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1. INTRODUCTION

gi},presanted r.£. system opersting condltions for

{2}

Early SRS notes
the storage ring, and a subsequent Technical Memorandum
further and dealt with some general aspects of fsedback loop design. In
this latter xeport it was demonstiated that, although the operating von-
ditions would always ensure opan~loop stability, an intensity-dependent
coupling between feedback loops could poseibly promote instability at
helow the intended beam current unless special design precautlons were
taken., Problems of this natore had also been éncountered on the CERM

BS Booster wnder conditions of severe beam loaﬂing(aj.

Subreguent work st the UHESY Control Systems Cenkbre has considered
specific agpects of loop design and arrived at a number of optlona.

This report le confined to presentation of bhe reswlits of thig
%
asercise. Derivatlons and backgeound are availlable in the 11teratur#{ )

and in particular wlll b= presented in a2 forthcoming report.

2, BATHEMNTICRL SYSTEM MOOELS

Pite interaction betwsen a bunched beam and the r.f. system may be
deseribed in a4 number of ways. If we can formulate an expression for the
effective longituding) impedance wf the syBtem sz seen by the beam, as a
functlon of frequency, then the use of standard stabilicy theotyia’
leads dirsctly to caleulation of the time gdependence of the motion, which
must be adequstsly demped for stahle operation. wWhile this “ispedance”
will contain any feedback loop porameters, and thus, in princlple permit
evalvation of loop design, Lln practice it 1s more convenient to adopt an
alternative Yormulatlon in terms of system variables to allow the use of

standard ¢ontrol aystem theory.

Analysls then yields a set of coupled, non-linear differential
equations in these varlables. Thls set comprises

ta} the usual “synchrotron eguations” yelating the beam phase and
energy deviation to the cavity weltage, which is in general
amplitude and phase modulated,

considerad this

b}

{e}

equationg relating this ampll tude and phase modulatlon te both
the bewn induced woltage resulting from its phase motlon and any

genarator drive modulation resulting from closed Eeedback loops.

for closed loop operabion, loop eguations relating this genera-
tor drive modulation to detected errof quentitiss asweh as, in
the SR8, the cavity veltags and phase davlation.

In thigs form the equations are rather lntractable, asd the technique

adopted iz io linearise about a staklonary state, 1.e. & possible operating

condition, and use standard techniques for evaluaring the natural freguen-

cleg of the resultunt set of coypled iinémr differential equations. Note

that by this linearisation, any inforpation about separatrices has been

lost, and thus the formulation is only valid for =mall devliations about a

gtationary state.

This system has a matrix representation, and fox vonsideration of

feedback may be conpldered in two compunents :

{1}

(23

A makrix equation velatimg vmall changes in the cavity woltage
amplitude ané phase to small changes in the generator drive

Input {G).

av L
® {1}
vag, Vit

g%%%' 18 the beam cavity open loop tranafer function matrix,

amplitude and phase

N(s) 1s#a matrix of polynomials In the derivative d/dt, which,
after Laplacve transform, yields a matrix of polynomisls in &,
over a common dencminator polynomial dis}, the coefflcients of
which relate t¢ the operating conditions of the beam-cavity

wystem,

Tha feedback matriz eguatlion relabing small changes in the gen-

nrator eustpat to the observed changes in the cavliy voltage.

2.
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In peneral F may be a product of matrices, and will in prin-
ciple contain feedback characteristics such as bandwidth, gain
and delay. This then yields the closed loop transfex function

matrix for the system.

-1
FHisN ! ais)
(} * déﬁ; aisi

Two types of feedback may ke distingulshed hexe., Xf F 18 a

simpl® QAlagonal matrix (ﬁl] 0 ) then amplitude feadback 1s only
n £an

dexivad from amplitude error, and similarly for phase, and the
fasdback is described as single loop. If ¥ has non-gero off-
dizgonal slements, the feedback i described as multivariasble.

