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Abstract

The eMinerals project produces large quantities of data from multiple atomistic simu-
lation programs, and new methods have been required for handling  this quantity of 
data.  We have adopted the Chemical Markup Language (CML) as the basis of our 
information management strategy. In order to store, manage, visualize, and analyse 
these data, we have developed a series of XML-based tools, which this paper explains 
and details. TobysSRB, a usability-enhanced front end to our distributed data storage 
facility. FoX, a Fortran library which enables transparent XML/CML use from existing 
programs. Pélote, an XML language and implementation for encoding and represent-
ing 2D vector data, and ccViz, a browser-based CML visualizer.

1. Introduction
The full background to the eMinerals project has been explained in [REF]. The project is tasked 

with investigating  a number of environmentally-relevant problems from the perspective of atomic-
scale simulation, and in doing  so, to take full advantage of eScience technologies, extending  them as 
the need arises. This paper will discuss the response of the eMinerals project to its data-management 
problems, and the solutions that we have developed3. 

Data management problems arose for three reasons.

• Firstly, the sheer quantity of data produced. Although our data production rates do not compare 
with projects such as the LCG4, nevertheless with the availability of usable grid middleware and job 
submission tools as described in the companion paper5, it rapidly outstripped the ability of scien-
tists to cope with using traditional methods. 

• Secondly, we faced the problem of a diversity of data. Unlike many projects in an otherwise simi-
lar situation, the sources of our data can be quite different in format and semantics. Although at 
some level they all relate to similar information (since eMinerals is studying  a coherent field of sci-
ence), they certainly cannot be trivially mapped onto a single predetermined data model.

• Thirdly and more subtly, eMinerals is a consciously cross-disciplinary project. We have physical 
scientists with backgrounds from different fields of chemistry, physics, and geophysics. This means 

1

1 Corresponding author. Email: tow21@cam.ac.uk, Tel: +44 1223 333464

2 Now at: Advanced Computing Research Centre, Woodland Road, Bristol BS8 1UB. United Kingdom

3 This paper includes material previously presented at the 2nd IEEE International Conference on eScience 
and Grid Computing, Amsterdam, December 2006. Further information is available in the conference pro-
ceedings.

4 http://lcg.web.cern.ch/LCG/

5 “Job submission to grid computing environments”, also in this volume.

Page 1 of 13 Computing in Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

that they are not all familiar with all of the data that is produced within the project - neither in terms 
of the formats involved, nor in terms of the variations in semantics between sub-disciplines.

The eMinerals project has a workflow involving  job submission, data storage and metadata cata-
loguing, which is illustrated in Figure 1. However, this does not fully address the need for transfer of 
rich information (as opposed to streams of bits and bytes)  - while it partly addresses the first point 
listed above, that of merely storing  large quantities of data, more work was necessary to address the 
second and third points.

The project has developed a series of techniques and tools which overcome these obstacles. Firstly, 
the quantity of data, and the geographically-distributed collaborative nature of the project meant that 
some form of distributed data storage was necessary. Much of the background to this has been de-
scribed in previous publications; here we talk in detail about the development of TobysSRB, a par-
ticular interface to our data storage.

Secondly, the bedrock of our data management strategy has been XML - in particular, the Chemical 
Markup Language (CML). The reasons for this are thoroughly explored in a companion paper6 - here it 
will suffice to say that XML offered us the flexibility, extensibility we required in a data format, while 
allowing us to leverage a wealth of pre-existing  software and standards. However, in developing  XML 
workflows around the previously non-XML universe of computational atomistic simulation, a signifi-
cant quantity of additional software was needed.

We discuss firstly FoX, a library designed to bridge Fortran and XML. We consider separately two 
aspects of it. On the one hand, that devoted solely to exposing  access to XML in a Fortran idiom, 
which we believe to be a contribution of general and wide value; and on the other, a carefully de-
signed API entirely hiding  the complexity of XML and CML from the user, allowing  Fortran program-
mers to interact with CML documents despite having no knowledge of the format.

2

6 “Developing an XML ecosystem”, also in this volume.

Figure 1: The flow of data within eMinerals without the 
tools described in this paper. Existing simulation codes 
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We also discuss some of the tools we have developed to consume our XML documents, allowing 
users to analyse and visualize CML-encoded data. In particular, we demonstrate Pélote, an XML lan-
guage and associated toolkit for drawing two-dimensional graphs; and ccViz, a browser-based visual-
izer for CML documents.

