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L Im'RODUC'rION 

Early SRS notes P ) .presented r.f. system operatinq conditions for 

the storage dng, and a subsequent Teehnical Memorandum(2) considered this 

further and dealt with aome general aspects of feedback loop design. In 

this latter report it was demonsttated that, although the operatinq con­

ditions would always ensure Open-loop stability, an intensity-dependent 

cOUpling between feedback loops could possibly promote instability at 

below too intended beam current MIess special des19n precautions were 

taken. Problems of this nature had also been encountered on the CERN 

I>S Booster under conditions of severe beam loading: (3) • 

Subsequent W"ol';k at the UHIST Control Systems Centre has conslde~d 

specific aspects of loop design alld arr!ved at a number of option!!. 

This report is confined to presentation of the results of this 

exercise. Derivations and back9tound are available in the literature(4) 

and in particular will bs presenbed in a forthcoming report. 

2. HA'l'l1RM1\TICAL SYSTEM I«)DELS 

The interaction betWQen a bWlched beam and the r. f. system may be 

described in a number of ways. If we can formulabe an expl'essiort for the 

effective longitud1nal impedance of the system as seen by the beam~ as a 

function of frequenqt" then the use of standard stability theory(5) 

leads directly to calculation of the time dependence of the motion. which 

must be adequately damped for stable operation. WhUe this "'impedance" 

will contain any feedbaCk loop parameters, and thus, in principle pe:rnlit 

evaluation of loop design, in practice it is more convenient to adopt an 

alternative formulation in terms of system variables to ailow the use of 

standard control system theory. 

Anal}Sis then yields a set of ¢oupled~ non-linear differential 

equations in these variables. This set comprises 

{a} 	 the usual "synchrotron equations" relat.ing the beam phage and 

energy deviation to the cavity voltage, which is in general 

amplitude and phase modul~ted. 

1. 

(b) 	 equations relating this anpl1 tude and phase modulation to both 

the be~ induced voltage resulting from its phase motiOn and any 

generator drive modulation resulti09 from closed feedback loops. 

(c) 	 for closed loop operation, loop equations relating this genera­

tor drive modulation to detected error quantities such as, in 

the SRS, the cavity voltage and phase devIation. 

In this form the equations are rather Intractable, and the teChnique 

adopted i8 to Iinearise about a stationary state, i.e. a possible operating 

condition, and use standard t.echniques for evaluating the natural frequen­

cies of the resultant set of coupled iinear differential equations. Note 

that by this lineariaation, any information about separatric:es has been 

lost, and thus the formulation is only valid for small deviations about a 

stationary state. 

This system has a mat~ix representation, and for consideration of 

feedback may be eonsider~d in two components: 

(I) 	 A matrix equation relating $mail changes in the cavity voltage 

ampU tude and phase to small Changes in the generator drive 

input amplitude and phase(6) • 

t>itS;) 6Vg ) 
11)c:. 	).. d"(';} ( v</.",g

v 

!!.l.!!l.des) is the beam cavity open loop transfer function matrix. 

N(!iI) isa 1D~tri:k of polynomials in the derivative d/dt. which, 

after Laplace transform, yields a matrix of polynomials in St 

over a common denominator polynomial d(s}. the coeffIcients of 

which relate to the operating conditions of th~ beam-cavity 

llIystelD. 

(2) The feedback matrix equation relating srn.,n chilnqer;: in the gen­

.,r~tor output to the observed changes 1n the caVIty volt~ge. 

2. 



(2) 
FC::J- (::J 

In general F may be a product of matrices k and will in prin­

ciple contain feedback oharacteristics such as bandwidth. 9810 

and delay. This then yields the closed loop transfer function 

matrix for the system. 

N(S)) GAdj (I + drs}(, + F.(.~-l Nls) = 
d(sY (a),I d 

Nis) I+ d(s}II 
'J'wo types of feedback may be distln<;Jutshed here. If F is a 

simple dlaqonal matrix (fl1 0 ) then amplitude feedback is only 
a £22 

derived from amplitude error, and si~larly for phase, and the 

feedback Is described as sin91e loop. If F has non-zero o££­

diaqonal elements, the feedback 1s described as multivariable. 