Since the buam-cavity matrix has non-gerc off-diagonal e#lements,
deriving in part from the beam loading, the system is described as having
interaction, and the analysis of such a closed loop situation poses
speclal problems,

The atandgard single loocp evaluation technigues of Bode and Hyguist
were originatly devised for non-interactingsystems, and can only be
applied - in a sodified form - to interacting systems undex certain con-

{2}

ditions which were shown to be wivlated for the storage xing operating

parameters,

Tha potentially worst conditien from a control point of view is that
of full accumulated heam at injection energy, wheré the bdeam loading is
relatively most severe, and sffort was concenbrated on this siteaticn.

Ag this condition 1s approached during stacking, the cavity tuner has to
make its most rapld movements to compensate for changing reactive beam

iocading, and the stability margin, in terms of detune, shrinks. [kt 1.0 A

khe required datuns fs ~ 404 XHz and the "Robinson® unstable detune ragion
extends from 3 few KHz to ~ 396 HH2,} In corder Lo ensure that an adequate
deture Is provided a delibeyate offset may be reguired leading to &
reautive pisestoh characterlised by a non-zero angle $g between the gener-
ator drive current and cavity volts, Accoxdingly the syatem has been
examined with some estimated values of likely 459, together with the situe
ation atv hilgh energy which was axpected to be more readily controlled,

The fmllﬁwing.cases wore considered:

@) hccumalation with I, = 1.0 &, p_ = o°, andg Vop = 0:6 M

i) heoumulation with Ib = 5.0 A, ¢ 5.66, and Vap = 0,6 MY

g

(¢} Acewnulation with I = 1.0 A, ¢_ = 129, and Vgp = 0:6 v
O

)} Storage with xb w 3.0 B, ¢g =90 , and Vep w 1.6 Mv

(8) Storage with I = 1.0 &, ¢_= 0%, and Vep » 1.9 mv

The wvarious transfer~function matrix modele fox sach of the abowe

cagey are detailed in table 1 in the form of a st of numerator polynomi—

alg ﬁijgﬁ}J i:3 = 1,2y over a common denominator polynomisl dls); where
these polynorials have the form

nljﬁaj =a3sd + ugsz +* u;&’ + Gﬂﬁﬂ {3

dis) = 8% + dye? + @za? + aal + apet {4}

again with coefficients {hat depend on the opsrating comiition.

The coefficients of the polynomials defilning the wvarions models are
very large and might pose severe numerlcal problems for the analysis and
simulation procedures to he used, It was therefore declded to apply some
frequency scaling {l.e. substitute 4 = 107853, normalisation (i.e. divide
every coefficient by 10%%, ana some amplitude scaling {i.e. pultiply every
numerator coefficient by 1053, This resulted in a set of scaled sodels
as shown in Table 2. In these models, Ebhe frequency charsetgrlstics must
be interpreted in M-Bertz (ox M-radlans per second}, &nd the cutputs £rom

these models, hamely cavity-voltage amplitude and phuse nust be


http:polynolll-i.al

interpreted in p-volts and w-radians. Upper case letters will be used
to refer b0 bhe various scaled models, demcribed in teble 2.

Some ware was reguired ln genarstisg these coefficlents, as a
small dtfference betwesn twe large numbers ¢ould be significant.

3. CONTROL 5TUDIES

-

2 ‘
2) had demonstrated that the heam cavity system

Tha indtial report
showed a beam intensity dependent “interaction” resulting from the off
diagonal elements of the system matrix becoming increasingly significent
as buam loading and cavity detuning incressed. A particular design
technigue developed at UMIST hinges on the removal of this interaction
by sultable analytic operations on the matrix - described as compensation -
whioh must have, however, for subsegqusnt practical purposes, a convenient
physical realisation in terms of clroultry. A watrix of constants may be
readily diagonalised hy a varlety of methods; for a matrix of polynomials

however this is more difficult, and, it has been shown(T)

that only &
partial diagonalisation 1s required, with the signlfleance of the off
diagonal wlements being reduced to & suiteble leve}l rather than com—
pletely removed, This gtate is referred to as “disgonal dominance" in the

control system literature,

Accordingly work commenced on the design of 4 possible compensstor
for the syutem using the inverse Nyquist Array method.