In addition, though we do not describe it further here, we note that the XML-centric nature of the 
eMinerals data strategy has empowered our coupled job-submission and metadata system, as de-
scribed in parallel papers7. 

2. Distributed data storage
The eMinerals consortium has a widely geographically dispersed membership; and has a require-

ment for strong  collaboration. These require that everyone have equal access to data. In addition, the 
computational minigrid will run across diverse resources, taking  input from, and dumping output 
into, data servers distributed across the whole project. By using  a distributed data grid, with a central 
access point, all project members are able to transparently access not only their own, but importantly, 
each others data. Without such a data policy, the effectiveness of the project would be drastically re-
duced.

Our data grid currently runs on the SDSC SRB8. The reasons for this, and our experiences with the 
SRB, have been described in a series of earlier papers9. The SRB is in wide use across the eScience 
community, but the eMinerals project was one of its earliest European adopters - our repository is 
now the largest in the UK, as measured by number of data objects stored.

By developing  our project on the basis of the SRB, project members are now in the fortunate posi-
tion that by default, none of our data is located on our individual computers; rather it is accessible in 
a network-visible filesystem. No longer are we tied to a single workstation - multi-homed working  is 
much easier. More pragmatically, when working  with a collaborator at their desk, it is easy to gain 
access to illustrative files, without cumbersome copying  between computers. Equally, when a remote 
collaborator requests data, no longer do they need to wait while we to dig  out files and email them, 
hoping  any context remains clear. Rather, we can simply point our collaborator to a location on the 
filesystem, where the relevant files rest in context. Indeed, often a collaborator will not even need to 
request the data - it will be obvious and visible immediately it is produced.

However, we found that the SRB did not offer everything  we needed. It is intended to offer a 
filesystem-like interface. It allows users to upload files and directories (“collections” in SRB parlance) 
so that they are visible to all SRB users. However, the SRB’s ‘filesystem-like’ interface is not a true file-
system - that is, it cannot be manipulated using  normal tools which understand native filesystems; 
rather interaction with the SRB must be performed through special SRB-aware tools which upload and 
download files to the local filesystem before viewing  and manipulation. Furthermore, the provided 
SRB interfaces fell short in a number of ways. These shortcomings fell mostly into three categories:

• Poor UI design. This is most trivial in some ways, but in practice very important.

• The SRB is not well-suited to use across real-world networks, with restrictive firewalls in multiple 
institutions over which the project does not have full control. The SRB requires several non-standard 
open ports, and for every additional port that must be opened, we have to negotiate with computer 
officers in multiple departments in multiple institutions.

• The SRB interfaces (with one exception) all require installation on every machine from which the 
SRB is to be accessed - this strongly inhibits the ease-of-use that universally-network-accessible-
data ought to offer.

3

7 “Job submission to grid computing environments”, and “Automatic metadata capture and grid computing”.

8 http://www.sdsc.edu/srb/

9 Doherty, M., et al., Proc. 2nd UK eScience All Hands Meeting, Nottingham, pp 51-58 (2003);  Berrisford, P., 
et al.,  Proc. 3rd UK eScience All Hands Meeting, Nottingham, pp 732-739 (2004)
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•The SRB is impossible to program against with-
out installing client tools or libraries.

So we have built a new SRB interface which ful-
filled our requirements better, called TobysSRB. It 
is web-based and operates through the browser. 
This addresses points two and three above, since 
only standard HTTP/S over ports 80/443 is re-
quired, and no installation is needed (since all 
computers come with a web browser). Point 1 
was addressed by paying  close attention to user 
requirements during design. 

In addition, though, TobysSRB  is carefully de-
signed according  to the principles of REST10, and 
essentially exposes the whole of an SRB filesys-
tem as an HTTP filesystem, such that programs 
can address individual SRB data objects via HTTP 
requests.

TobysSRB   is implemented as a simple CGI script, 
written in Python. The CGI script translates re-

quests onto the virtual HTTP filesystem into SRB requests from the web server to the SRB server. This 
means that on the server, all that is required is a CGI-enabled webserver; a version of Python (2.2 or 
greater) and, of course, access to the SRB. Thus, the firewall problem is reduced to ensuring a clear 
path from web server to SRB server, and client machines need only have ports 80/443 open to the 
web server.

