet (49)
Eri¢;

Qsjet = Z ETjet (410)

where ¢ runs over all the particles in the jet. The angle is the Lorentz-invariant open-

ing angle R;; = \/(771 — ;)% + (¢i — ¢;)?. The energy of the jet will then be measured
by the amount of transverse energy deposited in the angular region or “cone” of radius
Rj; defined in ¢, 1 space. In two dimensional 1, ¢ plane, curves of constant R are

circles around the axis of the jet.

The DO Jet Algorithm

The particles are clustered into jets according to the following steps [38]:

1. The particles are passed through a calorimeter with cell size dypxdy in nx¢(in

D@, dg = 0].)

2. Every calorimeter cell (cluster) with energy above Ejy, is considered as a ‘seed

cell’ for the following step (in DO, Ey = 1GeV).

3. A jet is defined by summing all cells within an angle R of the seed cell according

to eq.4.8, eq.4.9 and eq.4.10.

4. If the jet direction does not coincide with the seed cell, step 3 is reiterated,
replacing the seed cell by the current jet direction, until a stable jet direction is

achieved.
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5. We now have a long list of jets, one for each seed cell. Many are duplicates:

these are thrown away.

6. Some jets may be overlapping. Any jet that has more than 50% of its energy
in common with the higher-energy jet is merged with that jet: all the cells in the
lower-energy jet are considered part of the higher energy jet, whose direction is again

recalculated according to eq.4.8, eq.4.9 and eq.4.10.

7. Any jet that has less than 50% of its energy in common with a higher-energy
jet is split from that jet: each cell is considered part only of the jet to which it is
nearest. This is essentially the algorithm used by ZEUS(PUCELL), except that their
merging /splitting threshold is 75% instead of 50%.

The CDF Jet Algorithm

This is essentially the same as in DO case except for:

6. Any jet that has more than 75% of it’s energy in common with the higher-
energy jet is merged with that jet: all the cells in the lower-energy jet are considered
part of the higher energy jet, whose direction is again recalculated according to the

eq.4.8, eq.4.9 and eq.4.10.

7. Any jet that has less than 75% of its energy in common with a higher-energy
jet is split from that jet: each cell is considered part only of the jet to which it is

nearest. The directions of the two jets are then recalculated by iterating step 3.

Both of the above algorithms are considered as almost unsafe, i.e. one or both of
the constraints stated above seems to be violated (although on closer inspection the
iterative cone algorithm is safe) at the parton level despite being fully safe at the NLO
level [38].
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4.4 The Underlying event in Hard Scattering Pro-

cesses

One of the first predictions of perturbative QCD is the appearance of jets with large
transverse momentum. QCD also correctly describes the structure of radiation emitted
within the cone around the jet axis i.e. the jet shape. QCD should also account for the
radiation emitted outside the jet cone from the analysis based on the resummation
of all leading infrared singular contributions, i.e. soft. The important property of
resummation analysis shows that soft gluons interfere in such a way as to give coherent
QCD radiation. The structure of QCD radiation outside the jet cone should then be
particularly sensitive to the coherence property of the initial and final state radiation

because of the important interference effects in this region.

The region outside the jet cone is also populated by radiation coming from inter-
actions between the beam-beam remnants i.e. the underlying event. These remnant-
remnant interactions are not very well known and because of the typically low () scale
of the interactions they cannot be modeled by standard perturbative QCD theory
(in Chapter 5 we will however examine the possibility of additional multiple parton

interactions contributing to the underlying event).

In this section we are going to closely examine the structure of events in which a
hard scattering in a proton-antiproton collision has occurred. We will look at whether
a proposed method of disentangling the two contributions from the soft underlying
event and the perturbative part is really efficient and test whether HERWIG with its

colour coherence effects gives a satisfactory description of the whole event structure.

In fig.4.2 we illustrate a QCD Monte-Carlo simulation of a proton-antiproton
collision in which a parton-parton scattering with large transverse momentum has
occurred. The simulated outgoing final state particles can be separated (according to
the origin of their production) into two groups as shown in fig.4.2.a). The first group

comes from outgoing partons, involved in the hard scattering, including initial and
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final state radiation. The second group comes from particles originating in interactions

between the two hadron remnants.

We define the underlying event as due to particles coming from all additional
interactions that are not part of the main hard scattering (including initial and final
state radiation). The two hadron remnants are just what is left after a parton has been
knocked out from each of the two hadrons. Because of the soft scale of interactions
it is not really known how additional interactions between the two remnants should
be modeled. The soft underlying event model used in HERWIG, for example, is
a parametrisation of the UA5 minimum bias data and is not based on any more

fundamental physical assumptions.

Particles originating from the two outgoing hard partons will ultimately form two
jets with large transverse momenta. In two-to-two hard parton parton interactions,

the two jets are expected to be back-to-back in azimuthal angle.

In this section we will compare simulated data from the HERWIG Monte Carlo
event generator (v5.9) with the experimental data coming from the study of the growth

and structure of the underlying event measured at the CDF detector [35].

The overall CDF data are composed of two sets: the minimum bias set for which
the minimum bias trigger selects predominantly the “hard core” component of the
inelastic cross section and the JET20 (Calorimeter Tower cluster with Ez > 20GeV)
set. To remain in the region where the charged particle tracks are found with high
efficiency only the particles with (p; > 0.5 GeV and |n| < 1) were considered. The
experimental data were not corrected for the central tracking chamber (CTC) track
finding efficiency but instead the theoretical Monte Carlo simulation data was. For
theoretical simulations all parameters in HERWIG were set to their default values
with pymin = 3 GeV. The value of p;,in was set large enough for a perturbative QCD
calculation to be applicable (since the perturbative QCD cross section diverges as
Pimin—0) and also large enough in order not to have our hard core inelastic cross section
too high i.e. not greater than the measured total hard inelastic cross section. In the

theoretical simulation particles were divided into two categories: particles arising from
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the beam-beam remnants (those described as composing the underlying event) and
particles originating from the hard scattering component (particles that result from
the outgoing hard scattering jets plus initial and final-state radiation). The theoretical
Monte-Carlo prediction was corrected for the track finding efficiency, which amounts
to 8% and corresponds in removing 8 out of 100 charged particles on average from the
theoretical prediction. Finally the data presented in the experimental work had an

error of about 5% including both statistical and correlated systematic uncertainties.

4.4.1 Charged particle jet definition.

In this section we will repeat the analysis of the underlying event completed by the
CDF collaboration presented in [35] in order to check the jet algorithms ready for
further analysis presented in Chapters 5 and 6.

In this particular analysis [35] jets were defined as circular regions of radius R =
0.7 in n — ¢ space containing charged particles coming from both the underlying event
and hard core interactions. Every charged particle in the event was assigned to a jet

with a possibility that some jets might be composed of only one particle.

o

Figure 4.3: Event with six charged particles p;>0.5 GeV and 1 < 1 and five jets (radius
in n — ¢ space R = 0.7).

Since the standard jet algorithm based on calorimeter clustering from Section
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4.3.1 is not applicable at low transverse momentum, a very simple jet definition is

used as described below :

e Charged particles are first ordered according to their p,.

e Starting with the highest p, particle, all particles within radius R = 0.7 are

included to form a jet.

e Then we proceed to the next highest P, particle (not already included in a jet)
and include all particles within its radius R = 0.7 (not already included in a jet) to

form a new jet.

e This is continued until all charged particles are part of one of the jets.

All charged particles with (p; > 0.5 GeV and |n| < 1) are considered and the jet
is allowed to extend outside |n| < 1. The transverse momentum of the jet is defined
as the scalar p; sum of all particles within the jet. Once all jets have been produced
the one with the highest p;(jet#1) is selected to be the leading jet. We calculate the
¢ of the leading jet following the definition given in Section 4.3.1,

bjet =Y p};—id)i (4.11)
i Pljet

This simple charged particle jet definition is not infrared safe if applied at the
parton level, however it can safely be used at the hadron level *, where the hadronic

scale provides a cutoff.

4.4.2 Study of particle correlations in azimuthal angle

In this section we will use the simple jet algorithm presented in Section 4.4.1 in order
to test whether HERWIG and its soft underlying event model correctly reproduce the
particle distributions away in ¢ from the leading charged jet. There are three different

regions of study (as shown in fig.4.4) separated in A¢ (i.e. the relative azimuthal

*Nevertheless results could be sensitive to soft hadron contributions
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angle A¢ = ¢ — @41 between charged particles and the direction of jet#1) from the
leading p; jet#1; the toward region defined over the range |A¢| < 60° (this region
includes particles of the leading jet#1), the away region defined over the range |Ad|
> 120° and the transverse region defined over the range 60° < |A¢| < 120°. Each
region, toward, transverse, and away covers the same range |An|x|A¢|=2x120°. The
transverse region, being perpendicular to the plane of the hard two-to-two scattering,
is expected to be the most sensitive to particles produced in the underlying event
and initial and final state radiation. In all our simulations we use typically 90 million

events.

Jet#1 Direction

A

Toward

Figure 4.4: Toward, away and transverse regions from the leading in p; jet (see [35]). The
angle A¢ = ¢ — ¢jer41 is the relative azimuthal angle between charged particles and the
direction of jet#1.