3.1 Ipverse Nyoulst Array method

The inverse Nyguist array (INA)} of the syatem trangfer matrix is
generated by the following prescription

Gljw) = ) (5) evaluated at a = juw

G s =

( 922 “917)
- g11  duz
adyye V921 91 =( ' )
oG -

la] LPSR P

This is evaluated as a function of w over the range O 5 o < 0.5 rad/s

{scaled). In partlcular we are concerned with whether the off-diagonal ele-
ments, G12, and §p), are greater than §)) and §32 respectively. This com-
parison is effected by drawing circles, {Gershgorin circles] centre, §i; and
429, of radli §)2 and §»; respectively, If these circles enclose the origin
the aystem 1s non-dominant, Nuserous cxamples appear in reference 2 and one
also In flg. 1 of this report for the open loop situation at injection energy
with full accumulated heamn, An esamination of these diagroms reveals the
foilowing features. Elements §;3(iw) snd ;2;{3m) were vary simtiar i
nature, as might be expected from thelir transfer function representation.
Element %;2{5m} was zecond order and tended to increase rapidly In modalus
with increasing freguency. Eowévez, element §31{in!} appeared te be station-
ary and relatively large. An explicit evaluation of E{s: was therafore
carried out for case (A} of Table 2 to determing the exact naturg of the in-
worge ¢lements, and yielded the following matrix

B3+ ,10752 + 1,398 + 1.37 - 2.548% - 3,546
¢ (s} = G(s) =

z.54da% + o198 B+ 10757 ¢ 1.39% + 162

#.54482 + 019

f ts}
d{s}

Hote that npjis) and d{s] cancel removing the frequency dependence of
Hay1{s}, and alsoc that the poles of &(y} which are the zercs of dubli{s),
{L.e. (8} are at & = % § 1.181, which corresponds to the angular ln-
coherent synchrotron frequency of 187 Kz, This freqguency however is

not in general a natural frequency of the coupled system. A4 we approach
the aynchrotron angular frequency, elemente J1;, Gz3. and §jp becowe ine
definitely large, as shown by the rapldly enlarging circles en fig. 1.

A detalled investigation was carrled out to develop a sulteble compansator
using row operations on the transfer matrlx, This readily suceeeded in
rapoving the interaction From §;;, sufficiently to obtain dlagenal domine
aneey except in the vicinity of @ . However the encirclement associated
with f§o; was not readily removed. Figure 2 demonstrates this for case A
with slmple row cperations on the wabrdx indicubed,

[



Because of the natuxe of the system, it appears difficuls to achlevu‘
diagonal dominance in & simple way. In view of this the technique
appears to be inappropriate for the problem, and was therefors not pursued

further .

3.2 Design using the multivariable rooi-logus

The multivariadble root-locus method, as usad la this gtudy, 1s simply
a means of asgessing the performance of a control scheme by plotting the
positions of the closed-lopp system poles, l.e., natural frequencies as an
overall goln parameter is varied. Suppose the general configuration is as

followg:

Kis) 4 Gs) b Lis}

Farn

Y

AT Fis}

The introduction of the adjustable gain AI, where I 1s the unit matrix
and A }4 a scalar parameter, is eguivalent to slmply sultiplying one of
the transfer function matrices in the loop by A. (It does not matter
which one, since A could egually well have been put in any other part
of the loop, soc far as the root-loci mre concerned.} fs 4 ia varied,
the poles of the closed-loop gystem will move about in the complex
s-plane. For a given value of X, the positions of these moving poles

are tihw roots of the eguatlion

det [T + AF(s)L(sIG{8}R{a}] = 0O .

