
A Framework for Software Preservation 1

5th International Digital Curation Conference
December 2009

A Framework for Software Preservation

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones

e-Science Centre, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxon

OX11 0QX, UK

August, 2009

Abstract
Software preservation has not had detailed consideration as a research topic or in practical

application. In this paper, we present a conceptual framework to capture and organise the main

notions of software preservation, which are required for a coherent and comprehensive approach.

This framework has three main aspects. Firstly a discussion of what it means to preserve software

via a performance model which considers how a software artefact can be rebuilt from preserved

components and can then be seen to be representative of the original software product. Secondly

the development of a model of software artefacts, describing the basic components of all software,

loosely based on the FRBR model for representing digital artefacts and their history within a library

context. Finally, the definition and categorisation of the properties of software artefacts which are

required to ensure that the software product has been adequately preserved. These are broken down

into a number of categories and related to the concepts defined in the OAIS standard. We also

discuss our experience of recording these preservation properties for a number of BADC software

products, which arose from a series of case studies conducted to evaluate the software preservation

framework, and also briefly describe the SPEQS toolkit, a tool to capture software preservation

properties within a software development.

2 A Framework for Software Preservation

5th International Digital Curation Conference
December 2009

1. Introduction
Software is a class of electronic object which is frequently the result of research and is

often a vital pre-requisite to the preservation of other electronic objects. However,

there has only been limited consideration of the preservation of software as a digital

object in its own right. This is mainly owing to the inherent complexity of software

products - a typical software artefact has a large number of components related in a

dependency graph, and with specification, source and binary components, and a highly

sensitive dependency on the operating environment. Handling this complexity is a

major barrier to the preservation of software, especially for people who were not

involved in its development but nevertheless want to maintain access to software.

Further, the preservation of software is frequently seen as a secondary activity and one

with limited usefulness.

Software preservation is thus a relatively underexplored topic of research and there is

little practical experience in the field of software preservation as such. Given the

relative immaturity of the field, there is a need for both a conceptual analysis of the

process of software preservation, and experience and tools in undertaking preservation

in practice.

The work presented in this paper presents a pair of studies into software preservation
1
,

which looked at a number of software repositories and other groups engaged in

maintaining software over the long term (Matthews et. al. 2008). As part of this study,

we have developed a framework to express the notion of software preservation and set

out some baseline concepts of what it means to preserve software. The framework also

develops and extends the notion of performance and emphasises the notion of

adequacy and relates it to authenticity; narrows the notion of significant property to

those properties which are testable within a performance. Additionally, it considers the

concepts introduced within the OAIS reference model (OAIS 2002), and uses them

within the framework to categorise the preservation properties identified within the

model. In our study, this framework was developed in conjunction with a number of

analyses into software preservation practice, and some experimental tool development.

In this paper we concentrate on the conceptual framework. We briefly discuss the

exemplars and tools. For further details on the methodological and exemplar results of

the study see for example (Matthews et. al 2009a, Matthews et al. 2009b).

2. Aspects of Software Preservation
Long-term preservation of software has the following four major aspects:

 Storage. A copy of a software “product” needs to be stored for long term

preservation. As a software product is a complex digital object with potentially a

large number of components, what is actually preserved is dependent on the

software preservation approach taken. Whatever the exact items stored, there

should be a strategy to ensure that the storage is secure and maintains its

authenticity over time, with appropriate strategies for storage replication, media

refresh, format migration etc. as necessary.

1
 Joint Information Systems Committee (JISC) study into the Significant Properties of Software (2007)

and project Tools and Guidelines for Preserving and Accessing Software Research Outputs (2007-9)

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones 3

5th International Digital Curation Conference
December 2009

 Retrieval. In order for a preserved software product to be retrieved at a future

date, it needs to be clearly labelled and identified, within a suitable catalogue. This

should provide search on its function (e.g. terms from controlled vocabulary or

functional description) and origin.

 Reconstruction. The preserved product can be reinstalled or rebuilt within a

sufficiently close environment to the original that it will execute satisfactorily. For

software, this is a particularly complex operation, as there are a large number of

contextual dependencies to the software execution environment which are required

to be satisfied before the software will execute at all.