The toward and the away regions

Fig.4.5 shows a fair agreement between the simulated and experimental data for the
average total number of charged particles (including particles of the leading jet) as a

function of the transverse momentum of the leading charged jet. We observe a rapid
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rise in the overall number of charged particles at low jet#1 p, followed by a flattening

to a gradual rise at high p;,.

Figs.4.6 and 4.9 show a fair agreement between the experimental and simulated
data for the toward region. The toward region is expected to be mainly populated by
particles coming from the outgoing leading jet (jet#1) together with particles coming
from the final and initial state radiation. The theoretical simulated data can be split
into two different sets, particles originating from the remnant-remnant interactions
and those from the hard scattering including initial and final state radiation, although
there is no way of doing so in an experiment. It is clear from fig.4.6 that the main
contribution in the toward region is due to particles from the main hard scattering.
We notice that contributions to jets of up to 2 GeV come in equal proportions from
both hard and soft processes meaning that jets can only be characterized as such once

their transverse momentum is above 2 GeV.

In figs.4.7 and 4.10 we compare the experimental and the simulated data for the
away region. This region contains particles coming from the recoiling side in ¢ of the
leading jet (plus those from initial and final state radiation) together with the charged
particles originating from the underlying event. Both the away and the toward region
are dominated by the particles from the outgoing hard scattering jets although the
away region contains a greater proportion of particles originating in remnant-remnant

interactions.

The transverse region

In fig.4.8 we show the plot for the transverse region approximately perpendicular in ¢
to the plane of the two outgoing hard jets. From fig.4.8 we see that the charged particle
activity in the transverse region forms an approximate plateau for jets with p; > 5
GeV. We also notice that particles produced in remnant-remnant interactions form
the main part of the activity for jets with p, < 15 GeV and remain important for all

py up to 50 GeV. This indicates that the transverse region is the most sensitive region
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Figure 4.5: The average total number of charged particles in the event as a function of
P, (leading charged jet). HERWIG + Underlying Event model (solid line) simulated data,
experimental CDF data [35] (data points).

to the underlying event activity (as shown in fig.4.8). Compared to the experimental
data the HERWIG Underlying Event model fails to produce enough activity for both
the average number of charged particles and the average scalar p; and in addition has

a wrong (too steep) p; dependence as shown in figs.4.8 and 4.11.

4.4.3 Minimum-maximum region analysis

We now split the transverse region into two parts as shown in fig.4.12 [35]. The aim is
to identify observables that are most sensitive either to the hard perturbative or the
soft underlying components. On an event-by-event basis the two transverse parts are
defined as the transverse Maximum part and the transverse Minimum part containing
respectively the maximum and minimum activity in the transverse region. The Max
part is expected to be more sensitive to the perturbative part of the total radiation

while the Min part is expected to be more sensitive to the radiation coming from the
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Figure 4.6: The average number of charged particles as a function of P, (leading charged
jet) in the toward region. HERWIG + Underlying Event model (solid line) simulated data,
experimental CDF data [35] (data points). Charged particles arising from the break-up of
the beam and target (dotted line) and charged particles that result from the outgoing jets
initial and final-state radiation (dotted dashed line) are shown separately.
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Figure 4.7: The average number of charged particles as a function of P, (leading charged
jet) in the away region. HERWIG + Underlying Event model solid line simulated data,
experimental CDF data [35] (data points). Charged particles arising from the break-up of
the beam and target (dotted line) and charged particles that result from the outgoing jets
initial and final-state radiation (dotted dashed line) are shown separately.
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Figure 4.8: The average number of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Underlying Event model solid line simulated data,
experimental CDF data [35] (data points). Charged particles arising from the break-up of
the beam and target (dotted line) and charged particles that result from the outgoing jets
initial and final-state radiation (dotted dashed line) are shown separately.
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Figure 4.9: The average P, sum of charged particles as a function of P; (leading charged jet)
in the toward region. HERWIG + Underlying Event solid line simulated data, experimental
CDF data [35] (data points). Charged particles arising from the break-up of the beam
and target (dotted line) and charged particles that result from the outgoing jets initial and
final-state radiation (dotted dashed line) are shown separately.
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Figure 4.10: The average P, sum of charged particles as a function of P, (leading charged
jet) in the away region. HERWIG + Underlying Event model solid line simulated data,
experimental CDF data [35] (data points). Charged particles arising from the break-up of
the beam and target (dotted line) and charged particles that result from the outgoing jets
initial and final-state radiation (dotted dashed line) are shown separately.
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Figure 4.11: The average P, sum of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Underlying Event model (solid line) simulated
data, experimental CDF data [35] (data points). Charged particles arising from the break-up
of the beam and target (dotted line) and charged particles that result from the outgoing jets
intial and final state radiation (dotted dashed line).
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Figure 4.12: The transverse region (left) split in two, the transverse maximum (Max)
and minimum (Min) parts (right).

underlying event [39]. Furthermore it is expected that the underlying event component
should almost cancel in the difference between the two parts, leaving only the hard

component (plus initial and final state radiation).

As shown in figs.4.13 - 4.16 the transverse Max region is more sensitive to the
hard scattering component of the underlying event and the Min cone is more sensitive
to the remnant-remnant component as expected in [39]. However fig.4.17 shows that
the difference between the Max and Min region does not completely remove the beam-

beam component although it does reduce it by about a factor of two.

4.4.4 Transverse Cone analysis

In this section we present the complement to the underlying event simulation study in
the transverse region by looking at the underlying event activity in transverse cones
[35, 40, 41] instead of transverse regions. The transverse cones as shown in fig.4.18 are
defined as regions in 1 — ¢ space of radius R = 0.7 located at the same pseudo-rapidity
as the leading jet but with azimuthal angle A¢ at +7/2 and —n/2 from the leading
jet. In the experiment the leading jet is built using the standard CDF cone algorithm

which looks at charged and neutral particles at the calorimeter level. The leading jet
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Figure 4.13: The average scalar p; sum of the trans-Max and trans-Min charged particles
as a function of P; (leading charged jet) in the transverse region. Solid (Max) and hollow
(Min) circles are the experimental CDF data [35], the solid line the corrected theoretical
data from HERWIG + Underlying Event model.

Max "Min Tnansverse region

average Nehrg

2.5

1.5

P PR PR
(o] 5 10 is 20 25 30 35 40 as 50
Pt leading jet(GeV)

Figure 4.14: The average number of trans-Max and trans-Min charged particles as a function
of P; (leading charged jet) in the transverse region. Solid (Max) and hollow (Min) circles are
the experimental CDF data [35], the solid line the corrected theoretical data from HERWIG
+ Underlying Event model.
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Figure 4.15: The average number of trans-Max particles as a function of P; (leading charged
jet) in the transverse region. Solid points are the experimental CDF data [35] and the solid
line the simulated data from HERWIG + Underlying Event model. Charged particles arising
from the break-up of the beam and target (dotted line) and charged particles that result from
the outgoing jets initial and final-state radiation (dotted dashed line) are shown separatly.
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Figure 4.16: The average number of trans-Min particles as a function of P, (leading charged
jet) in the transverse region. Solid points are the experimental CDF data [35] and the solid
line the simulated data from HERWIG + Underlying Event model. Charged particles arising
from the break-up of the beam and target (dotted line) and charged particles that result from
the outgoing jets initial and final-state radiation (dotted dashed line) are shown separatly.
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Figure 4.17: The average difference, trans-Max minus trans-Min, for the number of charged
particles as a function of P; (leading charged jet) in the transverse region. Solid points
are the experimental CDF data [35] and the solid line the simulated data from HERWIG
+ Underlying Event model. Charged particles arising from the break-up of the beam and
target (dotted line), and charged particles that result from the outgoing jets initial and
final-state radiation (dotted dashed line) are shown separately.

4.4. The Underlying event in Hard Scattering Processes



Chapter 4. Jet physics and the underlying event 101

21T < (0] =~ 0

Figure 4.18: Tllustration of transverse cones in the 7 - ¢ space with |n|<1 located at the
same pseudorapidity as the leading jet but with azimuthal angle A¢ = +90° and A¢ = —90°
relative to the leading jet. Each transverse cone has an area in 7 - ¢ space of TR? = 0.49x.

transverse energy covers the range between 50 and 300 GeV, 50 < Er < 300 GeV
and can be seen as complementary to the low p; jet study of transverse regions. The
maximum and minimum activity in the two transverse cone regions is determined on
an event by event basis, in the same way as in the transverse region analysis. Each
of the cones has an area in 7 — ¢ space of TR? = 0.497. The two cones in fig.4.18
are located in the region far away from the leading jet and should be particularly
sensitive to the underlying event activity. Our simulated data were not corrected for
the calorimeter effect which we consider as small (of the order of 5%). From fig.4.19
we see that the Monte Carlo prediction and the experimental data have a similar
behaviour for both the max and min cone. We notice from fig.4.19 that the average
p¢ in the maximum cone increases with the jet energy while in the minimum cone the
average p; has a flat dependence indicating that it is dominated by contributions from

the underlying event.
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Figure 4.19: The average scalar p; sum of the trans-Max and trans-Min charged parti-
cles as a function of F; (leading charged jet) in transverse cones. Solid and hollow circles
experimental CDF data [35], HERWIG + Underlying Event model (crosses) simulated data.
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4.5 Summary

