

DL_POLY_3 I/O Analysis, Alternatives and Future
Strategies

Ilian T. Todorov, Ian J. Bush

STFC Daresbury Laboratory

Daresbury

Cheshire

WA4 4AD

Abstract

We outline the problems associated with I/O when performing large classical
Molecular Dynamics runs, and show that it is necessary to use parallel I/O methods
when studying large systems.

This is a Technical Report from the HPCx Consortium.

Report available from http://www.hpcx.ac.uk/research/publications/HPCxTRyynn.pdf

© HPCx UoE Ltd 2003

Neither HPCx UoE Ltd nor its members separately accept any responsibility for loss
or damage arising from the use of information contained in any of their reports or in
any communication about their tests or investigations.

 DL_POLY_3 I/O Analysis, Alternatives and Future Strategies

ii

1 Introduction ___3
2 I/O in DL_POLY__3
2.1 Serial I/O in DL_POLY 3 ___ 4
2.2 Parallel I/O in DL_POLY 3 __ 4
3 Results __5
4 Discussion ___6

DL_POLY_3 I/O Analysis, Alternatives and Future Strategies 3

1 Introduction

DL_POLY_3 is a general purpose molecular dynamics (MD) package developed by
I.T. Todorov and W. Smith at STFC Daresbury Laboratory to support researchers in
the UK academic community1. This software is designed to address the demand for
large scale MD simulations on multi-processor platforms, although it is also available
in serial mode. DL_POLY_3 is fully self-contained and written in Fortran 95 in a
modularised manner with communications handled by MPI. The standards
conformance of the code has been very rigorously checked using the NAGWare95
and FORCHECK95 analysis tools, so guaranteeing exceptional portability.
Parallelisation is achieved by equi-spatial domain decomposition distribution which
guarantees excellent load balancing and full memory distribution provided the
system’s particle density is fairly uniform across space2. This parallelisation strategy
results in mostly point to point communication with very few global operations, and
excellent scaling; one might compare it with the halo exchange algorithms employed
in computational fluid dynamics.

However parallelisation of the computation is only part of the story. For DL_POLY 3
to be an effective tool for researchers all parts of the calculation must scale, and this
includes the input and output (I/O) stages of the code. Historically this has most often
been performed in an essentially serial manner, not only in DL_POLY 3 but also
many other large scale packages. However with the scale of calculations now
possible it is clear that this approach will not scale to the next generation of
machines as the time for I/O is becoming prohibitive. In this short technical report we
shall describe how DL_POLY has in the past performed I/O, what problems this has
resulted in, and a very first effort to address the problems.

2 I/O in DL_POLY

The main I/O in DL_POLY 3 is, as is the case for all classical molecular dynamics
codes, reading and writing configurations. These are simply lists of the coordinates,
velocities and forces acting on the particles that comprise the system. In DL_POLY 3
this has traditionally been performed using formatted I/O for portability; while the MD
run itself may be done on the supercomputer the analysis of the results is often done
on a workstation at home.

While this is very portable there are a couple of potential problems

1. Formatted I/O is not very efficient

2. For large systems the files can get very big

It is the second point that is causing us to re-evaluate our I/O strategy. With top end
machines like HPCx now capable of performing classical MD simulations in millions,
or in some cases even billions, of atoms the time taken to write these large files is
now beginning to impact on the amount of science that users of DL_POLY 3 can
perform.

As matter of fact it is not the reading of configurations that is the issue. That is
typically done only once to define the initial state of the system. It is the writing of

DL_POLY_3 I/O Analysis, Alternatives and Future Strategies 4

configurations. This need not only be done for the final state of the system, but also
many times during the simulation of system so that the time evolution can be
studied. Thus it is the writing of configurations that need be parallelised, at least
initially. In the remainder of this section we shall describe how the writing of
configurations has been performed historically, and also our new parallel method.

2.1 Serial I/O in DL_POLY 3

Historically the writing of configurations has been done very simply in DL_POLY 3,
using a master slave method. One processor, the master, receives in turn the
coordinates, velocities and forces held by the other processors and writes them to
file. While simple, portable and robust this strategy has one obvious drawback, it is
inherently serial and so may impact scalability through simple Amdahl’s Law effects.
For instance on a large Blue Gene system we have observed one run where while a
timestep in the MD took around 0.5s to perform, the dumping of a configuration took
450 seconds. Since a configuration is typically dumped every 1,000-10,000
timesteps this is not a very satisfactory situation! We shall call this the Swrite
algorithm.

Reading of the initial configuration is the reverse of the above. The master reads a
chunks of the initial configuration and sends them in turn to the slave processors. As
input is not so much of an issue at present all results given here for reading will use
this algorithm.