Since the beam-cavity matrix has non-zero off-diagonal elements, 

derlving 1n part from the beam lOading, the system is described as having­

interaCtion, and the analysiS of such a closed ioop situation pOfJes 

special problems. 

The standard single loop evaluation techniques of Bode and Nyquist 

were originaily devised for nOb-interacting systems, and can only be 

applied - in a modified form - to interacting systems under certain con­

ditions which were shown (2) to be Violated for the storage rin'l operating 

pararne ters. 

The potentially worst COndition from a control pOitlt of view is that 

of full accumulated beam at injection ener9Y. where the bealb loading is 

relatively most severe, and effort was concentrated on this situation. 

As this condition is approached during stacking, the cavity tuner has to 

make its most rapid movements to coropensate for changing reactiVe beillll 

lcadinq, and the stability mar'lln,in terms of detWle, shrinks. (At LO A 

3. 

the req..ured datuos is '"' 400 }(}Iz: and the "Robinson'" un$:table detune re'lion 

extends from a few KHz to "'" 396 .!<Hz.} In ot:der to ensure that an adequate 

detune is provIded a deliberate offset may be required le~ding to a 

reactive l!Iismatch cha.racterised by ~ non-zero angle ~9' between the gener­

ator drive current and cavity volts, Accordingly the system has been 

examined with some estimated values of likely ~gl together with the situ­

ation at high energy which was expected to be more readily controlled. 

The following cases were oonsidered: 

., Accumulaticn with I ~ 1.0 A, ~ : 0°, and V c 0.6 Mv 
b 9 ~ 

.) Accumulation with Ib = 1.0 A, ~g 5~6 
0 

, and Vep = 0.6 Hv 

~l Accumulation with lb c 1.0 A, ~ ~ 12°, and V =0.6 Mv9 ep 
0 

~I Storage with Ib ~ 1.0 A., ~ 0 I and V =1.6 Mv
9 ep 


.) Storags with Ib = l~O A, ~q ~ 0°# and Vep = l.g Mv 


~e various transfer-function matrix modele for each of the above 

oases &%0 detailed in table 1 in the £orm of ~ set of nunterator polynomi­

als n (6), i,j .= 1,2, over 11 C'OI'I'lIUOn denominator polynolll-i.al d(s} 1 where
ij 

these polynoKdals have the form 

n (s) "" c363 + Q2S2 + ''Is) + cosO 13)
ij 

dis) = s~ + d3S! + d2S( + diSI + dosO 14) 

again with coefficients that depend on the operating condition. 

The coe£ficients of tbe polynomials defining the varioufJ models are 

very large and might pose SeVere numerical problems for the analysis and 

simulation procedures to be used. It was therefore decided to apply ~¢me 

frequency scal1nq (i.e. substitute'; = 10-65) f normalisation (Le. divide 

every coe£ficient by l~~~ and some amplitude scaling (i~e. multiply every 

numerator coefficient by 106). This resulted in a set of scaled models 

as shown in Table 2. In these models, the frequency charactqristics must 

be interpreted in H-Hertz (or H-radians per second), and the outputs from 

these IlDdels, namely cavi ty-voltagq amplitude and phase must be 
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{scaled). In particular we arlj! con<::erned with whether 	the Qff-diagonal e~~~nterpreted in p-volts and p-radians. Opper ease letters will be used 
ants, ~12. and {i21. are greater than {J11 and 422 respectively. This com­to re&r to the various scaled models* <ie!::cr1hed in table 2. 

parison is effected by drawing circles, (Gershgorin circles) centre, 911 and 

~h2' of radii 012 and ~21 respectively. If thlilse circles enclose the originSome care was required in gener~ting these coefficients. as a 
the system is non-dominant. NI.ll.tlerOU8 exanples appear in reference 2 and une small difference between two large numbers could be significant. 
also in fig_ 1 of this report for the open loop situation at injection energy 

with full accumulated beam. An examination of these diagrams reveals theJ. 	 CONTROL STUDIES 
following features. Elements ~ll(jw) and 921(jW) ~ere very simiiar in 

~he initial report(2) had demonGtr~ted that the beam cavity system nature~ as might be expected from their transfer function representation. 