In this chapter we have shown our agreement with the results from [35] on the trans-
verse region analysis. We have shown that HERWIG describes charged particle distri-
butions rather well in all regions except in the transverse i.e. the most sensitive to the
underlying event. HERWIG has a too steep p; dependence and not enough charged
particle activity in the transverse region. Separating the transverse region into two
parts, Max and Min, provided additional information. The transverse Max part ap-
pears to be more sensitive to the hard component of the underlying event while the
transverse Min part appears to be more sensitive to the remnant-remnant component
part. Still the difference between the two parts do not entirely cancel the remnant-
remnant part making the possibility to clearly separate the two components difficult.
In the transverse cone analysis there is a fair agreement between HERWIG and the
experimental data. In the next chapter we will present the multiparton interaction
model as a substitute for HERWIG’s Underlying Event model and discuss the results

obtained.
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5.1 Introduction

In this chapter we present a simulation of proton-antiproton collisions at /s =1.8
TeV in which the HERWIG Soft Underlying Event model is substituted by the Hard
Multiparton Interaction model. We begin this chapter by presenting a brief overview
of the Hard Multiparton Interaction model [42] with some references to a similar
model used in the PYTHIA event generator [43]. In Section 5.2.2 we examine whether
the addition of secondary hard scatters to the main hard interaction improves the
simulated data on the underlying event presented in Chapter 4. Finally in Section 5.2.4
we propose to tune the mass (i.e. the radius of the proton) in the Hard Multiparton

model in order to obtain a better fit to the experimental data.

5.1.1 Multiparton Interactions

Since hadrons are considered as composite particles it is reasonable to assume that in
high energy collisions (i.e. hadron-hadron and lepton-hadron) interesting phenomena
such as multiparton hard interactions might occur. These semi-hard interactions would
arise from the hard scattering of partons carrying a small fraction of momenta of their
parent hadrons. Such semi-hard interactions would lead to the appearance of jets with
transverse energy much smaller than that of the total energy available in the hadronic
collisions. The experimental evidence for multi-parton scattering in hadron-hadron
collisions has been found in measurements carried out by CDF [44, 45], AFS [46],
UA2 [47] and UA1 [48] collaborations.

The first hard multiparton formalism was implemented within PYTHIA Monte
Carlo event generator. PYTHIA is a complete Monte Carlo event generator and, like
HERWIG, includes all the necessary formalism (i.e. hard-scattering matrix elements,
structure functions, initial and final state radiation and a hadronisation model) for
simulating a hard interaction between two hadrons. In PYTHIA the formalism based
on perturbative QCD for large p; interactions, which determines the rate of parton-

parton interactions as a function of the transverse momentum scale p;, is extended
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into the low-p; region where a regularization of the divergence in the cross section
for p; — 0 is introduced providing the main free parameter of the model. The sec-
ondary hard scatters in PYTHIA are assumed to happen independently of each other
so that the number of secondary interactions in a hadron-hadron collision is given by
a Poissonian distribution. However secondary scatters cannot be considered as really
independent since some correlation between them must exist, most simply if we are to
conserve momentum and flavour for each interacting parton, and less naively if we are
to consider various quantum mechanical effects. Correlations between the secondary
scatters are introduced in PYTHIA by the ordering of scatterings in the falling se-
quence of z; = 2p;/ Ecys. Furthermore since the PYTHIA multiparton model assumes
hadrons to be extended objects the average number of secondary scatters depends on
the collision impact parameter (larger for central collisions and smaller for peripheral
ones) and the assumed matter distribution of the two colliding hadrons. Data simu-
lated with PYTHIA and the multiparton formalism with a double Gaussian matter
distribution proved to be in rather good agreement with the UA1 [48] experimental
data for various jet observables such as event rates for multiple minijet production, the
variation of pedestal level with jet energy and the average transverse energy produced

away from jet axes.

In the following section we present a Hard Multipartion Interaction Model which
assumes (similar to PYTHIA) that at high centre of mass energy (/s > 100 GeV),
the main hard scattering is accompanied by semihard interactions. Multiparton in-
teractions will then drive the rise of the inclusive jet cross section at high energies
through the small-z behaviour of the parton distribution or, to a good approximation,
that of the dominant gluon distribution. The calculated semihard cross section is
then expected to give an increasingly important part of the total hadron-hadron cross

section at higher energies.

The inclusive jet cross section calculated at lowest order QCD (see eq.3.16), will
eventually exceed the Froissart bound (see Chapter 1) and the total hadron-hadron

cross section at very high energies. Thus multiparton interactions can be seen as a
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unitarity correction to the total inclusive jet cross section at higher energies if we
consider that the inclusive jet cross section exceeds the total hadron-hadron cross

section by the mean multiplicity of multiple interactions.

5.2 Multiparton Interactions in the pp environment

Figure 5.1: Example of a multiparton scattering in pp collision

In this section we summarize a multiparton-interaction model proposed in [42]
which we use as the hard multiple-interaction part of our eikonal model to be intro-

duced in Chapter 6.

In [49, 50, 51, 52, 42] it was shown that the average number of secondary hard

scatters in an event can be deduced from the QCD improved parton model.

As mentioned in the introduction, multiparton interactions are seen as additional
two to two parton-parton hard scatterings (the main one being the one involving
the largest transverse momentum exchange Q) between partons contained in the two
proton-antiproton remnants. In the centre-of-mass frame the two incoming hadrons

can be pictured as Lorentz contracted ‘parton pancakes’ colliding at some impact
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parameter, b. The average number of secondary scatters can be written as

, spp/4 !
(n(b, 55)) = /7“”)2/1),?”'"2 i 4p} /55 diEpA

1

p?/xpspﬁ
dxz_)z:fi(xpa pf, |bl - b|)fj($;l7’ pgabl)
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where z, and x5 are the longitudinal fractional momentums carried by partons of the

d6;j (TpTps,p:pt)

> is the full differential cross section for parton-
t

two incoming hadrons,
parton scattering, and f;(z5, p?,b)dzdb® is equal to the number of partons in the
interval dz and the transverse area element db? a distance b from the centre of the
hadron. It is also assumed that f;(z, p?, b)dzdb? can be factorised in two parts; the
fi(z, p}) and p(b) part. f;(zp, p?) is now the usual parton distribution function of
parton-j in hadron-p and p(b) is the probability density for finding a parton in the area
db?® at impact parameter b. Factorizing the b dependence like this is an assumption.

In particular QCD effects which would spoil this, e.g. perhaps leading to ‘hot spots’

of partons are not considered.

The model assumes that the parton distribution inside the two hadrons is given

by the electric form factor distribution of the two hadrons

Gy(b) = Gyl(b) =

/ d’k exp(k - b) (5.2)

(2m) (1 + K/ p?)?”
with 12=0.71 GeV?2. The significance of this assumption is that the dominant gluon
distribution (at low x) in multiparton processes is tightly coupled to that of the spatial
distribution of the constituent (or valence) quarks. The average number of scatters

from eq.5.1 can now be rewritten as

(n(b, s,5)) = A(b)oy* (s,7); (5.3)

inc

where 077°(s,5) is the inclusive cross section for pp — jets,
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and where the profile function A(b) in eq.5.3 specifies the overlap of partons of the
two colliding hadrons in impact parameter b. A(b) can be written as a convolution of
form factors distributions (in the first approximation where pQCD effects are ignored)

of the two incoming hadrons as

A(b) = / d?b’G,(b*)Go(b — b?), (5.5)
the integral in eq.5.5 then yields [51],
2
_ K 3

where K;(z) is the modified Bessel function.

The overlap function A(b) satisfies the normalization condition

/ rdb?A(b) = 1. (5.7)

In addition to the assumption for the form of the parton distribution, the model
assumes (as in [43, 42]) that secondary hard scatters are independent of each other
so that the probability for the number of hard scatters h, in a pp collision at a given

value of impact parameter, is given by the Poissonian probability distribution

Py = WD) oy (. sy (5.5)

The inelastic hard cross section for pp—partons with p;> pymin can now be written as
o0
on(s,y) = / S P,
h=1

= 7 [ [t~ exp(~(n(b, 7)) (5.9)

Since the inclusive jet cross section in eq.5.4 counts all jet pairs (even ones which

inc

occur in the same event) we expect o}}°(s,5) to be greater than oy (s,z) by a factor
equal to the average number of secondary scatters in an event (averaged over impact

parameter) containing at least one hard scattering. This can be expressed as
[db* 30, mP,,
<n(8p1_7)> = fdb2 ?::1 Pm
J db*(n(b, 553))
J db?[1 = exp(—=(n(b, spp)))]

inc

o7 (5pp)
70;1(51,5) ) (5.10)
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Note that op(s,;) must always be less than the total pp cross section, whereas

inc

o(s,5) need not be.

The Hard Multiparton model is implemented as part of the HERWIG Monte Carlo
program. Running the Hard Multiparton model in conjunction with HERWIG comes
from the necessity to confront the simulated data with real final states data from exper-
imental measurements. This can be achieved only by using realistic hadronisation and
parton showering models already implemented within the HERWIG program. Here
we give a brief summary of the Hard Multiparton implementation within HERWIG.