2.2 Parallel I/O in DL_POLY 3

The obvious problem with the Swrite algorithm is that only one processor ever
performs the I/O, and thus all the other processors must wait on it. As an alternative
we developed a very simple Pwrite algorithm where all processors participate in
writing to the file.

Given the simple and regular format of the configuration file it is very simple to
calculate where the data for a given atom needs to be written; it depends solely on
the global index of that atom. Further given that each item of the data consists of
nine real numbers, the components of the position, velocity and force, all the record
lengths in the file will be the same. Thus it is very simple to use Fortran direct access
files and have each processor writing to the appropriate records for the atoms it
holds. So in our Pwrite algorithm all the processors write to the file at once, as each
processor can calculate where in the direct access file the data need be written.

While this algorithm is simple to implement, it is not robust and will not work on some
computers, for instance the Cray T3X series. The reason for this is that it does not
conform to the Fortran standard, which essentially assumes that only one process
will ever be accessing a file at once. Given the emphasis on standard conformance
previously in DL_POLY this is unacceptable for general release. However it is “good
enough” to test the impact of parallel I/O, and much simpler than a full MPI I/O or
HDF implementation.

DL_POLY_3 I/O Analysis, Alternatives and Future Strategies 5

3 Results

To test the I/O the system we used was an oxygen deficient pyrochlore Gd2Zr2O7
(zirconite) with a size of 3,773,000 particles, which corresponds to 1.1 GB
configuration dump file. It is worth mentioning that no machine was available for
exclusive use while benchmarking which could have contributed to the fluctuations of
the observed times at low processor counts.

Table 1 shows the results for two IBM systems, the Blue Gene system at Daresbury
and HPCx. The times for writing a single configuration are given, as is the time to
perform a single timestep. Both systems have a GPFS file system.

IBM BG/L IBM P575
CPUs

PWrite SWrite Timestep PWrite SWrite Timestep

32 21.5 228.7 28.22 11.3 98.3 12.02

64 20.8 244.5 13.69 9.7 118.3 5.95

128 16.6 242.1 7.23 9.1 153.5 3.03

256 18.4 238.9 3.86 13.1 120.0 1.58

512 22.5 248.9 2.03 13.3 134.1 0.87

1024 39.5 252.2 1.16 17.1 148.3 0.58

2048 58.8 253.0 0.77

Table 1

It can be seen that the parallel writing algorithm is markedly superior to performing
I/O in serial. Improvements by an order of magnitude can be obtained, and it is clear
that if regular writing of configurations is required when studying this system that the
parallel strategy will markedly improve the scaling of the whole code, even though
the I/O is not scaling especially well itself.

Table 2 contains the timings obtained on a Cray XT3 system. Both single and dual
core runs were performed, and again exclusive use was not available.

Cray XT3 Single Core Cray XT3 Dual Core
CPUs

PWrite SWrite Timestep PWrite SWrite Timestep

64 16.5 32400 2.93 15.0 32400 3.62

128 16.3 32400 1.61 12.5 32400 2.30

256 14.9 32400 0.87 14.8 32400 1.26

512 17.3 32400 0.48 19.6 32400 0.64

1024 11.5 32400 0.44

Table 2

The improvements here are dramatic, though it probably reflects more a problem in
the Lustre I/O system used by the XT3 rather than the code changes we have made.
Whatever the number of processors the Swrite algorithm took at least 9 hours;
remember this is the time to dump just one configuration! On the other hand the

DL_POLY_3 I/O Analysis, Alternatives and Future Strategies 6

Pwrite time is comparable to that found on the IBM systems, and show similarly poor
scaling. It can also be seen the timestep calculation is appreciably faster on the XT3
compared to the IBM systems.

4 Discussion

It is clear from the above that for DL_POLY to be able to address larger systems we
must move to a parallel I/O strategy. However it is also clear that the current
strategy, while simple to implement is not optimal as it

1. is not portable

2. does not scale well

To address the second point a simple method would be to use only a subset of the
processors to perform the I/O, rather than all of them. For instance on the BG/L
system it is clear that 128 processors would be a sensible number to use for this
particular simulation, and we suspect that similar considerations will apply whatever
the form of parallel I/O is used.

For portability there are two issues, the portability of the implementation and the
portability of the resulting file. The current implementation fails the first but passes
the second. Unfortunately the most common parallel I/O library, MPI IO, in practice
passes the first but fails the second. This is because most current implementations
of MPI IO only implement the native data representation which is inherently non-
portable. As analysis of DL_POLY runs is often performed on a different machine to
that which the code originally executed on, this is not acceptable. We therefore
intend to look at other possible solutions, such as HDF, to solve the problem outlined
in this report.

[1] Todorov IT and Smith W, 2004, Phil Trans R Soc Lond, A 362, 1835

[2] M.R.S. Pinches, D. Tildesley, W. Smith, 1991, Mol Simulation, 6, 51