On the client end, nothing  is required except a tool which understands HTTP; a web browser if the 
user is human; if the user is a program, then wget, curl, or even raw socket access suffices.

An example of the visible web interface is shown in Figure 2. The interface looks as much like a 
graphical filesystem browser as can be built quickly & easily with HTML and CSS in a web browser. 
Files are represented as links - when clicked on, the file is served up, to be displayed in the browser 
or an appropriate helper application - or (since this is a standard web browser) right-clicking  will al-
low saving the file to the desktop. Subdirectories are represented by links which, when followed, re-
sult in a similar display for the contents of the subdirectory. There are a number of other additional 
features aimed at increasing usability; these are described in full elsewhere11.

In particular, though, note the additional link E in the diagram - such additional links appear wher-
ever XML files are concerned, and are central to the eMinerals dataflow. We expand on them below.

3. Integrating Fortran and XML.
The computer language of choice of most computational minerals scientists is Fortran. Certainly, all 

of the simulation codes that are used within eMinerals are written in Fortran, and these codes are the 
source of all of our generated data.

As described above, we wanted to store all our data in an XML format - in CML in fact. However, 
we were presented with a number of Fortran codes producing data in various bespoke ASCII formats. 
If the simulation codes were written in one of several other languages, then the task of producing 
XML might have been fairly trivial, by means of plugging in an existing  library to generate and serial-
ize the appropriate XML. However, nothing  of the sort existed for Fortran, which left us with a gap in 

4

10 “Representational State Transfer” - a philosophy for building lightweight web services. See R Fielding, “Ar-
chitectural Styles and the Design of Network-based Software Architectures”, PhD thesis, University of Cali-
fornia Irvine (2000)

11 White et al., Proc. 5th UK eScience All Hands Meeting, Nottingham, pp. 209-216 (2006)

A: Sub-collections

B: Files
C: Ancestor collections 

D: Permissions E: External viewer

Figure 2: TobysSRB screenshot
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our data flow between the Fortran data-
producing  codes, and the rest of our XML work-
flow.

There are a number of approaches to bridging 
the gap between Fortran and XML, which have 
been taken under other circumstances. Where a 
very limited number of data sources are in use, 
and their output format is well-documented and 
static, then post-processing scripts can produce 
appropriate XML from ASCII output files. How-
ever, for a more diverse set of codes, with largely 
undocumented and varying  outputs, this is less sensible, and it is not an extensible approach. Alterna-
tively, Fortran wrappers can be constructed for existing  XML libraries written in other languages. 
However, cross-language linking  with Fortran is a business fraught with difficulty, especially when 
targetting multiple compiler combinations.

For these reasons, we have adopted a different approach. We have written our own, general-
purpose XML I/O library in pure Fortran. With this approach the library can be simply linked in and 
called from any existing  Fortran code with the minimum of further modifications. Of course, this does 
require having  access to the source of the program - but with scientific codes this is almost universally 
the case. In any case, within eMinerals we are in the fortunate position for several of the major rele-
vant codes. of not only having access to the source, but having  active developers from each within 
the project team. We have thus been able to get our source modifications included in the released 
versions of these codes.

Our XML library is called FoX (for Fortran XML). An earlier version was described in [8]. It consists 
of several modules, governing various aspects of interaction with XML documents. Here we shall 
briefly describe only two of these, which allow the generation of XML.

The most widely-used part of the library is called WXML (because it Writes XML). This provides a 
number of API calls, which allow the direct construction of an XML document, and guarantees its 
well-formedness (optionally, it will also make certain guarantees about its validity, though full XML 
validity is not checked). Control over all aspects of XML document is offered, including  DTDs and 
entities, with the unfortunate (but rarely scientifically important) exception of Unicode, which is not 
supported fully, since this is impossible within standard Fortran. WXML understands all of XML (and 
XML Namespaces) 1.0 and 1.1.

In so far as it is possible, WXML lets the user write directly to the XML Infoset, without concerning 
themselves about details of character escaping, or the precise syntax required for well-formedness. All 
of this is automatically taken care of by the library, unless the user tries to force output which is not 
representable within well-formed XML (for example, by not matching  close tags with appropriate 
open tags), in which case the error is flagged verbosely, and output ceases. All of the burden of ensur-
ing that the resulting document is well-formed is therefore taken care of by the library.