5.2.1 Multiparton Interaction Implementation

Event simulation starts with HERWIG generating a hard subprocess according to the
leading order cross section using the parton distribution set selected by the user. Both
incoming and outgoing partons involved in the hard subprocess (at some hard scale
Q) are evolved (backward for the incoming parton) through a coherent parton shower
algorithm until they reach a typical hadronic scale, )5, ~ 1GeV. The coherent parton
shower algorithm [25] resums to all orders both single logarithmic terms associated
with the collinear emission (through implementation of the DGLAP splitting function)
and single and double logarithmic terms associated with soft emissions (see Chapter
3). All the successive partons emitted in the parton shower are colour connected in
such a way that partons carrying colour(anticolour) tend to end up close in momen-
tum and real-space to their anticolour(colour) partners. Once the evolved partons have
reached a hadronisation scale (), clusters of partons are formed where each colour
connected pair of partons forms a single colourless cluster. Each cluster is then de-
cayed into hadrons according to phase space arguments [24]. The backward evolution
in HERWIG is required to end up with the valence parton. Once the 4-momentum of
the valence parton is known energy-momentum conservation is used to calculate the
momentum of the remaining hadron remnant. In the case of the proton(antiproton)

the remaining diquark(antidiquark) is taken to be a single anticolour(colour) parton.
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In implementing multiple interactions into the Monte Carlo event generator the as-
sumption that different scatters are uncorrelated does not hold any more. This is
because the global energy-momentum conservation is imposed by adding the simplest
possible correlation, a © function in the cross section to produce h and only A scatters
requiring their total energy to be less than the available energy. Multiparton events
are generated according to probabilities for exactly h scatters calculated using the
analytical model with the total cross section calculated according to eq.5.9. Scatters
in which energy-momentum cannot be conserved are vetoed. Once the main hard
subprocess has been simulated, energy-momentum conservation is used to calculate
the momentum of the remaining diquark (antidiquark) or proton(antiproton) remnant.
Each diquark carries opposite colour to that of the parton involved in the hard subro-
cess. After the first hard scattering has been completed a number of secondary hard
subprocess are simulated where each coloured remnant from the previous interaction
is labeled as the new incoming hadron with identical properties to the original hadron

but with gluons labeled as its valence partons.

We have mentioned the multiparton formalism implemented within PYTHIA in
Section 5.1.1 and we would now like to underline differences and similarities between
the two models. The main similarity is that both models assume that multiple in-
teractions are independent of each other i.e. that the probability for the number of
hard scatters is given by the Poissonian probability distribution. The main differ-
ence between the two models is that in PYTHIA multiparton model, successive hard
scatterings are arranged in falling sequence of x; = 2p,/E.p,, with the first scattering
being the hardest followed by subsequent softer ones. In the Hard Multiparton model
such ordering in p, of successive scatters is not imposed so that all scatters are treated
equally. While the Hard Multiparton model is implemented with an abrupt p; cutoff
the PYTHIA model allows a possibility for a smooth turn-off at p;q of the hard scale.
This smooth turn-off of the hard scale can be motivated by the decrease of the effective
strong coupling at low p;, since the exchanged gluons with large transverse wavelength

fail to resolve the individual colour charges. Finally the matter distribution describing
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the parton distributions within the two hadrons are different in the two models, dou-
ble gaussian in the case of PYTHIA and electric form factors in the multiparton hard
model (we recall that the electric form factor distribution in eq.5.2 corresponds to
the hadron’s charge distribution in the Breit frame). Finally we mention a difference
of implementation of multiparton interactions between the two models, while in the
PYTHIA multiparton model each hard scattering happens at a certain value of the
impact parameter b (selected from a given overlap distribution function), in the hard
multi-parton model the probability for having h hard secondary scatters is integrated

over the impact parameter b.

5.2.2 Study of particle correlations in azimuthal angle.

In this section we repeat essentially the same analysis as was done in Chapter 4,
although we substitute HERWIG Soft Underlying Event model by the Hard Multi-
parton Interaction model. We use two values of py,i, (3 GeV and 2 GeV) to test the

agreement between the simulated and experimental data.

Average number of charged particles vs p; (charged jet) in the toward and

away regions

In fig.5.2 we show the total average number of charged particles in the event as a
function of the p, of the leading charged jet for two values of pynin = 3 GeV and 2
GeV. For pynin = 2 GeV the Hard Multiparton model has a wrong p; dependence of
the total average number of charged particles which for higher p; values of the leading
jet becomes too flat and thus fails to produce the right amount of charged particles
observed in the experiment. For py,., = 3 GeV the model produces the right shape
for the charged particles distribution but with a wrong normalization. The plots of
the average number of charged particles in the toward and the away region confirm
the same data pattern as observed for the total average number of charged particles

(as shown in fig.5.3 and fig.5.4).
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Average scalar p; sum of charged particles vs p; (charged jet) in the toward

and away regions

In fig.5.6 we show the plot of the average scalar p; sum of charged particles as function
of the p; of the leading jet in the toward region which is well described by the model
for both values of pu,in.- In the away region however the model gives a wrong p,

distribution for py,., = 2 GeV (too low for jets > 15 GeV as shown in fig.5.7).

The transverse region

The transverse region is described (overall) better than by the HERWIG Soft Under-
lying Event model (see Chapter 4) for pyni, = 2 GeV as shown in fig.5.5 and fig.5.8.
The slope of the simulated distributions seems to have the right (flat) distribution
although the data for both the average number of charged particles and the average
scalar p; is still below the experimental one. For the value of p;,;, = 3 GeV the
simulated distributions are too low compared to the experimental data as shown in

fig.5.5 and fig.5.8.

In fig.5.11 we show the multiparton contribution to the transverse momentum sum
in the transverse region for two values of pynin, 2 GeV and 3 GeV which we compare to
the HERWIG hard subprocess (including initial and final state radiation). For pypn
= 2 GeV we notice that the contribution due to multiple scattering first increases
rapidly for low p; jets ( p; < 5 GeV with pynim = 2 GeV) to then form a plateau
region for jets with p; > 10 GeV. We thus conclude that multiple scatters contribute
little to jet events with leading jet energies (p;) greater than 30 GeV. Finally we point
out that a better agreement with experimental data is obtained when the multiparton
interaction rate is increased (i.e. from (nparq) = 1.07 (at pnin = 3 GeV) to (Npara) =

1.3 (at pymin = 2 GeV)).
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Figure 5.2: The average total number of charged particles in the event as a function of P,
(leading charged jet). HERWIG + Hard Interaction model simulated data (solid line pymn
= 3.0 GeV), (dotted line pypin = 2.0 GeV), experimental CDF data [35] (data points).

Minimum-maximum region analysis

In fig.5.9 and fig.5.10 we show the performance of the hard multiparton model
in the two Max/Min regions for pyn;, = 2 GeV. While the Min region seems to be
described correctly, the simulated Max region lacks both in average number of charged

particles and average scalar p; sum.

5.2.3 Proton radius as a parameter

In this section we show how the radius of the proton in the Hard Multiparton model
can be used as a parameter in order to obtain a better overall agreement with the
experimental data. A good agreement is obtained by reducing the proton radius by
a factor of 1.73 (with pynin = 3 GeV) as shown in figs.5.14-5.22 (which we stress is

not the result of the detailed fit). The reduction of the proton radius causes the value
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Figure 5.3: The average number of charged particles as a function of P; (leading charged
jet) in the toward region. HERWIG + Hard Interaction model simulated data (solid line
Dimin = 3.0 GeV), (dotted line pyin = 2.0 GeV), experimental CDF data [35] (data points).
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Figure 5.4: The average number of charged particles as a function of P; (leading charged
jet) in the away region. HERWIG + Hard Interaction model simulated data (solid line pyin
= 3.0 GeV), (dotted line pynin = 2.0 GeV), experimental CDF data [35] (data points).
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Figure 5.5: The average number of charged particles as a function of P; (leading charged
jet) in the transverse region. HERWIG + Hard Interaction model simulated data (solid line
Dimin = 3.0 GeV), (dotted line pyin = 2.0 GeV), experimental CDF data [35] (data points).
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Figure 5.6: The average P; sum of charged particles as a function of P, (leading charged
jet) in the toward region. HERWIG + Hard Interaction model simulated data (solid line
Dimin = 3.0 GeV), (dotted line pyin = 2.0 GeV), experimental CDF data [35] (data points).
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Figure 5.7: The average P; sum of charged particles as a function of P, (leading charged
jet) in the away region. HERWIG + Hard Interaction model simulated data (solid line pynin
= 3.0 GeV), (dotted line pypin = 2.0 GeV), experimental CDF data [35] (data points).
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Figure 5.8: The average P; sum of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Hard Interaction model simulated data (solid line
Ptmin = 3.0 GeV), (dotted line pypin = 2.0 GeV), experimental CDF data [35] (data points).
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Figure 5.9: The average number of the trans-Max and trans-Min charged particles as a
function of P; (leading charged jet) in the transverse region. Solid (Max) and hollow (Min)
points experimental CDF data [35]. HERWIG + Hard Interaction model simulated data
(dotted line pypin = 2.0 GeV).
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Figure 5.10: The average scalar p; sum of the trans-Max and trans-Min charged particles
as a function of P; (leading charged jet) in the transverse region. Solid (Max) and hollow
(Min) points experimental CDF data [35]. HERWIG + Hard Interaction model simulated
data (dotted line pyin = 2.0 GeV).
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Figure 5.11: The average P, sum of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Hard Interaction model simulated data (solid line
DPtmin = 2.0 GeV), (dotted line pypin = 3.0 GeV), HERWIG QCD hard two to two subprocess
including initial and final state radiation (solid circles pypi, = 3.0 GeV).

of the overlap function A(b) to peak at a higher value for central collisions (i.e. low
values of the impact parameter b) and to decrease faster for more peripheral ones as
shown in fig.5.12. The result of this analysis indicates that partons can be pictured
as being densely packed within small regions of the interacting hadrons as shown in
fig.5.13. At this stage it is not clear what physical mechanism could explain such
behaviour (although it is possible that some connection could be made with QCD
hot spots ideas). We consider this result, therefore, as relevant only from a purely

phenomenological point of view.