 Replay. In order to be useful at a later date, software needs to be replayed, or

executed, and perform in a manner which is sufficient close in its behaviour to the

original. As with reconstruction, there may be environmental factors which may

influence whether the software delivers a satisfactory level of performance.

While other digital objects also require these aspects, for software, reconstruction and

replay are particular concerns, as more than other objects we are more interested in

what software does than what software is.

3. Performance Model and Adequacy
Given the uncertainty of long-term digital preservation, it is necessary to be able to

measure the effectiveness of a digital preservation strategy. In the case of software we

propose to base this on the notion of how a sufficient level of performance preserves

the required characteristics of software. Performance as a model for the preservation of

digital objects was defined by the National Archives of Australia in (Heslop et. al.

2002) to measure the effectiveness of a digital preservation strategy. Noting that for

digital content, technology (e.g. media, hardware, software) has to be applied to data to

render it intelligible to a user, they define a model as in Figure 1. Here Source data

has a Process applied to it (in the case of digital data some combination of hardware

and software) to generate a Performance, where meaning is extracted by a user.

Different processes applied to a source may produce different performances.

However, it is the properties of the performance which need to be considered and can

arise from a combination of the properties of the source with the technology applied in

the processing.

Figure 1: NAA Performance Model

In general, the performance of a software product is the execution of the binary files

associated with the product on some hardware platform configured in some

architecture to provide the end experience for the user. However, the processing stage

depends on the nature of the software artefacts preserved which has differing

reconstruction and replay requirements. For example, in the case where binary is

preserved, the process generating the performance requires the original operating

software environment and possibly the hardware too, or else emulating that software

environment on a new platform. In this case, the emphasis is usually on performing as

closely as possible to the original. On the other hand, when source code and

configuration and build scripts are preserved, then a rebuild process can be undertaken,

Source Performance Process User

4 A Framework for Software Preservation

5th International Digital Curation Conference
December 2009

using later compilers and linkers on a new platform, with new versions of libraries and

operating systems. In this case, we would expect that the performance would not

necessarily preserve all the properties of the original (e.g. systems performance, or

exact look and feel of the user interface), but have some deviations from the original.

Thus, a software performance can result in some properties being preserved and others

deviating from the original or even being disregarded altogether. Therefore, in order

to determine the value of a particular performance, we define a notion of Adequacy.

A software product (or indeed any digital object) can be said to perform

adequately relative to a particular set of features (“significant properties”), if in a

particular performance (that is after it has been subjected to a particular process)

it preserves that set of significant properties to an acceptable tolerance.

This notion of adequacy is usually viewed as an aspect of the established notion of

Authenticity of preservation (i.e. that the digital object can be identified and assured to

be the object as originally archived). However, we feel that it is useful to separate

these two notions in order to establish a more lucid requirement specification of long-

term preservation of software. For this, we use the premise that the term Authenticity

in long-term preservation essentially signifies the level of trust between a preserved

software product and its future end users. From the perspective of an end user of a

software product, this trust is primarily associated with the ability to trace the

provenance and verify the fixity information of the software. For example, a preserved

software product with comprehensively documented provenance history, including

history of original and custodianship record, and verifiable fixity information, through

the use of checksums, might establish in its users a sense of trust of the body

responsible for its preservation. But this “trusted preservation” does not guarantee a

reliable behaviour from the software once reconstructed in future; it might incur a loss

of some of its original features during its reconstruction process. However, the

software could still be used for the remaining features retained after reconstruction,

which could be sufficient to extract an acceptable level of performance from the

software. An example of such software is the emulated version of the 1990‟s DOS-

based computer game Prince of Persia
2
. While some of the operations do not always

work on the emulator and the original appearance of the game is also somewhat lost, it

is possible to run the emulator to play the complete game on a contemporary computer

platform. The term Adequacy introduced here is intended to represent this particular

concept. As we shall see (Section 3.1), by measuring the adequacy of a particular

performance of a software product, we can thus determine how well the software has

been preserved and replayed.