For the open loop pituation thia reduces to a quartic sguation with, in
genera}, conjugabte pairs of roota. For feedback with dynomics sueh as
integration, & higher degree eguatfion with additional roots results,
whigh latter must however ceoalesce with the open loop roots, as =+ Q.
(See refarence 2 for an alternsbive predsentatlon OF the open—-loop roots,

‘as a functlon of operating parameters.}

In the multivarlable root-ioows method, these roots are plotted oOn
the complex plane, a8 & 1s varied over & range of values. FPraferably,
the system should remain stable (all roots in the left half-plane) for
all poaitive A. Ip any case, it should be stabhle for the nominal value
of % intended té be used 1lp the actusl design, and for a wide range of
vartation about this value. Otherwlse, the stabllity will be sensitlve
toe variations ln parameter values, which 1s clearly undeslrable. Ia
particular, the system should remain stable for all ) between O and the
nopinal value, since otherwlse instablliities will arise if the effective
galn is yeduced, e.g. due b0 either saturation effacts, or the ioop being
opened. The root~locl will alse indicate switable magnlitude to be choaen
for % in order to achieve, for example, maximun damping. Claarly, this
mathod gives more informstlon than would bw obtained from sluply caleul-
ating the closed-loop poles for a fixed gain. 5rill more Information
would be gliven by puttling different wariable galns in different loops,
and thus exploring stabliity in a “galn space”. This can also be done
by multivarisble root-locus methade, and may be sppropriate for a more
detatled investigation.

In the present study, we have set P(a) = Lis} = I (the pnlt matrix),
and plotted in f£lgs. 35 the root-loci for.various choices of precompen-
gator K{s} and for several ¢lfferent G(s} corresponding to different
cperating conditions {(capes R,C,0,E), The simplest scheme investigated
conslatad of egusl constant gailns {i.e. proportional action) in both

loopz, so that

i o]
Kig} = I =
Q I

It was found that stabllity was meintained for all positive wvalues of A
in o}l cases, a0 that, from this poipt of wiew, the design was already
gatisfactory, (Some trjals were also made fo see the effect of putting
dlfferent gains in tho loops. and again the syatem remalned stable for
the cames examined, aithough only s rather limited investigation has been
made so far.} In order to eiiminate gteady-state error, lowever, the

Jposalbllity of incorporating integral actlon was investigated. ‘This



also had the effect of reduclng interaction, sspeclally when placed in th;'
sgcond loop {(generator phase to cavity-voltoye phase). Accordlngly, tha
root-loel were plotted for the choloe

1 e}
Kis) «

o 1+%b

-~
5

i.e. proportional action in loovp 1 and proporticnal + integral in loop 2,
Stabllity was still malntained in the cases examingd, although with re-
duced damping, as expected. In particular, there wsg a tendancy fox
damping to be poor at small gain valurs, This became even more marked
when porportional + integral action was put in each loop, wlth

Kig) = (1 + 2L 1

B

to the extent that one case [C) became wvery nearly unsgable for a cerxtain
vange of gnins, This effect ls, however, considerably dependent on the
cholce of integral action constent snd there is no particular reasen to
insist on C.1, {Some wther trxials, on case A, Iindicated that 0.2 led to
instabilivy for certain galn values, while 0.05 in each locp had about the
same effect ag O.1 in loop 2 only.) In any case, it svems pnnecessary to
have integral action in loop 1, in order to achleve satisfactory step—
responses. In all cases, the root-logl indicated that the cholce of

A ow 1 {unity feedback), as taken in the time-response slmulations, was of
the right magnitude to make the damping aboubt as googd as could be achieved
witi these compensator structures. Other more complicated structures,
with entries in all elements of K(s), were brlefly examined, but did not

appear to give any advantage.

3.3 8ystem time responses

b convenlent technigue for system evaluation iz to apply a small
sbtep Arive S{t} to a given input, and note the respunye tiit} on the 1
possible cutput channels. The response to a general drive {on the seme
input channel) £{t} is then implied by a superposition integral of the

forn

Initial & s, )
R{t} = value + it S Tt - 8],
term ¢ 38

&nd for drives on all channels, by Eurther summation for linear systenms,
For an ideal system we would hope to see o pure step response on khe
appropriste cutpet channel, and zero responss on all other channels,

I practice, we observe

(1} Significant transient response wlth overshoot and ringing, due
to the cavity beilng a high @ c¢lreult, and the strongly coupled
beam being effectively undamped, at least at &00 MeV.