5.2.4 Conclusion

Substituting the Soft Underlying Event model by the Multiparton Hard model a clear
improvement (although still not perfect) is noticed in the description of experimental
data in the transverse region for the low value of p;,;, = 2 GeV. This result indicates

that multiparton interactions can be considered as a step in the right direction for
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Figure 5.12: The plot of the overlap function bA(b) for two values of proton radius
p? = 2.13GeV? (green) and p? = 0.71GeV? (red).

RILT3
Figure 5.13: The decrease of the proton radius by the factor of 1.73 and its effect on the
parton densities within the colliding hadrons at b = 0 (i.e. in a central collision).
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Figure 5.14: The average total number of charged particles in the event as a function of P,
(leading charged jet). HERWIG + Hard Interaction model (solid line) simulated data (with
reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.15: The average number of charged particles as a function of P; (leading charged
jet) in the toward region. HERWIG + Hard Interaction model (solid line) simulated data
(with ptmin = 3 GeV and reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.16: The average number of charged particles as a function of P; (leading charged
jet) in the away region. HERWIG + Hard Interaction model (solid line) simulated data
(with pymin = 3 GeV and reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.17: The average number of charged particles as a function of P; (leading charged
jet) in the transverse region. HERWIG + Hard Interaction model (solid line) simulated data
(with pymin = 3 GeV and reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.18: The average P, sum of charged particles as a function of P, (leading charged
jet) in the toward region. HERWIG + Hard Interaction model (solid line) simulated data
(with pymin = 3 GeV and reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.19: The average P, sum of charged particles as a function of P, (leading charged
jet) in the away region. HERWIG + Hard Interaction model (solid line) simulated data
(with pymin = 3 GeV and reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.20: The average P, sum of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Hard Interaction model (solid line) simulated data
(with pymin = 3 GeV and reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.21: The average number of the trans-Max and trans-Min charged particles as a
function of P, (leading charged jet) in the transverse region. Solid (Max) and hollow (Min)
circles experimental data, HERWIG + Hard Interaction model (solid line) simulated data
(with pymin = 3 GeV and reduced proton radius), experimental CDF data [35] (data points).
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Figure 5.22: The average difference, trans-Max minus trans-Min, for the number of charged
particles as a function of P; (leading charged jet) in the transverse region. Solid points
are the experimental data and the solid line the simulated data from HERWIG + Hard
Interaction model (solid line) simulated data (with pyni, = 3 GeV and reduced proton
radius), experimental CDF data [35] (data points).

a better description of remnant-remnant interactions. For the same value of psin,
the model however does not describe correctly distributions of the average number of
charged particles in the toward and away regions. The new proposed solution to this
problem is to consider the radius of the proton as parameter. By decreasing the proton
radius by a factor of 1.73 we have obtained a good description of the overall event
structure as has been shown in Section 5.2.3. However the reason for changing the
proton radius is not clear. Furthermore it is very doubtful that such an approach will
lead to any successful predictive method for simulating hadron-hadron interactions at
different centre-of-mass energies. In the next chapter we propose an alternative path to
the one taken here. We propose a simple eikonal model which contains in its formalism
both the Hard Multiparton model, described in this chapter, and a non-perturbative
soft part. The main motivation for such a model is to obtain a predictive tool capable
of describing the overall event structure in hadron-lepton and hadron-hadron collisions

over a wide range of energies from the SPS experiments up to the LHC.

5.2. Multiparton Interactions in the pp environment
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6.1 Introduction

In Chapters 4 and 5 two different models for the simulation of particle production in
remnant-remnant interactions were used as complement to the HERWIG QCD two
to two parton-parton interaction subprocess (together with its full parton showering
and hadronisation models). The performance of the two models was evaluated by
comparison to experimental data on charged particle correlations in azimuthal angle.
In this chapter (see Section 6.2) we introduce a new parameter free Eikonal Monte
Carlo model (running in conjunction with HERWIG) [53] to simulate multiparticle
production in hadron-hadron interactions. The new model contains only the value
of the total cross section as a phenomenological input. In Section 6.5 we use the
same analysis of charged particle correlation as was presented in Chapters 4 and 5 to
evaluate the performance of our new model by comparison with the CDF experimental
data. In Section 6.5.1 we compare the results obtained with the new Eikonal model
to those in Chapters 4 and 5. Finally in Section 6.5.2 we use the new Eikonal model
to predict the underlying event activity that should be expected at the LHC.

6.2 Introduction to the Eikonal Model

In this section we will review some well known expressions for cross sections within

the eikonal approximation, which we will use as the basic framework for our model.

At high energies, particle scattering can be described using geometrical models
since the wavelength of the particles is much smaller than their transverse size. The

scattering angle 05, between two particles in their center-of-mass frame is given by

0
t = ¢* = —4k? sin? <§> (6.1)

where ¢ is the momentum transfer. Neglecting effects depending on the spin of the

scattering particles and using the conservation of the angular momentum we can use

6.1. Introduction
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the partial wave expansion to express the scattering amplitude A(s,t) as

A(s,t) = 167 > (20 + 1)ay(s) Pi(cos 9), (6.2)
1=0
where q,(s) is the amplitude of the [-th partial wave. In the geometrical picture

of scattering we can express the angular momentum [ (large at high energies) as a

function of the impact parameter b
l=lkxb]. (6.3)

Since b and k are perpendicular to each other, we have [ = kb.

At high energies the number of partial waves contributing to the scattering in-

creases and eq.6.2 can be approximated by its integral form

A(s,t) = 167 /0 T 2L+ Day(s)P(cos 0), (6.4)

considering that >, — [dl — [ kdb, for large .

Using
6
Py(cos (0)) — Jo((20 + 1) sin <§>) for | — oo, (6.5)
and
1 2w
Jo(z) = Py dy exp (iz cos p) with b.gq=b.q; = b.q, cos ¢, (6.6)
7 Jo

we can rewrite eq.6.4 as
A(s,t) = 47rs/db2a(b,s)eiq'b, (6.7)

where a(b, s) = a;(s) |;=ks, is the impact parameter amplitude and ¢, is the transverse

component of momentum transfer in the center-of-mass frame.

The optical theorem (see Chapter 1) relates the imaginary part of the elastic
scattering amplitude A(s,t = 0) to the total cross section o4, through a unitarity
relation :

it = élm(A(s,t —0)). (6.8)

6.2. Introduction to the Eikonal Model
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Using the optical theorem, eq.6.8, we can express the cross sections as:

Grop = 47 / db*Im(a(b, s)), (6.9)
Oota = 47r/d62|a(b, $)2, (6.10)
Oinel = Otot — Oecla- (611)

We express the elastic amplitude in terms of the eikonal function, x(b, s), as [12]:

a(b,s) = % (6.12)
With the eikonal expression eq.6.12 we can write the cross sections as :
P /0 T A1 — e X, (6.13)
Gota = T /0 T |1 - e, (6.14)
inel = T /0 ” db?[1 — e~ b)), (6.15)

We choose the total cross section in eq.6.13 as the only phenomenological input to our

model. In the next section we will specify the expression for x(b, s).

6.3 Expression for the eikonal

In this section, we will give an expression for the eikonal y (b, s) in eq.6.13 and provide

some justification for it.

Comparing the eikonal expression in eq.6.15 with the expression in eq.5.9 we

define the hard part of the eikonal as :

Xacn(b,s) = 5 (n(b, 55)) (6.16)

where the expression for (n(b, s,5)) is given in eq.5.3.

The QCD perturbative 2-to-2 parton-parton differential cross section diverges as

the transverse momentum of the scattering, p;, goes to zero. One must then fix a

6.3. Expression for the eikonal
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minimum value p;,q, for p, large enough for perturbative QCD to be reliable. This
dependence of the perturbative QCD differential cross section implies that the eikon-
alised hard inelastic cross section would also depend on the arbitrary value chosen for

the minimum p;.

6.3.1 The expression for Y. (b, s)

Our goal is to formulate a model which will be, to a certain degree, independent of
the pymin cutoff. To this end, to xgcp(b, s,3) which describes hard interactions with
Dt > Pimin, We Will add xso7:(D, 5p5), which will describe interactions with 0 < p; <pimin.