3.1 Performance of software and of data

A further aspect of the notion of software performance is that the measure of adequacy

of the software is closely related to the performance of its input data. Moreover, the

purpose of software is (usually) to process data, so the performance of a software

product becomes the processing of its input data. Thus, applying the NAA

performance model to software, we illustrate the relationship between software and its

input data as in

Figure 2. Note that we have reversed the arrow between performance and user to

2
 Best Old Games | Prince of Persia Download http://www.bestoldgames.net/eng/old-games/prince-of-

persia.php

http://www.bestoldgames.net/eng/old-games/prince-of-persia.php
http://www.bestoldgames.net/eng/old-games/prince-of-persia.php

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones 5

5th International Digital Curation Conference
December 2009

reflect the information flow. Further, there is an interaction between the user and the

software performance, reflecting the user‟s interaction with the software product

during execution, changing the data processing and thus its performance.

Figure 2: Performance model of software and its input data

So for example, in the case of a word processing product which is preserved in a

binary format, which is processed via operating system emulation, the performance of

the product is the processing and rendering of word processing file format data into a

performance which a (human) user can experience via reading it off a display. The

user can then interact with the processing (via for example entering, reformatting or

deleting text) to change the data performance. Thus the measure of adequacy of the

software is the satisfaction of the performance to the user when it is used to process

input data, and thus how well it preserves the significant properties of its input data,

and also preserving a known change in the performance which results from user

interaction with the processing.

Thus the adequacy of different preservation approaches is dependent upon the

performance of the resulting replay on data. As the software has to be able to produce

an adequate performance for any valid input date, the adequacy can be established by

performing trial executions against representative test data covering the range of

required behaviour (including error conditions). Additionally, the adequacy of

preservation of a particular property can be established by testing against pre-specified

suites of test cases with the expected behaviour, and pre-specified user interactions to

change the data performance in known ways.

4. The Conceptual Framework
In order to express the properties of software that need to be preserved for its effective

long-term preservation, we have developed a conceptual framework to capture the

approach taken to software preservation and the structuring of the software artefact and

the significant properties of software for preservation.

4.1 A Conceptual Model for Software

Various approaches to digital preservation have been proposed and implemented,

usually as applied to data and documents. While these approaches to preservation vary

in terms of implementation and other related technical aspects, they share in common

an attempt to identify the additional information (i.e. metadata) needed to aid the

preservation process. Examples include FRBR (IFLA 1998), PREMIS (PREMIS

2005), and OAIS (OAIS 2002). We recognise that a conceptual data model is required

to determine the level of granularity at which preservation properties of software can

Software
Source

Software
Performance/

Data
Processing

Software
Processing

User
Data

Source

Data
Performance

6 A Framework for Software Preservation

5th International Digital Curation Conference
December 2009

be identified, and provide an understanding of the relationship between digital objects,

thus giving traction on handling the complexity of the objects, a particularly important

aspect in handling software. Therefore, we have developed a general model for

software digital objects that is intended to provide a comprehensive view of the

underlying dependencies of software, and thus help identify its preservation properties.

We define a general model for software consisting of four major conceptual entities in

analogy with the FRBR model, which together describe a complete Software System.

These are Product, Version, Variant and Instance (Figure 3).

Product: The product is the whole top-level entity of the system, and is how the

system may be commonly or informally referred to. Products can vary in size and can

range from a single library function (e.g. a function in the NAG library
3
), to a very

large system with multiple sub-products with independent provenances (e.g. Linux).

Version: A version of a software product is an expression of the product which

provides a single coherent presentation of the product with a well defined functionality

and behaviour. Note also that in composite products, the sub-products will themselves

have a number of versions which will be related to versions of the complete product.

These releases will not necessarily be synchronised, so the relationship between

versions of sub-products need to be captured.

Figure 3: The Software Component Conceptual Model

Variant: Versions may have a number of different variations to accommodate

different operating environments, thus we define a Variant of the product to be a

manifestation of the system which changes in the software operating environment, for

example target hardware platform, target operating system, library, and programming

language version. In this case, the functionality of the version is maintained as much

as is practical; however, due to different behaviour supported by different platforms,

there may be variations in behaviour, in error conditions and user interaction (e.g. the

look and feel of a graphical user interface).