(2} Interaction manifests itself by the other output having signi-

ficant transients ps well ag stesdy state oxrgor,

This computation was performed for the vayious pystem models already
discusged by alternative techriques, and the resultg depicted in figs.56-18.
For each system configuration, 4 Ligures give the amplitude, and phase

responses 0f each channel &5 an ssplitude and a phase step in turn.

3.3.1 Open loup bime responges

An examination of thase responses {figs. &, ]l and l5)con-
£irms that the interaction present in the beam-cavity 1ls worst for Eull
aceunn) atad beam at lnjection energy. It alseo lncreases as the cavity
detune offset is increased; this is expectsad ag the non-zero 4g now
resolves a given step Into components in phase, and in guadrature with
respect %G the cavity voltage. In all cases the cavity voltag; phage is
slygnificently disturbed by changes in generator deive ssplitude, and is
more sengitive to this input than to changes in the drive phase. Also,
there is considerable breakthirough ©f lightly damped high Ereguency oscil-
iation superposed in the voltage amplitutie pesponse, when the generator-
drive phage is altered. The freguency of these oscillations typically
varies from 445.6 EEz to 221 KHz os the system moves from injection

anergy fwith ¢g = 0} to full emexgy with Vep = 1.9 MV.

Other notable features of the time reeponses of the open loop

system are somewhat lowar fregquency {synchrotron) osclilations on both

10,
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]'butputa which are ¢gradually damped out as the system noves from the acou«
mulatlon phase to the storage phase; the frequency of these oscillations
varying Erom 9 krad/s alb asccounulation {with gepeyztor phass angle

¢ = 0%} to 29 krad/s at full energy (with Vep = 1.9 MV}, BAlso, a4 the
heam-cavity system progresses bhrowgh camping £¢ storage mode, Lhe steady-
state galns of the various Lranssission paths change. The most signifi-
cant of these varifations ocours in the path from generator drive ampli~
tude Lo cavity-voltage amplitude and im the psth from genmrator drive
phase to cavity-voltage ampifitede; the latber woriation being helpful in
sontrol terms. Howevex, the former varlation may require scheduling of
the gain in the feedback loop from cavity-voltage amplitude bo generator
drive amplitude to aveld reduction of stabllity marging during ramping.

The varlations in the poles of the scaled open-loop sysbems for each
case gtudied, ape shown in table 3, and the corresponding sbeady-abate

galn values for each case are shown in table 4.

3,3.2 Cloged loop responses

These were obtained for a number of the fesdback optlons discussed
in section 3.2, using a gailn parameter approprlate to unity feedback,
which appeared to maximise damplng rates as glwen by the rect-locus plots.

The vorcluglons of section 3.2 are gupported, proportional feedback Ln both

leops glves a substantlal suppression of overshoot sand ringing, as well as
Interaction, while integral action eliminates the mbtsady state error in

the interacting outpee, af the expsnse of increased transients.

4, LENCLUSIONS

The immediate conclusion s that a simple proportional feedback In
both iloops wili he of considerabie benefit in stebdlllising the aystem
againmt disturbance. The use of loop dypamdics, 1.8, integratlon, wiil
reduce steady state srror, but at the expense of reducsd damping, and,
indeed, even approaching imgtability at low loop gain. o minisdse this
pndesirable effect the inteyral acticn shoyld be confined to the phase
loep, and a proportionai factor of about unity adopted. The result copn=

cerning the advanteges of proportlonal Feedback in aygy t with
!
sarlicr SPEAR work " . Mugh emphasis had been placed on exemining the

wrror vonditiens of excess detune, (B and C). One interpretation of the

11.