The full eikonal can now be expressed as :

Xtotal (ba 3) = XQcbD (b, sz_)) + Xsoft(ba Sp;T))- (617)

To specify Xsor¢(b, Sp5) We will use a model introduced by Chou and Yang [55] and
Durand and Pi [52], which postulates that the elastic scattering is the shadow of
the absorption resulting from the passage of one hadronic mass distribution through
another. The transverse distribution of the matter is assumed then to have the same
shape as the charge distribution, as measured by the electromagnetic form factor, so

that X7 (b, s) is of the form:

Xsoft = C(sz—,)A(b), (618)

where C/(s,5) = 1/20% o (sp5), and 045 o (s,5) is a constant to be determined below,

and A(b) is given in eq.5.5.

The eikonal now consists of two parts, the hard,

1 .
XqQcp = 50?(:(5@)14(5)7 (6.19)
and the soft,
1 inc
Xsoft = §USOFT(5pﬁ)A(b)- (6.20)

If we now consider the total cross section in eq.6.13 with x(b, $)=Xtotai (b, s) and assume

Xtotal (b, §) to be small, we can expand the exponential in eq.6.13. Integrating over the

6.3. Expression for the eikonal
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impact parameter b we get:
Ttotal (Spp) = 0G5 pr(5pp) + 07 (5pp) (6.21)

Following this approximation we will assume that our o ,+(s,5) is a bare non-
perturbative cross section for a soft proton-antiproton interaction. Since oS pr(S,7),
the bare soft cross section in eq.6.20, is not directly calculable in our model, its value
can be determined from the experimental data, i.e. by using the total cross section

measured by the CDF collaboration [54].

To give a prediction for future LHC data we will rely on the Donnachie-Landshoff
model of the Pomeron [15] which fits successfully all the experimental data on total

cross section for proton-proton scattering,

ap(0)—1
S) , (6.22)

Utot(spp) = Utot(So) (5_
0

where a,(t) =1+€e+ a;)t with € = 0.08 and 04;, = 0.25 GeV 2. Assuming oy (Spp) =

010t(S,5) at high energy, the total cross section at the LHC can then be written as

2x%0.08
Vo) (6.23)
1800 ' '

Utot(spp) = Utot(SCDF) <

We consider the value of the total cross section as the only phenomenological
input to our model (in addition to those that are already in HERWIG [19] and the

multiparton hard model [42], which we leave at their default values).

In addition the model contains the following assumptions :

e there can be more than one soft interaction in a soft proton-antiproton interac-

tion.

e the probability distribution for having m and only m soft scatters in a given
proton-antiproton interaction P,, obeys the Poissonian distribution (i.e. multiple soft

scatters are uncorrelated),
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2 S0 m
Py = M exp (= 2Xsost)- (6.24)

e the hard and soft scatters are assumed to be independent i.e the probability

distribution for having h hard, and m soft, scatters is given by P} p,:

(2XQCD)h (2Xsoft)m

Py (b, sp5) = x . eXp (—2Xtotal)- (6.25)
We can now express cross sections as:
Ginat(sgp) =7 [(d6 5 Pu(bysyp) =7 [ db2(1— =B (6.26)
0

h+m>1
the inelastic cross section with at least one hard scattering;:
o
Onne(spp) =7 [(AF Y Pun(bsp) =7 [ dB(1 - emPeon®a) o (6.27)
h>1,m>0 0
and the total cross section:
o
1o (5,3) = 27 / b2 (1 — e Xtotat(b:5,)) (6.28)
0
The o%Spr(s,) in eq.6.20 is then determined by fixing its value so that the
the total cross section in eq.6.28, at some p;nin, is equal to the total cross section

measured by the CDF collaboration (040 cpr = 81.842.3mb) (see Section 6.5 for

different values of 02wy (5,5) and pypin used).

In order to have a realistic Monte Carlo event generator we have implemented
our eikonal model as part of the HERWIG Monte Carlo program with the full use of

its hadronisation model and parton showering properties.

6.3. Expression for the eikonal
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6.4 The Monte Carlo implementation of hard and

soft processes

In the following sections we will describe soft processes in detail. The hard processes
are as in [42] (see Chapter 5). Before we start with the simulation of an event we need
to fix o0 wr(s,5), the bare soft cross section (as explained in Section 6.3.1). Then by
drawing from the probability distribution eq.6.25 we decide the number of soft and
hard interactions in a given event. The event simulation can then start with HERWIG

generating a hard subprocess followed by multiparton ones (see Chapter 4). Once the

multiple hard scatters have been exhausted the soft multiple scatters are generated.

6.4.1 Assumptions behind the soft subprocess

At high s,7 (center of mass energy) and low () scale of interaction, i.e low-z, we might
expect a proliferation of soft gluons. In order to simulate each soft subprocess we
assume that the bare soft cross section o2, (s,5), corresponds to a soft interaction
between two incoming soft gluons. That is, we model the soft inelastic collision be-

tween two remnants as a soft elastic collision between two partons within them (see

fig.6.1).

All soft gluons carry a colour charge and have an effective mass m, (inspired by
HERWIG’s model of the hadronisation of the outgoing gluons). The two outgoing
effective gluons in fig.6.1 are on mass shell and colour connected to the remnants and
to each other, as shown in fig.6.1, each gluon colour(anticolour) is connected to its

anticolour(colour) partner.

Because we wanted to keep the implementation of our model as simple as possible
we have decided to sever the colour connections between the remnants and the outgoing
soft gluons (see fig.6.2, dashed solid lines show severed colour connections). We expect

this to be a reasonable approximation since the largest part of the phase space, in the

6.4. The Monte Carlo implementation of hard and soft processes
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Pbar-remn2 Pbar-remn2

Figure 6.1: o%%,.1(s,5) corresponds to a soft collision between the two soft gluons (full
color picture). Remnants are also connected to each other via ¢ channel gluon line.
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Figure 6.2: The soft collision between the two soft gluons, with dashed solid lines indicating
the severed color connections between the remnants and the outgoing gluons, forming two
clusters, ¢1q2 and ¢2qo.

gap between the two remnants, will be filled by final state hadrons produced by the
colour field stretched in between the two outgoing soft gluons (note that in both figs
6.1 and 6.2, two colour lines stretch across the central region). In the hadronisation
phase the two outgoing soft gluons form two clusters (¢:1q,, ¢2G,) (see fig.6.2) which

are decayed into final state hadrons (using HERWIG’s cluster hadronisation model

[19]).
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6.4.2 Implementation of the soft process

Following fig.6.2, for each soft remnant-remnant interaction we generate two soft ef-
fective gluons, on mass shell, with previously tuned masses m, = 0.75 GeV used in
the HERWIG hadronisation model [19]. For each soft interaction we will go through
the following chain of events; first the maximum fractional longitudinal momentum
allowed for each soft gluon (2 gumas 1,2) is determined using the light-cone definition of

the longitudinal momentum fraction z of the two remnants,

- . Eremnl,? + I Zremnl,2
Tglumaz 1,2 = Tremn 1,2 — . (629)
Ey5+ P, _
D ~

The longitudinal momentum fractions for each soft gluon is then sampled from an
f(z)seerartons — 1 djstribution (which we consider reasonable since we expect the
effective gluons to be Regge-like) between some minimum value z,,;, (the cutoff) and
the maximum value, Zgymaq 1,2, allowed by eq.6.29. Once their fractional longitudinal
momentum has been determined, a transverse momentum for each soft gluon is then

sampled from a Gaussian distribution for values of p;, 0<p; <pymin, according to

do t gl
W = DeXp (_6}7?), 0 S bt S Ptmin - (630)
t
Before sampling the transverse momentum of each soft gluon, we will have to determine
the slope [ of the particle p; distribution in the central region and the normalisation
constant D in eq.6.30. We impose then another condition on the p; distribution,
namely, that the transverse momentum distribution in p; of soft and hard gluons

should be continuous at the p; cutoff eq.6.31 (the same procedure was implemented in

[571),

dasoft gluons o dahard gluons
d2pt |pt:ptmin - d2pt |pt:ptmin :

(6.31)

We have then to solve two equations with two unknowns. The first condition is that

the number of soft gluons should correspond to the soft cross section oo pr(s,5):

Ptmin .
/0 d*pD exp (—p;) = 085 pr(Spp), (6.32)
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the second condition is that of the smooth transition between the soft and hard pertur-
bative gluons’ transverse momentum distributions * at the value of p; cutoff eq.6.31,

re-expressed as:

do—(spﬁa ptmln)

Dexp (_ﬁp?mm) = dp2
tmin

: (6.33)

Whel"e do’(spff’ptmin)
dp?

tmin

is the full differential parton-parton hard cross section calculated at

the value of p; = pPynin-

In order to determine the four momentum of each outgoing remnant and each soft
gluon, two additional conditions need to be satisfied simultaneously; that of the total
energy-momentum conservation between the initial beam-beam remnants (remn; s)
and final (remn; 5 + soft gluons) states and that the outgoing soft gluons and remnants
are on mass shell, with each remnant having the same mass before and after the soft

interaction.