However, WXML does still need a fair degree of XML knowledge on the behalf of the Fortran pro-
grammer to be used effec-
tively, and a high degree of 
knowledge of the XML for-
mat in question. Both of 
these are potentially prob-
lematic with respect to the 
long-term development of 
such simulation codes. Our 
solution to this problem is 
explored in the next sec-
tion.

5

<molecule>
  <atomArray>
    <atom elementType=”H” x=”0.0” y=”0.0” z=”0.0”/>
    <atom elementType=”H” x=”0.74” y=”0.0” z=”0.0”/>
  </atomArray>
</molecule>

Figure 3: CML representation of a molecule containing 2 atoms. To 
produce even this small fragment requires 12 WXML calls.

In addition to those described here, FoX provides 
several other modules, including some which 
provide interfaces for XML input to Fortran.

Further information is available at: 
http://www.uszla.me.uk/FoX/ 
where up to date releases of source code, ex-
amples and full documentation is available, as 
well as links to a mailing list and support.
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4. Generating CML
A much deeper narrative explanation of the way in which we used and developed CML is given in 

a companion paper in this volume6. However, here we focus on the concrete ways in which our tools 
fed into, and were the result of this development. 

WXML allows the production of well-formed XML output from Fortran. This succeeds in bridging 
the technical gap between XML and Fortran, by providing  mappings between Fortran and XML data 
structures and idioms. However, the use of WXML still requires a fairly in-depth knowledge of XML 
on the part of the  Fortran programmer, and this is undesirable for several reasons.

Typical Fortran programmers by and large do not understand XML. Furthermore they are often not 
full-time programmers, such that acquiring  the background knowledge necessary to make best use of 
XML technology is outside the scope and time available for their computational work. In addition to 
this, a lot of scientific Fortran programs are collaborative efforts. Even if one developer on the team 
were sufficiently well-educated in XML to make use of WXML, the others would not be.

Furthermore, XML documents are typically quite verbose; objects in a given XML language are of-
ten composed of several tens of XML primitives - see for example Figure 3. Outputting  data by ma-
nipulating  the XML Infoset item-by-item requires a lot of WXML calls, which obfuscate and clutter up 
a program if inserted into existing code in a straightforward manner.

As a result, giving  the FoX API to a typical computational chemistry Fortran programmer will not 
result in high-quality XML documents being  generated. It is unlikely that most Fortran developers will 
be able, unaided, to make good use of WXML to output their data

Even if a few are - or if (as we have on eMinerals) outside developers are prepared to do the work 
and improve a code to use WXML - then

• The ugliness of the resultant code (with hundreds of verbose WXML calls)  may result in the main 
developers refusing to accept such changes into their codebase.

• Clusters of such WXML calls are highly fragile to other developers accidentally breaking  them; 
either by rearranging  them such that they no longer correspond to well-formed output (eg, by mis-
matched tags) or such that, though they are well-formed XML, they are no longer valid fragments of 
whatever XML language is in use.

What we needed was an API which mapped as neatly and flexible as possible between the Fortran 
structures typically used in computational chemistry, and the requisite XML structures. In short, we 
wanted to be allow typical computational chemistry programmers to output to CML without needing 
to know any CML.

Thus, a layer was built on top  of WXML, called WCML - again, because it Writes CML. The WCML 
API requires no knowledge of XML or CML at all. It provides subroutines which are clearly named, 
and do what they say, in outputting  a given object. These subroutines accept as flexible as possible a 
variety of input arguments Thus, for example, to output the molecular coordinates shown in figure 3, 
there is a call:

call cmlAddMolecule

The minimum information needed by this subroutine is the coordinates and name of each atom. 
Typically, these will be held as 1) a size-3xN array of double precision numbers, and 2) a length-N 
array of 2-character strings for the element symbols; and thus it can easily be called as

call cmlAddMolecule(xyz_coords, elem_names)

However, frequently, the coordinates are held, instead, as three length-N arrays, one each for the 
x,y, and z coordinates. Therefore, the programmer can also do:

call cmlAddMolecule(x_coords, y_coords, z_coords, elem_names)

Similarly, the numbers may be held as single-precision floats - again the subroutine can be called 
unchanged. By providing  overloaded interfaces like this, WCML remains agnostic on how data ought 

6
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to be represented in the program - a choice that the individual scientific programmer is better in-
formed (by reasons of efficiency or simple code-development history) than WCML. We reduce the 
burden on the programmer, who need not convert from their internal data representations to any pre-
ferred representation. Furthermore, such a process would be a potential source of error (both in the 
conversion, and in the duplication of information) Similarly overloaded interfaces are provided for all 
of the data objects which form the CML language.