Bffect of proportional feedback iz that the unstable detune region pre-
dicted by the Robinson eriterion ls reduced in wildth, and thus, the use
of an exvessive detune offsel way be avolded, glving a more satisfactory
matched system. This reduction of the unstable reyion by feedback re-
maing o be evalusted for the whole operating region, and, ldeaily, a
physical interpretation of this behaviour provided.

hlso, in principle, Fasdback could be wtilised to enable higher
efficiency operation of the r.f., aystem. At 2 GeV In the SRS, the high
over—voliage deflnes the cavliy power for given lmpedance, with 1.0 A
beam present the efficlency {when matched) isg

PD

-y P " .66 . At lower epergles the opportimity will be

B

avallable to lower the cavity voltage to guch fevel ag to lacrease o
while stlll mainteining lifetime. In & future r.f, design this could
enable a higher impedance structure o be used to reduce styucture digsi-
paticn velative to beam power, subJect te matching and detuning limita-

tions,

Somiz areas remsin for further study:-

(a) Analyais of a multi~cavity system, with pon-ideal lisclation
betwean the cavities and the Klystron, and bandwidth ilmjtation
af feedback ioups.

{v) EBffect of Qs aplitting on the beam cavliy interaction. One
interpretation of Qg splitting is fn terms of coupling of the
normal modes of oscillation of the bunched beam, ¥ith the gs
cawity driven at 750 Mz, the tioe constsnts of the acceierating
cavlity interagtion will now be influenced by the us cavity para-

motors.

{w) Effect of the use of a cavity powared at 4 higher harmonic Of
the r.f.

2.
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TABLE

ll

Numerator and depominator polynomials (unscaled} for the

five cases

case Element st 53 a2 sl 50
(a)  nppls) - 1.0 1,07360 x 10° 1.39410 = 1ol? 1.62480 x 10
Nz (s} - - 2,54416 x 108 - 1.93183 x 10
ng (s} - - - 2.54416 x 108 - - 3.54677 x 10
Nz (s) - 1.0 1.07360 x 105 1.39410 x 1012 1.36862 x 10
d(s) 1.0 2.14720 x 10°% 7.87839 x 1012 2.99341 x 1017 6.75183 x 1o
(b)  np(s) - 9.9522741 x 1071 3.5394113 x 1o° 1.3874465 x lolZ 1.6195371 x 1017
nyg (s - 9.7582847 x 1072 2.5095795 x 108 1.3604025 x 10ll - 1, 3309763 x 1016
nigy (s} ~ 9.7582B47 x 1072 -~ 2.5095795 x lob 1.3604025 x 1oll - 3.4998085 x lo
ngp{s) - 9.9522741 x lo~t 3.5394113 x 10° 1.3874465 x 1012 4.8067693 x 1017
. d(s) 1.0 2.14720 x 105 7.8173638 x 1012 2.9934115 x lol? 2, 3666348 x 1027
(o) mypp s - 9,7814761 x 1o~} 6.3397512 x 10% 1.3636356 x lol2 1.6294551 x 1o0t7
nyzle) - 2.0791164 x 1071 2,4662460 x 108 2.8984961 x 10}l - 1,4885241 x 10i®
ng1is) - 2,079116 x 10”1 - 2.4662460 x 108 2,8984%961 x loll -~ 3,4408112 x 1018
nzz () - 9.7814761 x 1071 £.3397512 x 105 1.3636356 x 1o0l2 8.7128596 x 10}7
d{s) 1.0 2.14720 x lo¥ 7.8783%4 x 1012 2.9934115 x 1017 6.7518286 x 1022
d) nyyls) - 1.0 1.77150 x 10° 1.39410 x lol? 3.5707M481 x 1o
niz (%) = - 8.5247014 x 10% - 6.2862351 x 10
nzi{s) = - - 8.5247014 x 105 - - 1.1762226 x 1019
ngs (3} - 1.0 1.77150  x 1o° 1.3941c  x 1lol? 1.3685681 x 10
dis) 1.0 3.5430  x 10% 2.1521874 x lol2 4,9492963 x lol7? 3.5590716 x 1022
(e  nppis) - 1,0 1.98450 x 10° 1,39410 x 1ol? 4,1645914 x 10
nig (s} - - 7.4557587 x 105 - - 9.2681314 x 10
np{8) - - - 7.4557587 x 10° - ~ 1,0206063 x 10
rizz (s) - 1.0 1.98450 x 1O° 1.39410 x 10!2 1. 3685914 x 10
d (s} 1.0 3.9690 x 109 1.9893658 x 1012 5.5331829 x 10l7 4.0856724 x 1072



TABLE 2.