In practice, Version and Variant may be difficult to distinguish: changes in

environment are likely to change the functionality; new versions of software are

brought out to cope with new environments. It may be arguable that in some

circumstances Versions are subordinate to Variants, and in others we may wish to omit

one of these stages such as software which is only ever targeted at one platform. But it

3
 Numerical Algorithm Group http://www.nag.co.uk/

http://www.nag.co.uk/

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones 7

5th International Digital Curation Conference
December 2009

is worth distinguishing the two levels, as it makes a distinction between adaptations of

the system largely to accommodate change in functional properties (versions), with

those which are largely to accommodate change in properties of the operating

environment (variants).

Instance: An actual physical instance of a software product which is to be found on a

particular machine is known as an Instance. It may be also referred to as an

installation, although there is no necessity for the product to be installed; a master copy

of stored at a repository under a source-code management system may well not be

executable within its own environment.

4.2 Software Components

All of the entities in the above conceptual model of software which form a software

system are composite. Some of them may be subsystems, with sub-products. All

systems however, will be constructed out of many individual components. A

component is a storable unit of software which when aggregated and processed

appropriately, forms the software system as a whole. Logical components typically

(but not necessarily always) roughly corresponds with a physical file (a unit of storage

within an operating system‟s memory management). However, multiple components

can be stored within in one file (e.g. a number of subroutines within one file) or across

a number of files (e.g. help system or tutorial stored within a number of HTML files).

Components may also be formed of a number of different digital objects, (e.g. text

files, diagrams, sample data) which themselves would have preservation properties

associated with their data format. A comprehensive preservation strategy for the full

software system would have to consider those digital objects as well.

In this model, we give a number of different kinds of software component associated

with a product, version or variant in the conceptual model of software in Figure 3.

Note that this list is not exhaustive, and additional kinds of component may be

identified. Of particular note is “Test Suite”, which represents examples of operation

of the product and expected behaviour arising from operation of the product. A test

suite for typically produced to test the conformance of the product to expected

behaviour in a particular installation environment. Thus, a test suite of a software

product would play a significant role in measuring the adequacy of its preservation.

5. The OAIS Reference Model and Software Preservation
The Reference Model for an Open Archival Information System (OAIS) is an ISO

standard that is primarily concerned with the long-term preservation of digitally

encoded information. In essence, the underlying notions of the OAIS reference model

should be applicable to the long-term preservation of software artefacts as

fundamentally (i.e. at bit level) they are in fact digitally encoded information.

Therefore, as illustrated in Figure 4, the OAIS information model can be applied to the

process of rendering a preserved Data Source on a future technological platform,

where the rendering of the data requires the use of a particular software product, which

in turn requires a specific complier, to be rebuilt from its preserved state. In short, the

OAIS defined Descriptive Info, Representation Information (RI) and Preservation

Description Information (PDI) (OAIS 2002) can be used to retrieve (discover and

access), reconstruct (compile source code), and replay (verify authenticity and run) a

8 A Framework for Software Preservation

5th International Digital Curation Conference
December 2009

software object respectively.

Figure 4: The Relationship between the OAIS Information Model and the Software

Performance Model

However, once re-built, Significant Properties (SPs) about the software are required

to measure the adequacy of the software in processing the Data Source, which in turn

measures the performance of the compiler in re-building the software from its source

code. This is not comprehensively addressed in the OAIS model but may be

considered amongst the Preservation Description Information of software for

demonstrating the satisfaction of significant properties, and thus viewed as an

additional component of the OAIS information object in the context of long-term

software preservation.

6. Preservation Properties of Software
In considering what preservation properties are needed for software, we need consider

the following seven general categories of features which characterise software (Table

1). These categories apply to each of the four major conceptual entities of software

system defined in the conceptual model of software (Section 4). We also try to

demonstrate the relationship of each of these categories to the relevant OAIS

information entity.

Category Description Examples Equivalent OAIS

Terms

Functionality  Description of the typical

characteristics of

software.

 Useful for efficient

discovery and

accessibility of the

software in future

 Description of inputs and

outputs

 Description of operation

and algorithms

 Description of the

domain addressed

 Descriptive

Information

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones 9

5th International Digital Curation Conference
December 2009

Software

Composition

 Description of the

components that

constitute a software

 Useful for rebuilding and

reusing the software in

future

 Detailed history of

version changes and

other significant changes

that a software product

has undergone facilitates

verification of its

authenticity in future.