showed a beam intensity dependent "interaction" resulting from the off Element 912(jw) was second order and tended to increase rapidly in modulus 

diagonal elements of the system nmtrU: be<:otning increasingly $ignificent with increasing frequeney. However, element 921(jW) appeaxed to be station­

as beam loading and cavity detuning increased. A particular design ary and relatively large. An explicit evaluation of G(S) was therefore 

technique developed at OKlST hinges on th~ rem':'lval of this interaction carried out for case (A) of Table 2 to deterndne the exact nature of the in­

by suitable analytic operations on th~ matrix descrih$d ft$ compensation - verse elements, and yielded the followinq matrix 

which must have. however, for sub$equent ptactical purposes, a convenient 

physical realisation in terms of eircuttty. A matrix of constants may be 3 + .107;2 + 1.39; + 1.37 -2.54';2_3.546 ) 

readily diagonBlised by a variety of ~thod9; for a matrix of polynomials G-1(s} ... G(s) 0: 

(
however this is more difficult, and, it has been shown(7) that only a 2.544';2 + .019 "6 3 + .107'52 + 1.399'" .162 

partial diagonalisation is required, with the significance of the off 
2.544S2 + .019 

diagonal elements being reduced to a suitable level rathli!r thftll com­

pletely removed. 'l'hJ.s state is referred to as "diagonal dominance" in the N (s) 
... d(s}

control system literature. 

Nob! that n2 J ~s) and d {sl can<::el relUOvilig the frequency dependence ofAccordingly ~ork commenced on the design of a possibl~ compensator 
(J21 {s}, and also that the poles of (;(9) whlch are the zeros of detG(!I),fOr the system using the inverse Nyquist Array method. 
(i.e. d(s}) are at s .., ± j 1.191, which C01.."relllJ?Dnd~ to the angular in­

coherent synch1.."otron frequency of 187 Kllz. This frequency however is3.1 	 Invene Nyquist Array lllethod 
not in general a natu1.."al frequency of the coupled ~ystem. As we approach 

The inverse Nyquist array (INA) of the system transfer matrix is the synchrotron angular frequency, elements ~ 11' 922' and 912 beCOllle in­

generated by the following prescription definitely large, as shown by the rapidly enlargin9 circles on fig. 1. 

A detailed investigation was carrIed out to develop a suitable eobpensator 

G(jw) ." G- 1(;) evaluated at 9" ... jill usin9 row operations on the transfer matrlx. This readily succeeded in 

relUOving the interaction from 4121 sufficiently to obtain dlaqonal domin­
g22 -gl7) 

ance. except in the vicinity Of (Us' HOWever the encirclement assoeiated 

with {hl was not readily reMOved. Fiqllre? deMOnstrates this for case A "'" l\2~}'"( 
-92: _I '" (911 ~")


~21 g22 

G- 1I;) 	 911 

with slmple row operations on the ~atrix indicated, 

This is evaluated as a function of w over the range 0 	 s: w 0( Q.5 rad/s 

5, 	 6. 



Because of the nature of the systelll, it appears difficult to achlevo 

diagonal dominitnce in a simple way. In view of this: the technique 

appears to be inappropriate for the probleru f and was therefore not pursued 

further. 

3.2 Design using the multIvariable root-locus 

The multi variable root-locus method, as used In this study, is .simply 

a means of itssessing the performance of it control scheme by plotting the 

pOSitIons of the Closed-lOop system poles, I.e. natural frequencies as an 

overall gain parameter is varied. Suppose the general configuration is ae 

follows~ 

LIs)----1ffi)---j K(s) 

~ I FIs} 

The introduction of the adjustable gain ~I. where I is the unit matrix 

and A is a scalar parameter, is equivalent to siloply multiplying one of 

the transfer fUnction ruatrices in the loop by L (It does not matter 

which one, slnC'Q ;\ could equally weU have been put In any other part 

of the loop I so far as the root-loci are concerned.) hs A is varied. 

the poles of the closed-loop system will move about in the complex 

s-plane. For a given value of ,\~ the positions of these moving ,poles 

dre the roots of the equatlon 

det (I + ;\F(s)L(S}G(s)K{n)j ... 0 . 

For the open loop situation this reduces to a quartic equation with, in 

general, conjugate pairs of roots. For feedback with dynnmics such as 

integration, a higher degree equation with additional roots results, 

which latter must however coalesce with the open lOOp roots, as ,\ -to O. 

(See reference 2 fOr an alternative presentation of the open~loop roots, 

'as a function of operating parameters.) 