Humsrator and denominater polynomlals {(scaled} for the five cases

Case Element g“ Z 3 ?3‘2 g 1 ge
(Al ny (s - 1.0 1.07360 x 107! 1.39410 = 10° 1.62480 x 1071
nya (s - - 2.54416 x 10° - 1.93183 x 1072
ng 1 (8) - - - 2.54416 x 100 - 3.54677 x 109
nzg (S - 1.0 1.07360 x 1ol 1.39410 x lo® 1.36862 x 1071
ags) 1.0 2.14720 x 107} 7.87839 x 100 2,99341 x 107! 6.75183 x 1072
(B ny(8) - 9.9522741 x lo-} 3.5394113 x 1o0-1 1.3574465 x 100 1.6195371 x 1o~}
N2 (8) - 9,7582847 x 1072 2.5095795 x 100 1. 3604025 x 107! 1.3309763 x 1072
nz1 (83 - 9, 7582847 x 1072~ 2.5095795 x 100 1.3604028 x lo~! 3.4998085 x lof
ngp (8) - 9,9522741 x lo~! 3.5394113 x 1071 1.3874465 x 1o 4.8067693 x 107}
ats) 1.0 2.14720 x lo7! 7.8173638 x LoY 2,9934115 x lo~! 2, 3666348 x 1072
(€} nppis) - 9,7814761 x 10”1 6.3397512 x Lo~} 1.3636356 x 10° 1.6294551 x 107!
nyz(s) - 2.0791164 x 107} 2.4662460 x 109 2.8984961 x 107} 1.4885241 x 1072
Nz (8) - 2.0791164 x 10-! - 2.466246 x 107 2.8984961 x 1071 3.4408112 x 109
oo (s) - 9.7814761 x 10”1 6.3397512 x 07! 1.3636356 x 109 8.7128596 x 107!
als) 1.0 2.14720  x lo~} 7.678394 x 10° 2.9934115 x 107} 6.7518286 % 1072
(o) npp(s) - 1.0 1,77150  x 1lo7! 1.39410 x 100 3.5707481 x 1071
a2 is) - - 8.5247014 x lo~! - 6.2862351 x lo7¥
nz 1 (8) - - - B.5247014 x 107! . 1.1782226 x 10©
fiza (8) - 1.0 1.77150 x 1o~} 1.39410  x 1o@ 1.3685681 x lo~!
ats) 1.0 3.5430  x lo~! 2.1521875 x 100 4.9392963 x 107! 3.5580716 x 1072
(E)  npq () ~ 1.0 1.98450 x 107l 1.39410 x 10° 4.1645914 x 107}
a1z (s} - - 7.4557587 x 107! - 9,2681314 x 1075
g1 (8) - - - 7,4557587 x 10~ 1 - 1.0206063 x 10°
225} - 1.0 1.98450 x 107! 1.39410  x 1o 1.3685914 x 1071
a{s) 1.0 3,930 x ol 1.9893658 x 100 5.5331829 x 1o~} 4.0856724 x 1072




ThElE 3
Polas of the sealed open-lcop system for the five cases

Cases Poles
3 ~ C.088 2 § 2.80, - 0,019 £ 3} 0.081
8 - o088 £ § 2,80, - 0,019 ¢ } 0.082
c - 0.088 % 4 Z.90, - 0.01% ¥ 3 0.058)
B - Q.060 1 1.45, - 0,116 & 3 0,087
E ~ 0.056 £ 4 1.39, - 0,142 2 § 0.029

TARLE 4

Steady-gtate galn valueas for the five cases

Case 23 {0} T2 () gy {0} TP {0}
A 2. 406 0.2861 - 52.53 2.087
B 6.843 ~ 0.5624 - I47.9 20.31
c 2.413 =~ 0.2205% ~ 50.% 12.9%
3 10.03 0.01768 - 310 3.845
B 1¢.18 ©.002268 -~ 24.498 3,345

15.
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