Most importantly, in all cases, the programmer need not worry about precisely how to convert their 
coordinates into XML elements or attributes; there are no worries about misspelt names or badly or-
dered elements - WCML guarantees to take care of it and produce conforming CML output.

In fact, WCML’s goal is that the developer need not care what CML is at all. It can be produced as 
above without any knowledge of the CML format, and then tools exist (and are described below) that 
process the CML appropriately. The user only needs to know that by issuing an appropriate 
cmlAddSomething call, then data is produced appropriately for correct manipulation thereafter.

This solves the problems mentioned above. In addition, this has the striking advantage that it brings 
XML output within the reach of even the casual developer. There is a culture, in scientific Fortran pro-
gramming, of end-users making minor changes or additions to the code for their own purposes, with-
out necessarily engaging the original developers, and without having  any intention of making their 
work more widely available. Making  the WCML API this accessible means that such end-users can 
quickly and easily include their output into the CML document without any need to educate them in 
the details of CML.

This has been a very successful policy, and the FoX library, with WXML and WCML APIs, is now 
included in the latest versions, or current development pre-releases of five of the most popular com-
putational chemistry codes; SIESTA12, DL_POLY13, GULP 14, CASTEP15, and MOPAC16. Between them, 
these four codes have over 10,000 registered users. All of these users are not yet using  the CML-
enabled version of the code; certainly the vast majority of them will have no particular interest in the 
CML output format. However, it is our hope that since they will be creating  CML output with no addi-
tional effort; indeed in some cases, without realising  it, (SIESTA, for example, produces CML output 
by default unless it is switched off by the user), then a large corpus of CML documents will be built 
up without further effort.

In addition, work is ongoing  in incorporating  FoX into several other high-profile codes. An impor-
tant extra measure of success though is that FoX has successfully been used to implement CML output 
for several mostly-locally produced codes; codes which have only a few users and no full-time devel-
opers. It is a mark of its ease-of-use that this has been feasible, proving  that quick and easy XML out-
put can be brought within reach of the casual scientific programmer.

5. Processing XML output
5.1 Data Analysis

Data analysis is largely a domain-specific problem, so we will not describe any of our tools here. 
Many of them are essentially bespoke scripts. However, their being  built on an XML foundation 
enormously increased our power.

7

12 http://www.uam.es/siesta/

13 http://www.cse.clrc.ac.uk/ccg/software/DL_POLY/

14 http://www.ivec.org/GULP/

15 http://www.tcm.phy.cam.ac.uk/castep/

16 http://openmopac.net/
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Writing  a script to analyse some data involves two separate jobs of work. Firstly, of course, the 
analysis itself must be encoded, whether this be as simple as averaging  a quantity over a number of 
timesteps, or some complex statistical correlation. Before that can be done, though, the numbers on 
which the analysis is to be performed must be extracted from the data file. Here, XML helped us in 
two ways.

Firstly, the data extraction portion of the script becomes essentially identical for any CML output 
file, regardless of its origin. This means that we can immediately compare analyses between the out-
puts of different codes, rather than having  to adapt analysis scripts for every code whose output we 
are interested in. Of course, this dramatically lowers the bar to open-ended data exploration - many 
more such analyses can be easily tried out in an experimental fashion.

Secondly, the data extraction portion of the script becomes much easier to write. Rather than a 
complex sequence of regular expression matching; combinations of sed/awk/sh/perl, etc., numbers 
can quickly and easily be extracted through an XPath API. Again, this makes such scripts easier to 
write - which means that scripts will be written where they weren’t before.