 A typical record: binary

files, source code, user

manuals and tutorials.

 A more complete record:

requirements and design

documentation, test cases

and harnesses,

prototypes, formal

proofs.

 Representation

Information

 Preservation

Description

Information

(PDI)

Provenance

and

Ownership

 Different software

components have

different and complex

licensing conditions.

 Needs to be included in

the preservation planning

 Software owner and

licence information, e.g.

Microsoft for MS

Word®

 Provenance

Information

category of

Preservation

Description

Information

(PDI)

User

Interaction

 Description of expected

mode of interaction

between user and

software

 The „Look and Feel‟ and

the model of user

interaction can play a

significant factor in the

usability of the software

and therefore should be

considered among its

Significant Properties.

 The inputs which a user

enters through a

keyboard, pointing

device or other input

devices, such as web

cameras or speech

devices

 The outputs to screens,

plotters, sound

processors or other

output devices

 Not

comprehensively

addressed in the

OAIS – may be

categorized as

the Significant

Properties of

software

Software

Environment

 Description of the

environment that the

correct operation of the

software depends on

 Dependencies between

software environment

related entities and

history of changes made

to them

 Hardware platform,

operating system,

programming languages

and compilers, software

libraries, other software

products, and access to

peripherals.

 Binaries usually require

an exact match of the

environment to function

 Representation

Information

Software

Architecture

 Plays a significant part in

the reproducibility of the

original functionality and

features of software

 Client/server, peer-to-

peer, and Grid systems

all require different

forms of distributed

system interaction which

would require the

configuration of

hardware and software to

be reproduced to

reproduce the correct

behaviour.

 Representation

Information

10 A Framework for Software Preservation

5th International Digital Curation Conference
December 2009

Operating

Performance

 The performance of the

software with respect to

its use of resources (as

opposed to its

performance in replaying

its content)

 Play a significant part of

the reproducible

behaviour of software.

 Contributes towards the

information needed to

measure the overall

adequacy of software

preservation in future

 Speed of execution, data

storage requirements.

 In some circumstances,

we may wish to replay

the software at the

original operating

performance rather than a

later improved

performance.

 A notable example of

this is games software,

which if reproduced at a

modern processor‟s

speed would be too fast

for a human user to play.

 Not

comprehensively

addressed in the

OAIS – may be

categorized as

the Significant

Properties of

software

Table 1: Different categories of preservation properties of software

7. Applying the Software Preservation Model to the BADC

Software
We carried out a series of case studies into existing practices of software preservation

and maintenance in order to validate the applicability of the software preservation

model. Of particular note among these studies is the one conducted on the British

Atmospheric Data Centre (BADC)
4
, which involved evaluating the model against a

number of BADC software. For this, we tried to collect the appropriate value(s) for

each of the preservation properties defined in the framework (Section 6) for each major

conceptual entity of software (Section 4.1.1). Table 2 outlines the preservation

properties of “Product” entity of the BADC Web Feature Service
5
 identified as part of

the BADC case study.

Property

Category

Software Property

Name Value

Functionality Purpose Enabling publishing and querying of Geospatial data

on the web using open standards

Keyword Web feature service

Provenance

and

Ownership

package_name GeoServer

Owner GeoServer and SeeGrid

Licence
GNU GENERAL PUBLIC LICENSE, Version 2

http://geoserver.org/display/GEOS/License

Location http://geoserver.org/display/GEOS/Welcome

Software

Architecture

Overview The software architecture is comprised of a series of

modules for handling requests for geospatial data as

4
 The British Atmospheric Data Centre - http://badc.nerc.ac.uk/home/index.html

5
 The BADC WFS Enables retrieving and updating geospatial data encoded in Geographic Markup

Language (GML - http://www.opengeospatial.org/standards/gml), or any GML-based formats,

irrespective of the location or storage media of the data. The implementation is based on the Open

Geospatial Community (OGC) standard for Web Feature

Service(http://www.opengeospatial.org/standards/wfs)

http://geoserver.org/display/GEOS/License
http://geoserver.org/display/GEOS/Welcome
http://badc.nerc.ac.uk/home/index.html
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/wfs