Once all four momenta of the outgoing remnants and soft gluons have been de-
termined a new maximum longitudinal fractional momentum yymaes 1,2 is calculated,
according to eq.6.29, for the next pair of soft gluons. The same chain of events, as
described above, is then iterated until all soft interactions have been generated. If

energy-momentum conservation is violated the scattering is vetoed.

*As shown in figs.6.3-6.5, although hard p;>punin and soft p;<pimin, sSubsequent event
processing smears them slightly. Nevertheless they seem to be well matched. Although the
soft distribution has the functional form of a Gaussian distribution, the constraints on it
actually require 8 to be negative (for small py,ipn), leading to a peaking at around pymnin.
This could provide an explination for why the Hard Multiparton model [42] performs better
than might naively be expected
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Figure 6.3: Transverse momentum distributions of the soft (solid line) and hard (dashed
line) partons at pymin=2.0 GeV.

6.5 Study of particle correlations in azimuthal an-

gle

In this section we use the same jet algorithm and analysis on charged particle cor-
relations as was presented in Chapters 5 and 6 to evaluate the effect of the eikonal
formalism on the particle correlation in azimuthal angle away in ¢ from the leading

charged jet.

The toward and away region

Figs 6.6 and 6.12 show a good agreement between the eikonal model simulated and
experimental data for the average total number of charged particles (including particles
of the leading jet) as a function of the transverse momentum of the leading jet for
values of pynim = 2.5 GeV and 3 GeV. However for a low value of p;;, = 2 GeV the

eikonal model does not generate enough charged particles as shown in fig.6.6. The
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Figure 6.4: Transverse momentum distributions of the soft (solid line) and hard (dashed
line) partons at pymin=2.5 GeV.

same pattern in simulated data (i.e. with low value of py;, = 2 GeV) is observed for
the average number of charged particles in the toward and away regions (as shown in
fig.6.7 and fig.6.8), and for the average p; sum in the away region as shown in fig.6.11.
This deficiency of the Eikonal model comes from the not so good performance of the
Multiparton Hard part of the model for low value of py,;, = 2 GeV as mentioned
earlier in Chapter 5. However for values of pynim = 2.5 GeV and 3 GeV the eikonal
model describes the experimental data in the toward and away region rather well as

shown in figs 6.6 - 6.8 and figs 6.10 - 6.14.

The transverse region

A comparison between simulated (corrected) and experimental data is presented in
fig.6.9, with pynin = 2 GeV and 3 GeV. The agreement shown in fig.6.9 and 6.19 is
particularly important since the transverse region is the most sensitive to the under-

lying event activity (we also show the agreement between the eikonal model (pynin =

6.5. Study of particle correlations in azimuthal angle
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Figure 6.5: Transverse momentum distributions of the soft (solid line) and hard (dashed
line) partons at pymin=3.0 GeV.

2.5 GeV) and experimental data in figs.6.15 and 6.16). In figs 6.20 - 6.22 we show a
good agreement between the eikonal model (at pynin = 2.5 GeV) and experimental
data in the two Max/Min regions. In figs.6.17 and 6.18 we compare our predictions
in the transverse region with those of the two underlying event models (at pynim =
2.5 GeV), HERWIG + Underlying Event model [19], HERWIG + Multiparton Hard
model [42]. As shown in figs.6.17 and 6.18, both HERWIG + Underlying Event model
and HERWIG + Multiparton Hard model fail to produce enough activity for both the
average number of charged particles and the average scalar p, sum. In addition the
HERWIG + Underlying Event model has a wrong (too steep) p; dependence. Overall
our eikonal model is in better agreement with the experimental data than either of
the other two underlying event models. This result is even more significant since we
did not fit to the experimental data but rather, make predictions based on the value

of the total cross section used as phenomenological input to our model.
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6.5.1 The invariance of the model to pimin

In the multiparton scattering model [42], the parameter p,, is a cutoff scale and
plays a crucial role in determining the prediction of the model. In our eikonal model
it is rather a matching scale between the hard and soft parts of the model. If the

matching works perfectly, the results should be py,,;,, independent.

To test the invariance of the eikonal model to its py,:, parameter we simulate
two sets of data, with two different values of py,in = 2 GeV and 3 GeV as shown in
fig.6.19. The values of inclusive cross sections with the average number of soft and

hard scatters are presented in table.1.

Pimin(GeV) | 0851 (sp)(mb) | 037(s55) (Mb) | (Msogt) | (Mhara)
2.0 30.7 99.2 0.7 | 1.7
2.5 85.6 51.3 15 | 09
3.0 109.7 28.7 1.9 | 05

Table 6.1: Values of inclusive cross sections and average numbers of hard and soft
scatters.

We show the results in comparision with the Hard Multiparton model in fig.6.19.
We see that as expected the results in the multiparton hard model are strongly punin
dependent, with smaller values of p;,in producing more activity. However, even the
smallest value of i, is well below the data and no value of py,;,, for which the
hard part of HERWIG is reliable gives a good description of the data. In contrast, our
eikonal model has a smaller py,,;, dependence, with the additional soft scatters provid-
ing extra activity to compensate for that lost from the hard scatters as pymn;, increases.
However, we see that they actually overcompensate, with decreasing py,;, leading to
decreasing activity. This residual p;,;, dependence indicates that the matching of the
soft and the hard parts of the model is still not perfect and can perhaps be improved
with further refinements of the model. Nevertheless, we are satisfied that with such a
simple, physically motivated and parameter free model, we have provided a significant

improvement to the p;,in dependence and the description of data.
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Figure 6.6: The average total number of charged particles in the event as a function of P,
(leading charged jet). HERWIG + Eikonal model simulated data pspi, = 3.0 GeV (solid
line) and 2.0 GeV (dotted line), experimental CDF data [35] (data points).

At this stage our model contains a single cutoff scale p;;, set equal to the min-
imum hard scale (i.e. PTMIN) used in HERWIG for hard jet production. This limits
the efficiency of our model to simulate the multiparton contribution to high p; jets.
Normally the two scales, one controlling the amount of multiple interactions and other
the scale of parton-parton interactions, are independent. As shown in Chapter 5.2.2,
we can avoid this efficiency problem by considering the hard-multiple part contribu-
tion to high p; jets as small (at pyn:, = 3 GeV). We use this approximation to simulate
higher p; jet data by setting our py,:, value respectively to 20, 40, 60 and 80 GeV thus
making the contribution of the hard multiparton part negligible. In fig.6.23 we show
the agreement of our simulated data with the CDF experimental data from [35, 41].
To test the validity of our approximation we show in fig.6.24 the contribution of full
multiple hard and soft interactions for jets with p,< 50 GeV (at pynim = 3 GeV), which
does not indicates a significant difference with data simulated for higher p; using only

the soft multiparton part of our model.
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Figure 6.7: The average number of charged particles as a function of P; (leading charged
jet) in the toward region. HERWIG + Eikonal model simulated data py,i, = 3.0 GeV (solid
line) and 2.0 GeV (dotted line), experimental CDF data [35] (data points).
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Figure 6.8: The average number of charged particles as a function of P; (leading charged
jet) in the away region. HERWIG + Eikonal model simulated data pypi, = 3.0 GeV (solid
line) and 2.0 GeV(dotted line), experimental CDF data [35] (data points).
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Figure 6.9: The average number of charged particles as a function of P; (leading charged
jet) in the transverse region. HERWIG + Eikonal model simulated data pyy,i, = 3.0 GeV
(solid line) and 2.0 GeV (dotted line), experimental CDF data [35] (data points).
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Figure 6.10: The average P, sum of charged particles as a function of P, (leading charged
jet) in the toward region. HERWIG + Eikonal model simulated data py,i, = 3.0 GeV (solid
line) and 2.0 GeV (dotted line), experimental CDF data [35] (data points).
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Figure 6.11: The average P, sum of charged particles as a function of P, (leading charged
jet) in the away region. HERWIG + Eikonal model simulated data pymi, = 3.0 GeV (solid
line) and 2.0 GeV (dotted line), experimental CDF data [35] (data points).
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Figure 6.12: The average total number of charged particles in the event as a function of P,
(leading charged jet). HERWIG + Eikonal model, (solid line) simulated data (pimin = 2.5
GeV), experimental CDF data [35] (data points).
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Figure 6.13: The average P, sum of charged particles as a function of P, (leading charged
jet) in the toward region. HERWIG + Eikonal model (solid line) simulated data (pimin =
2.5 GeV), experimental CDF data [35] (data points).
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Figure 6.14: The average P, sum of charged particles as a function of P, (leading charged
jet) in the away region. HERWIG + Eikonal model (solid line) simulated data (pimin = 2.5
GeV), experimental CDF data [35] (data points).
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Figure 6.16: The average number of charged particles as a function of P; (leading charged
jet) in the transverse region. HERWIG + Eikonal model (solid line) simulated data (pmin
= 2.5 GeV), experimental CDF data [35] (data points).
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Figure 6.17: The average P, sum of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Eikonal model (solid line), HERWIG + Underlying
Event model (solid dashed), HERWIG + Multiparton Hard model (dotted), experimental
CDF data [35] (data points).
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Figure 6.18: The average number of charged particles as a function of P; (leading charged
jet) in the transverse region. HERWIG + Eikonal model (solid line), HERWIG + Underlying
Event model (solid dashed), HERWIG + Multiparton Hard model (dotted), experimental

CDF data [35] (data points).
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Figure 6.19: The average P, sum of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Eikonal Model for the two sets of pyin = 3.0 GeV
(solid line) and 2.0 GeV (dashed), HERWIG + Multiparton Hard Model pypin = 2.0 GeV
(dotted), pimin = 3.0 GeV (dotted dashed), experimental CDF data [35] (data points).
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Figure 6.20: The average number of trans-Max and trans-Min charged particles as a function
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Figure 6.21: The average scalar P, sum of the trans-Max and trans-Min charged particles
as a function of P; (leading charged jet) in the transverse region. Solid (Max) and hollow
(Min) points are the experimental CDF data [35], (solid line) simulated data.
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Figure 6.22: Data on the average difference, trans-Max minus trans-Min, for the number
of charged particles as a function of P; (leading charged jet) in the transverse region. Data
points experimental CDF data [35], (solid line) simulated data.