One item of initial concern here was the accessibility of the XML output to non-XML scientists. It is 
important to remember that many data analysis scripts are written in a casual fashion, by scientists 
who need to quickly understand one particular set of correlations between data - no-one else may 
have been interested in it, nor may anyone else in the future. Thus there is a widespread practice of 
writing  quick-and-dirty scripts for nobody’s consumption but your own. We were at pains not to re-
move this power from the hands of the end-user in our zeal to promote XML.

This fear has proved unfounded. For one thing, while we have added CML output to codes, we 
have not removed the old, textual, output with which users are already familiar, so their job has been 
made no more difficult. Secondly, though, we have found that the idiom of XPath data extraction is 
easily grasped by scientist end-users.

We wrote WXML to insulate developers from the need to construct well-formed XML output, be-
cause there are a number of issues, some less than obvious, which must be paid attention to in order 
to guarantee XML well-formedness (without which the exercise is pointless). However, the situation is 
far less fragile where XML input is concerned. If users are presented with a valid, well-formed XML 
document, then there is much less education required for them to make us of it.

This has been borne out both informally, through collaborations between local and remote col-
leagues, but also in the formal classroom setting of a workshop which we recently ran17.

5.2 Data visualization
In contrast to the data analysis software we have written, some of our data visualization software 

we consider to be of sufficiently wide interest to be worth describing  in detail. Here we shall consider 
two particular tools, which we call Pélote and ccViz.

5.2.1 Pélote

Very frequently in scientific data, there is a need to display vector arrays of data. By this we mean a 
series of (x,y) pairs, which mark the progression of some quantity, y, with respect to a second quan-
tity, x. Often, x will represent time or space. There are many ways to display such data, but the sim-
plest and most obvious is by means of a two-dimensional scatter plot.

However, there is no universal standard for encoding  such information, nor for displaying  it. Tradi-
tionally, such plots could be drawn in a graphing  program, and exported to a raster graphics format. 
The raster output clearly loses all information about the original data, and is largely interpretable only 
by the human eye. Certainly later manipulation of the graph (by, for example, changing the value of 
one of the points, or rescaling the axes) is impossible with access only to the raster output.  The 
graphing program may have some format which maintains the data, but in a largely inaccessible way.

8

17 “iFaX: Integrating Fortran and XML”, National Institute of Environmental eScience, Cambridge, United 
Kingdom. 8th-10th January. 2007
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Graphing  programs may well also be able to output to a vector format, such as PS, PDF, or SVG - 
but while the structure of the plot is preserved in a more usefully machine-comprehensible and ma-
nipulable way, still most of the semantics are lost - any coordinates in the vector data are with respect 
to the page being drawn, not the original data.

We constructed a new XML mini-language (which we call Pélote) to represent such two-
dimensional data in its own right, independently of what the data might mean; and furthermore, we 
wrote an implementation of an XSLT transform which converts this XML into a line-graph in SVG 
format. Because this implementation is performed entirely in XSLT, requiring  nothing outside the 
world of XML, it is independent of any particular development and hosting environment.

By annotating  a Pélote document with an xml-stylesheet PI18, we instruct any XML reader that the 
contents of the document should be visualized as a 2D plot, and if the XML reader is suitably 
equipped, the transformation can take place without any user intervention. Since the output is stan-
dard SVG, it can be viewed on any modern web-browser without the need to install further software.

An example Pélote file is shown in figure 4, and 
its rendering  in figure 5. It can be seen that the 
XML file contains no presentation data, simply a 
list of points in a very simple format which can 
be trivially created. The presentation (size, 
length, position of axes, and tickmarks, etc.)  is 
inferred from the data by the pure XSLT transfor-
mation.

This format is very simple, and can be easily 
constructed by hand or by script.  More complex 
output is possible if desired, for when the default 
presentation can be improved upon; the Pélote 
language contains directives to control axis/
tickmark position, as well as line thickness, col-
ouring, and so on. More importantly, since the 
original data lies unchanged in the source file, it 
can be manipulated directly.