In the multlvarlable root-locus method, these roots are plotted on 

the complex plane, as A is varied over a range of values. Preferably, 

the system should remain stable (all roots In the left half-plane) for 

all positive L In any case, it should be stable for the nominal value 

of ,\ intended to be used in the actual deSign, and for a wide range of 

variation about tllis value. OtherwIse, the stability will be sensitive 

to variations in parameter valuas, which is clearly undesIrable. In 

particulart the system should remain stable for all A bstween 0 and the 

nominal value. sinCE! otherwise instabilities will arise if the effective 

gain i9 reduced, e.g. due to either saturation effects, or the loop being 

opened. The root-loci will also indicate suitable magnitude to be chosen 

for>. in order to achieve, for example, maximum damping. clearly, this 

method gives more info~ation than would be obtained from simply calcul­

atlng' the closed-loop poles for a fixed gain. SUll more Information 

wuld be given by puttlng different variable gains in different loops, 

and thus eHplorlng stability in a "gain space". This can also be done 

by multivariablo root-locus methods I and may he appropriate for a more 

detailed investigation. 

In the present etudy, we have set Pta) c L{s) "'" I (the unit matrb) I 

and plotted in figs. 3-5 tho root-lOci for,various chOices of preconpen­

sator K(s) and for several different G($} corresponding to different 

operating conditions (casea A,C,DtE). The simplest scheme investigated 

consisted of equal constant gains (i.e. proportional action) in both 

loops, so that 

XIs) • I = C :) 
It was found that stability was maintained for all positIve valws of A 

in all cases l ao that, from this paint of view. the design was already 

satisfactory. (Some trials were also made to aee the effect of puttitl9 

different gains in the loops, and again the system remaIned stable for 

the caees examined .. although only a ratber limited investigation haa been 

made so far.) In order to eliminate $teady-atate error, however, the 

,~s8Iblllty of incorporating integral action was investigated. This 



also had the effect of ~educing interaction. especially whnn placed ih th~' 

second loop (generator phase to cavity-voltage phase). Accordingly, the 

root-loci were plotted for the choice 

K{sl 	~(' 00 • , ) 
o l + --;:;­

S 

l.e. proportion"l action in loop l and proportional'" inte9ral in loop 2~ 

Stab:I.l.;i.ty was still maintained in the cases oXi!ll'1lined, (llthou9h with re­

duced damping. 3S expected~ In particuiar, there was a tendancy for 

dampin9 to ~ poor at sm"ll go!n vi!llues. This became even mOre marked 

when porportional + integral action was put in each loop, wIth 

O( I (1 0.1
"s'" + -;::;-) I 


s 


to the extent that one case (C) bec81'ne very nearly unstable for a certain 

range of gains. This effect is f however, considerably dependent On the 

choice of integral action oonstant and there is no paJ:ticulaJ: reason to 

insist on 0.1. (SOme other trials, on case 1\, indicated that 0.2 led to 

instability for certain gain values, while o.OS in each loop had about the 

same effect as 0.1 in loop 2 only.) In any casef it S~m$ unnecessary to 

have integ~al action in loop 1, in order to «chieve ~al;isfactory step­

responses. In all cases. the root-loci indicated that the choice of 

,\ "'" 1 (unity feedback). as taken in the time-ronpontlt! simulations# W09 of 

the right magni tude to make tht! damping aoout llS good as could be achieved 

with these compensator structures. Othet' more complicated structures, 

with entries in all elements of te: (s), were briefly examined, but did not 

appear to gIve any a.dvantage. 

3.3 	 SYstem time reSponses 

A convenient teclmique for systeM evaluation is to apply a small 

step drive Sit) to a given input, and note the response rift) on the i 

possibie output channels. The response to a gene:r:l'll drive (on tJle snme 

input channel) f {t) is tilen implied by a superposition integral of the 

form 

lI... 

Initial 

R(t} "" value t dfi (0) r (t &) de,


• [	 -- i 
term • da 

and for drives on all Channels, by further summation for linear systems. 

For an ideal system W9 would hOpe to see a pure step response on the 

appropriate output channel, and zero response on all other channels. 