6.5.2 UA1 and LHC data.

In this section we test the prediction of our model with data from the UA1 collabora-
tion and give a prediction for the amount of underlying event that should be expected
at the LHC. In our simulation of the UA1 data we closely follow the work presented
in [39]. We simulate the pedestal transverse energy (w?*?) for a jet of given transverse
energy E;. The (w!*") is the transverse-energy distribution dE,/dn integrated over the
azimuthal angle ¢ on the same side of the jet axis | A¢ |< /2 and where An is the
difference in pseudo-rapidity with respect to the jet axis as shown in fig.6.25. The

pedestal transverse energy is then defined as

1
whet = i(th + wit) (6.34)

where wl and wf are the transverse energy in the rapidity intervals 1<| An |<2 on the
two sides. The (w?*?) quantity is then the average transverse energy per unit rapidity

measured in the region, 1.5 units of rapidity away from the jet axis. Integrating over
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Figure 6.23: The average scalar P, sum of the trans-Max and trans-Min charged particles
as function of E; (leading charged jet) in transverse cones. Solid (Max) and hollow (Min)
circles experimental CDF data [35], HERWIG + Eikonal model (crosses) simulated data.

the azimuthal angle ¢ in the region (| A¢ |<7/2) avoids contributions to (w’**) from

the recoiling jet. To construct jets in our simulation we have used the standard UA1
jet finding algorithm (including all final state particles, charged + neutral) with an
opening angle R = 1.0. We point out that our simulation does not take into account
details such as the detector effects. The jet algorithm searched for the cell with highest
remaining F; greater then 1.5 GeV, then formed a jet from this and all surrounding
cells with F;>0.5 GeV within radius R = 1.0. The only phenomenological input to
our model i.e. the total cross section (0, = 63.3 mb) was calculated using eq.6.22. In
fig.6.26 we show the agreement between simulated and experimental UA1 data at /s
= 630 GeV with py,in = 2.5 GeV. We point out (see fig.6.26) that the Eikonal model
shows a better consistency with experimental data, as /s is varied, than both the
Hard Interaction model or HERWIG Soft Underlying Event model (i.e. if compared
to CDF experimental data (see Section 4) since the Soft Underlying Event model was
tuned to 546 GeV UAD5 data [56]). We thus expect that if we are to consider eq.6.22
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Figure 6.24: The average scalar P, sum of the trans-Max and trans-Min charged particles
as function of E; (leading charged jet) in transverse cones. Solid (Max) and hollow (Min)
circles experimental CDF data [35], HERWIG + Eikonal model pypin, = 3 GeV (solid line),
HERWIG + Eikonal model pypi, = 20, 40, 60, 80 GeV (dashed line) simulated data.
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at higher energies as correct we should predict the right amount of underlying event
produced at the future LHC collider. In figs 6.27 - 6.31 we show that the underlying
event activity (i.e. both the average number of charged particles and average scalar p,
sum in the transverse region) at /s = 14 TeV is expected to be roughly double that
at /s = 1.8 TeV for jets with p;< 50 GeV.

6.6 Conclusion

In this chapter we have introduced a new eikonal model for simulating particle produc-
tion in hadron-hadron interactions. The goal of this model is to propose an alternative
method to already existing ones to simulate remnant-remnant interactions in hard
hadron-hadron and lepton-hadron interactions. Our new model is composed of two
parts the perturbative hard multiparton interaction part and the non-perturbative
interaction multiparticle soft part. The new Eikonal model implements a smooth
transition between the soft and hard perturbative gluons’ transverse momentum dis-
tributions in order to minimize the dependence of the model on its p,,;, parameter.
The main constraint of the model is given by the total cross section which determines
the amount of soft scatters in each collision. In this chapter we have shown a better
consistency of the new Eikonal model with experimental data at /s = 1800 GeV and
630 GeV than that of the Hard Interaction model or HERWIG Soft Underlying Event
model. We have also shown that the new Eikonal model is less dependent on the
value of pyni, than both of the above underlying event models. Finally we have given
a prediction for the amount of underlying event activity that should be expected at
the LHC. We believe that the model can still be improved by a better matching of the

soft and hard part.
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Figure 6.26: Average transverse energy (dE;/dn) in 1 <|n — njet] <2, |¢ — pjet| <m/2 as a
function of the Fyj.; trigger. Data points UAL at 630 GeV [39], solid line represents HERWIG
+ Eikonal model, dashed line represents HERWIG + Hard Interaction model (with reduced
proton radius), dotted line represents HERWIG + Hard Interaction model with py,in=2.0
GeV.
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Figure 6.27: The average P, sum of charged particles as a function of P, (leading charged
jet) in the transverse region. HERWIG + Eikonal model at /s = 14 TeV (solid line),
HERWIG + Eikonal model at /s = 1.8 TeV (dashed line).
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Figure 6.28: The average number of charged particles as a function of P; (leading charged
jet) in the transverse region. HERWIG + Eikonal model at /s = 14 TeV (solid line),
HERWIG + Eikonal model at /s = 1.8 TeV (dashed line).
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Figure 6.29: The average scalar P, sum of the trans-Max and trans-Min charged particles
as a function of P; (leading charged jet) in the transverse region. HERWIG + Eikonal model
at /s = 14 TeV (solid line), HERWIG + Eikonal model at /s = 1.8 TeV (dashed line).
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Figure 6.30: The average number of trans-Max and trans-Min charged particles as a function
of P; (leading charged jet) in the transverse region. HERWIG + Underlying Eikonal model
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Figure 6.31: Data on the average difference, trans-Max minus trans-Min, for the number of
charged particles as a function of P; (leading charged jet) in the transverse region. HERWIG
+ Eikonal model at /s = 14 TeV (solid line), HERWIG + Eikonal model at /s = 1.8 TeV
(dashed line).
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7.1 Conclusion

We have began this thesis by looking at the structure of the underlying event in
proton-antiproton collisions at /s = 1.8 TeV. The underlying event is an interesting
object not very well understood since it contains a mix of perturbative and non-
perturbative physics. The two outgoing hard scattering partons from two to two hard
parton-parton scattering form jets which receive additional contributions from initial
and final state radiation and remnant-remnant interactions. Although the physics
along the axis of the two outgoing jets seems to be well described by perturbative
QCD (i.e. the hard part of interactions including initial and final state radiation) the
region away from the jet axis is dominated by interactions of perturbative and non-
perturbative nature which are not very well understood. These additional interactions
also contribute to the energy underneath jets, which needs to be accounted for and
subtracted from jet energies before they are compared to NLO QCD perturbative
calculations. In order to simulate remnant-remnant interactions we have introduced a
new Monte Carlo model, based on a simple eikonal model, for multiparticle production
in hard proton-antiproton collisions. The new model contains two parts, the hard
part, which was already implemented [42] (running in conjunction with HERWIG
[19]), to which we have added a soft part, which uses HERWIG’s showering and
hadronisation models and allows us to extend our simulations to the non-perturbative
soft region (i.e. particles with 0 < p; < pymin). One of our goals was to produce a
simple new model (with a minimum number of parameters) which would be reasonably
independent of the value chosen for the p,,i,. Furthermore, the eikonal multiparticle
approach to hadron-hardon scattering is particularly interesting since it prevents the
calculated cross sections from violating unitarity at high energies. Using a single
phenomenological input to our model, namely the total cross section, we provide a
good description of the measured data from [35] for low p; jets with a reasonably
small pynin dependence. We also provide a reasonable good description of data on the
underlying event measured for higher p; jets (see [41]). In addition we have shown

that our new model gives a better prediction of the experimental data (CDF [35] and

7.1. Conclusion
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UA1 [48]) than either the HERWIG + Underlying Event [19] or HERWIG + Hard
Multiparton [42] model as the center of mass energy is varied from 1.8 TeV to 630
GeV. Finally we also provide a prediction for the amount of the underlying event which
should be expected at the LHC. Although we are satisfied with the overall results of
our model we point out that its efficiency needs to be improved particularly for the
simulation of higher p, jets by introducing two separate scales (i.e. one for controlling
the amount of secondary scatters and another the scale of hard interactions) which for
now are identical. We also believe that the invariance of our model to its pyn, scale

can be improved further by a better matching of the soft and hard scale.

7.1. Conclusion
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