9

18 http://www.w3.org/TR/xml-stylesheet/

Figure 5: An SVG plot constructed by Pélote.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xml" 
href="http://www.eminerals.org/XSLT/pelote.xsl"?>
<plot xmlns="http://www.uszla.me.uk/xsl/1.0/pelote/pelote.xsl">
  <pointList>
    <point x="-5.00000000000" y="24476.2352941176"/>
    <point x="-4.00000000000" y="24381.7843137255"/>
    <point x="-3.00000000000" y="24200.7647058824"/>
    <point x="-2.00000000000" y="24098.3725490196"/>
    <point x="-1.00000000000" y="23951.7254901961"/>
    <point x="0.00000000000" y="23835.0196078431"/>
    <point x="1.00000000000" y="23697.9803921569"/>
    <point x="2.00000000000" y="23569.9215686275"/>
    <point x="3.00000000000" y="23436.9607843137"/>
    <point x="4.00000000000" y="23267.2941176471"/>
  </pointList>
</plot>

Figure 4: An example Pélote file
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5.2.2 ccViz

CML output allows for much richer handling  of the data, and we have detailed several of its advan-
tages in machine-processability above. However, it is undeniably harder on the eye than whatever 
textual data might previously have been the program’s output, regardless of any improved retention of 
semantics in the data.

This led to the desire for a tool which would translate the CML into something  more comprehensi-
ble, marking  the output data up so that it can be better visualized. Such tools have been built before, 
on non-XML bases, to illustrate code output using  whatever textual data is produced by a given code. 
However, such a tool will either be code-specific, or will require adapters for every code whose out-
put it understands. Furthermore, it will suffer because the textual data it is using  as input rarely is fully 
semantically marked up - the adapter for each code not only needs to adjust to different data formats, 
but needs to understand the implicit semantics of each code’s output. We have written this tool, 
which we call ccViz (for Computational Chemistry Visualizer).

We wanted to write a viewer that could take full advantage of whatever semantics were available 
in the CML output, and in addition, would have no code-specific dependencies, so the same viewer 
could be used for any CML-formatted output. In addition, we strongly desired that the viewer, as far 
as possible, required no additional software installation from the user, and that it be platform-
independent. This last was particularly important, since we wanted users to be able to share their data 
as easily as possible with collaborators and co-workers. 

The easiest way to accomplish this was to leverage a web-browser. Nearly all modern web-
browsers can be used essentially as XML viewing  tools, which can render a number of XML lan-
guages by default (XHTML, SVG, MathML), and which can have viewers embedded (by, for example, 
Java, Flash, or Javascript) for additional XML languages. In addition, for all practical purposes every-
one has such a web-browser on their desktop. This makes it an ideal host for the viewing environment 
we wished to build.

So we built our viewer by constructing a transformation from our CML output into a mixed-
namespace XHTML/SVG/CML document. This is strictly an XML-XML transformation, so can be ac-
complished by XSLT, and again, the xml-stylesheet PI can be used to annotate our CML documents 
and inform XML applications that our CML documents can be rendered in this way.

From the perspective of our viewing  tool, there are three sorts of data in our CML documents. 
Firstly, there is textual, or scalar numerical data. This is one-dimensional; it can be displayed simply 
by marking  up the data in colour, italic, bold etc., displaying  any units or other context as appropri-
ate. This can all be accomplished with standard XHTML, as shown in figure X.

10

Figure 6: Examples of ccViz output automatically constructed from CML documents. On the left, marked-
up textual output, with accompanying dictionary; on the right, an embedded applet showing 3D chemical 
structure , which can be interactively manipulated.
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Secondly, there is two-dimensional data, which might be displayed as a table (using  straightforward 
XHTML)  or more usefully, as a line graph or histogram. The human eye can generally make more im-
mediate sense of these latter than of a table of numbers. For some data, where tables are appropriate, 
they are displayed; elsewhere, Pélote was used to produce SVG graphs which were then embedded 
inline into the XHTML document.

Thirdly, there are molecular structures, which are three-dimensional entities. Although these could 
be printed out textually as a list of coordinates, they cannot sensibly be visualized in this way at all - 
they must be graphically and interactively displayed to be useful. Fortunately, there exists a tool, 
Jmol[REF] which will directly read CML files, and display molecular structures interactively; and Jmol 
is written so that it may be used as an applet, embedded in web-pages.

However, Jmol did not completely fulfil our needs; in its original form, it could not understand 
multiple namespace documents, nor could it read data from a document in which it was embedded. 
However, by using  the LiveConnect API, we persuaded Jmol to pull its data from the browser-
constructed DOM tree, which enabled us to embed multiple Jmol instances within our mixed-
namespace XHTML document, allowing the end-user to visualize any CML fragments therein. 