In practice, we observe 

(1) 	 Significant transient response with overshoot and ringing, due 

to the cavity being a high Q circuit, and the strongly coupled 

beam being effectively undamped, at least at 600 MeV~ 

(2) 	 Interaction manifests itself by the other output having signi­

f!cant transients as well as steady ~tate e~rQr. 

This computation was performed for the various system models already 

discussed by alblrnaUve tecllniquesk and the results depicted in fig-s.6-18. 

For each system confiquration l 4 figures give the amplitude, and phase 

responses of each channel to an Ampiitude and a phase step in turn. 

3.3.1 Open loop tilDe responses 

An examination of these responses (figs. 6, 11 and 15)con­

firma that the interaction present in the beam-cavity is worst for full 

AccUl'Dulated beam at Injection energy. It aloo Increases as the cavity 

detune offset is increasedt this is expected as the non-zero tg now 

t'esolveo a given step into components in phase. and in quadrature with 

respect to the cavity voltage. In all cases the cavlty voltage phase is 

significantly disturbed by changes in generator drive amplitude, and is 

more sensitive to this input than to changes in the drive phase. Aiso, 

there is considerable breaktJlrough of lightly damped high frequency oscil ­

lation superposed in the Voltage amplitude response~ when the generator­

drive phase is altered. The frequency of these oscillations typically 

varies from 445.6 KHz to 221 ~Hz as the system moves from injection 

energy (with {lg "'.O} to full energy with Vep" 1.9 MV. 

Other notable features of the time responses of the open loop 

system are somewhat lower freql1ehcy (synchrotron) osc:illations on both 

10. 
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outputs which are gradually damped out as the system ~~ves from the accu­

mulation phase to the storage phaser the frequency of these oscillation$ 

va-,;yi09 from 9i krad/s at accumulation (with generator phas('t angle 

tg 	 0°) to 29 ~rBd/s at full energy (with Vep a 1.9 MV). ~lso, as thep 

beam-cavity system progresses through ramping to storage mode, the steady­

state gains of the various transfllission paths chanqe. 'l'be most s:ignifi ­

cant 	of these variations occurs in the p4th from generator drive ampli­

tude 	to cav1ty-voltage amplitude and in the path from genorator driw 

phase to caVity-voltage amplitude; the latter variation bein9 helpful in 

control terms. HoWeVer, the former variat10n may require scheduling of 

the gain in the feedback loop from cavity-voltage amplitude to generator 

drive amplitude to avoid reduction of stability margins during ramping. 

'l~e var1ations in tho poles of the scaled open~loop systems fot each 

case studied, are shown in tabie 3, and the corresponding steady-state 

gain values for each ca.se are shown in table 4. 

3.3.2 Closed loop responses 

These were obtained for a number of the feedba~ options diSCUSsed 

in section 3.2, using a gain parameter appropria.te to unity feedback, 

which appeared to maximise damping rates as given by the root-locus piots. 

The conciusions of section 3.2 are supported f proportional feedback in both 

loops gives a substantial suppression of overshoot 81m ringing. as well as 

interaction. while integral action eliminates the abeady state error in 

the interacting output, at the expsnse of increased transients. 

4. CONCLUSIONS 

'l'he immediate conclusion is that a simple proportional feedback in 

both loops wili be of co.llsi<leraoie benefit in stabiliSing the ay$tem 

against disturbance. 'l'he use of loop dynalldcs. i.e. integration, will 

reduce steady state error t but at the e:l';pense of reduced damping. and, 

indeed l even appro.aching instability at low loop gain. '1'0. minimlse this 

undesirable effect the integral action ahould be confined to. the phase 

loop, and a proportionai factor of about unity adopted. 'rile result con­

cerning the advantages of proportional feedback seems in agreel1!ent with 

earlier SPEAR wor~ <It). Much emphasiS had been placed on examining the 

lu:ror conditions of excess detwle. (1) and c). one interpretation of the 

11. 

bffect of proportional feedback is that the unstable detuoe region pre­

dicted by the Robinson criterion is reduced in width. And thus, the use 

of an excessive detune offset may be avoided, giving a more satisfactory 

matched system. 'j'his reduction of the unstabie re9ion by feedbl!lck re­

mains to be evaluated for the whole operating regiont and~ ideaily, a 

phyui~l interpretation of this behaviour prOVided. 

Alao, in principle, feedback couid be utilised to enable higher 

effiCiency operation of the r.f. system. At 2 GeV in the SRS, the hiqh 

over-voltage defines the cavity power for given impedance. with 1.0 A 

beam present the efficiency (when matched) is 

Ph 
'" 0.66. At lower anergies the opgort.wlity will be n -	 Pb + Pc 

available to lower the cavity voltage to such ievel as to increase n 

while sUll maint.aining Ufetime. In a future r.f. design this CQuid 

enable ft higher impedance structure to be used to reduce structure dissi ­

pation relative to beam power, subject to matching and detuning limita­

tion!l. 

SOme 	 areas remain for fUrther study:­

(a) 	 Analysis of a multi-cavity system, with non-ideal isoiation 

between the csvities and the Klystron, and bandwidth limitation 

of feedback loop$. 

fb) 	 Effect of Q splitting on the beam cavity interact1on. One 
s 

interpretation of Q spii tUng is in terms of coupling of the s 
normal modes of oscillation of the bunched beam. With the \ols 

cavity driven at 750 MHz. the time constants of the acceierating 

cavity interaction will now be influenced by the \is caVity para­

Mters. 

(el 	 Effect of the U~e of a cavity powered at a higher harmonic of 

the r.f. 

/ 

12. 
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TIWLE 1. 

Numerator and denominator polynomials (qnscaled) for the five Oases 

CaSe Element s4 ,.3 6 2 ,.1 	 sO 

(a) nil (s) 1.0 1.07360 x 105 L 39410 x 101Z 1.62480 x 10 

nlz(s) 2.54416 x 106 1. 93183 x 10 

nz I (s) - 2.54416 x 106 - 3.54677 x 10 

n22(s) 1.0 1.07360 x 10 5 1. 39410 x 1012 1.36862 x 10 

d (s) 1.0 2.14720 x 105 7.87839 x 1012 2.99341 x 10 17 6.75183 x 10 

(b) nll(s), 9.9522741 x 10- 1 3.5394113 x 105 1.3874465 x 1012 1.6195371 x 1017 

Tl 12 (s) - 9.7582847 x 10-2 2.5095795 x 106 - 1.3604025 x lOll - 1.3309763 x 1016 

TlZI (s) 9.7582847 x 10-2 - 2.5095795 x 106 1.3604025 x 1011 - 3.4998085 x 10 

n22 (s) 9.9522741 x 10- 1 3.5394113 x 105 1. 3874465 x 1012 4.8067693 x 1011 

d (s) 1.0 2.14720 x 105 7.8173638 x 1012 2.9934115 x 1017 2.3666348 x 1022 

(e) nil (s) 9.7814161 x 10- 1 6.3397512 x 105 1. 3636356 x 1012 1.6294551 x 1011 

Tl 12 (5) - 2.0791164 x 10- 1 2.4662460 x 106 - 2.8984961 x loll - 1.4885241 x 1016 

n21 (s) 2.079116 x 10- 1 - 2.4662460 x 106 2.8984961 x 1011 - 3.4408112 x 1018 

Tl22(S) 9.7814761 x 10- 1 6.3397512 x 105 1.3636356 x 1012 8.7128596 x 10 17 

des) 1.0 2.14720 x 105 7.878394 x 1012 2.9934115 x 10 17 6.1518286 x 1022 

(d) nil (s) 1.0 1.77150 x 105 1.39410 x 1012 3.5707481 x 10 

n 12 (s) 8. 5247014 x 105 6.2862351 x 10 

TlZI (5) 8.5247014 x 105 - 1.1782226 x loiS 

nZ2 (5) 1.0 1.77150 x 10 5 1. 39410 x 10 1Z 1, 3685681 x 10 

dIs) 1.0 3.5430 x 105 2.1521874 x 10 lZ 4.9492963 x 10 I 7 3.5590716 x 1022 

(e) 	 nil (s) 1.0 1.98450 x 105 1. 39410 x 10 12 4.1645914 x 10 

nlZ(s) 7.4557587 x 105 - 9.2681314 x 10 

TlZI (5) - 7.4557587 x 105 - 1.0206063 x 10 

n22(s) 1.0 1.98450 x 105 1.39410 x 1012 1. 3685914 x 10 

10 12 1017 1022d (s) 1.0 3.9690 x 105 1.9893658 x 5.5331829 x 4.0856724 x 



TIIBLE 2. 