So our XSLT transform extracted any CML fragments representing  molecular structures, and placed 
them directly inline to the XHTML output, with an embedded Jmol applet for each fragment. The re-
sult of visualizing such a document is shown in figure 6.

The end result was that our CML documents were annotated to direct that they could be rendered 
with this XSLT transform, so any XML readers can apply the transform directly, without human inter-
vention. Alternatively, the transform can be performed, and the resulting XHTML document sent 
around between collaborators, who need know nothing  of the underlying  technology, and the output 
viewed, requiring no additional investment in time or software installation.

An important, and not entirely foreseen, outcome of writing  ccViz is that there is a uniform plat-
form for visualizing  our CML output. The uniformity across codes now means that users who are fa-
miliar with one code now can usefully look at the output of another unfamiliar code. Without this 
common viewing  paradigm, they would have had to go and learn the unfamiliar conventions of an-
other output format, and all of its implicit semantics.

5.2.3 Integration into TobysSRB.

The advantage of using  the xml-stylesheet PI is that in principle, any transform referred to can be 
automatically applied by an XML browser without end-user intervention. And indeed, most modern 
XML browsers include support for performing  this XSLT transform. Unfortunately, however, as of writ-
ing  this paper, this support is incomplete in all cases. Thus the transform must be run externally, 
which is a trivial one-line command, installed by default on all Linux and Mac OS X computers. 

xsltproc output.xml > output.html

where the XML file may be Pélote, CML, or any other file annotated with an xml-stylesheet PI.

But users are not always happy with having  to remember and use command-line tools, especially 
unfamiliar XML commands - and some end-users use Windows PCs, where it is not as simple. To this 
end we provide a user-accessible public web-page. This does nothing  but provide a form to accept an 
XML document, apply a suitable transform, and present the result immediately back into the users 
browser. Users are easily educated that to view their output, they simply click on a bookmark and 
choose the file in the resulting dialogue box.

For users within our project, though, we have made the process even simpler. By default within the 
project, all output files are stored on the SRB. When users use TobysSRB to browse their SRB directo-
ries, then the directory listings are augmented where any XML files are found - an additional link is 
presented. As well as the normal link for downloading/viewing  the file unchanged, a separate link is 
displayed which performs the transform on the server, and delivers the result straight to the user’s 
browser. Thus the process is entirely transparent - from the users point of view, they simply ask to 
‘view as html’ and the expected view is shown.

11
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6. Conclusion
The eMinerals project has approached the problem of managing  its data using  a combination of a 

distributed data storage broker, and marking  up its data in XML, specifically CML, which enables a 
host of complex informatics tools to be developed on this XML-based framework. Figure 7 illustrates 

how these tools are incorporated into the eMinerals system.

In this paper we discussed TobysSRB, a browser-based front-end to our data grid, which offers in-
creased usability over previous interfaces, and requires nothing  in the way of firewall configuration or 
client installation. It also allows the use of format-specific external viewers.

We also described FoX, a pure Fortran library for XML-enabling  existing  scientific programs. It has 
two components, WXML, which bridges the Fortran-XML gap, and WCML, which entirely abstracts 
away details of the XML allowing users to generate CML with the minimum of education.

Finally, we discussed the visualization of XML files, mentioning  two tools - Pélote, a language and 
implementation for describing two-dimensional plots, and ccViz, which produces complex mixed-
namespace XHTML documents to interactively visualize CML documents. Both of these are imple-
mented in pure XSLT, and can be used as external viewers for TobysSRB.

12

Figure 7: The flow of data within eMinerals with the tools described in this paper. Existing simulation codes re-
trieve input data from the SRB, perform some computation, and then return output data to the SRB. They also 
use FoX to output additional XML-encoded information. This can be picked up by the metadata harvester and 
added to the metadata database. Meanwhile, the XML file is stored on the SRB, from where it can be viewed 
through TobysSRB. Additional visualization is possible by transforming the XML using ccViz or Pélote.
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The end-user of the eMinerals dataflow can thus: use FoX to produce CML files from their simula-
tion codes, which when run across the compute grid will deposit XML-encoded data in the distrib-
uted data repository. They can then use TobysSRB  to explore the repository, and access XML files, 
which they can view through Pélote and ccViz for a rich interactive visualization of their data

13
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