Numerator and denominator polynomials (scaled) for the five cases 

Case Element s4 s3 ;;2 ;;1 sO 

(A) ~ 11 (s) 1.0 1.07360 " 10- 1 1. 39410 x 100 1.62400 " 10- 1 

012(S) 2.54416 x 100 1.93183 " 10-2 

021 (s) - 2.54416 " 100 - 3.54677 " 100 

022 Is) 1.0 1.07360 " 10- 1 1.39410 " 100 1. 36862 x 10- 1 

d(5) 1.0 2.14720 x 10-1 7.87839 " 100 2.99341 " 10- 1 6.75183 x 10-2 

(B) ~l1(s) 9.9522741 x 10- 1 3.5394113 x 10- 1 1.3874465 " 100 1.6195371 x 10- 1 

012(;;) - 9.7582847 ,,10-2 2.5095795 x 100 - 1.3604025 x 10- 1 - 1.3309763 x 10-2 

021 (s) 9.7582647 x 10-2 - 2.5095795 x 100 1.3604025 x 10- 1 - 3.4990085 x 100 

022 (5) 9.9522741 x 10- 1 3.5394113 x 10- 1 1. 3874465 x 100 4.0067693 x 10- 1 

d (5) 1.0 2.14720 x 10- 1 7.8173638 x 100 2.9934115 x 10- 1 2.3666348 x 10-2 

(e) 011 Is) 9.7814761 x 10- 1 6.3397512 x 10- 1 1. 3636356 x 100 1.6294551 x 10- 1 

~ 12 (5) - 2.0791164 x 10- 1 2.4662460 x 100 - 2.8984961 x 10- 1 - 1.4885241 x 10-2 

~21 (;;) 2.0791164 x 10- 1 - 2.466246 x 100 2.8984961 x 10- 1 - 3.4408112 x 10° 

~22(S) 9.7814761 x 10- 1 6.3397512 x 10- 1 1. 3636356 x 100 8.7128596 x 10- 1 

dis) 1.0 2.14720 x 10- 1 7.018394 x 10° 2.9934115 x 10- 1 6.7518296 x 10-2 

(0) nil (s) 1.0 1. 77150 x 10- 1 1.39410 x 100 3.5707481 x 10- 1 

°12(S) 8.5247014 " 10- 1 6.2862351 x 10-4 
~ 

021 (6) - 8.5247014 x 10- 1 - 1.1782226 x 100 

~22(S) 1.0 1. 77150 x 10- 1 1.39410 x 10° 1. 3685681 x 10- 1 

dis) 1.0 3.5430 x 10- 1 2.1521875 x 10° 4.9392963 x 10- 1 3.5590716 x 10- 2 

(E) ~11(s) 1.0 1.98450 x 10- 1 1.39410 x 10° 4.1645914 x 10- 1 

~ 

012 (s) 1.4557587 x 10- 1 - 9.2681314 x 10-5 
~ 

- 1.4551587 x 10- 1 - 1.0206063 x 10°"21 (s) 

~22 (s) 1.0 1.98450 x 10- 1 1. 39410 x 10° 1.3685914 x 10- 1 

dIs) 1.0 3.9390 x 10- 1 L 9893658 x 10° 5.5331829 x 10- 1 4.0056724 x 10-2 



'rMLE 3 


Po~ee ot the scaled Ofcn-loof sfst;em for the f1ve c<1tses 


Caeo Pole$: 

A - O.oSO ± j 2.90, - 0.019 ± j 0.091 

B - O.oSO ± j 2.90, - 0.019 ± j 0.052 

C - 0.088 ± j 2.80, 0.019 t j 0.091 

" - 0.060 ± j 1.45, - 0.116 ± j 0.057 

E - 0.056 ! j 1.39, - 0.142 t j 0.029 

TABLE 4 

SteadY-Qtate gain valuee for the ,five ca$:es 

Case gIl to) 912(0) 921 (0) 9" (0) 

A 2.406 0.2861 52.53 2.021 

B 6.843 - 0.5624 - 147.9 20.31 

c 2.413 - 0.2205 50.96 12.90 

" 10.03 0.01766 33.1.0 3.845 

E 10.19 0.002268 24.96 3.349 

16. 
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