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones 11

5th International Digital Curation Conference
December 2009

geographical features across the web using platform-

independent calls, such as HTTP Get and Post and

SOAP.

http://geoserver.org/display/GEOSDOC/1+GeoServer

+Architecture

Software

Composition

software

overview

http://geoserver.org/display/GEOS/What+is+Geoserv

er

Tutorials Installation:

http://geoserver.org/display/GEOSDOC/1+Getting+St

arted

Requirements Operating system: Window/Linux/Unix, Minimum

RAM: 512 megabyte, Java 1.5 or higher

Table 2: “Product” properties of BADC GeoServer/WFS

The experience of applying the framework for software preservation to the BADC

WFS/GeoServer software shows that the framework is sufficiently relevant to the

software (e.g. GeoServer) used as well as being adequate in terms of the information

recorded. However, it also highlights the necessity to have considerable knowledge of

both the framework and software in question to accurately apply the framework to the

software. This indicates a need for tools to facilitate the recording of software

preservation properties by providing guidelines which, for example, explain the

underlying concepts of the framework in a user-friendly manner.

8. SPEQS
In the light of the findings from the BADC case study, we have developed a tool,

called Significant Properties Editing and Querying for Software (SPEQS) to

support the systematic collection of preservation properties for software. In essence,

SPEQS exemplifies how the capture of the preservation properties identified in the

software preservation framework could be integrated within the software development

lifecycle. It has been implemented in Java as a plug-in for Eclipse
6
, a widely used open

source interactive software development environment, to enable software developers to

record, edit and query preservation properties of software (as defined in Table 1)

directly from within the Eclipse environment. It also provides software developers

with suitable guidelines for accurately recording significant properties of software. We

envisage that this approach of enabling capturing preservation properties of software

during its development lifecycle would contribute towards ensuring the accuracy of the

information recorded.

8.1 Architecture Overview of SPEQS

SPEQS uses an ontology representation of the conceptual model for software (4.1),

written in OWL (Web Ontology Language)
7
 for recording preservation properties of

software (SPs) in RDF
8
 format and querying the recorded SPs using SPARQL

9
, the

query language for RDF. The SPEQS architecture consists of four principal

components: the SP Editor, the SP Query Interface, the SPEQS Data Store and a

6
 Eclipse - http://www.eclipse.org/

7
 OWL - http://www.w3.org/TR/owl-features/

8
 Resource Description Framework (RDF) - http://www.w3.org/RDF/

9
 SPARQL Query Language for RDF - http://www.w3.org/TR/rdf-sparql-query/

http://geoserver.org/display/GEOSDOC/1+GeoServer+Architecture
http://geoserver.org/display/GEOSDOC/1+GeoServer+Architecture
http://geoserver.org/display/GEOS/What+is+Geoserver
http://geoserver.org/display/GEOS/What+is+Geoserver
http://geoserver.org/display/GEOSDOC/1+Getting+Started
http://geoserver.org/display/GEOSDOC/1+Getting+Started
http://www.eclipse.org/
http://www.w3.org/TR/owl-features/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/

12 A Framework for Software Preservation

5th International Digital Curation Conference
December 2009

software repository, such as Subversion
10

 (Figure 5).

Figure 5: An Architectural View of SPEQS

The SP Editor and the SP Query Interface are Graphical User Interfaces (GUIs)

accessible from the SPEQS menu of Eclipse toolbar. The SP Editor enables recording

and updating of SPs for software projects defined within Eclipse environment. And the

SP Query Interface enables querying, viewing and analysing the recorded SPs. The

SPEQS Data Store is a relational database that consists of a RDF Triple Store
11

 for

storing SPs and a standard data storage entity for storing other meta-information (e.g.

developer name, creation date etc.) associated with the software. SPEQS interacts with

software repositories and management systems, such as Subversion, to keep track of

the changes made to software and ensuring accurate and consistent association with its

preservation properties. At present, SPEQS only supports Subversion based software

development.

8.2 Evaluation of SPEQS

SPEQS demonstrates the feasibility of providing effective guidance through suitable

tooling for accurately annotating software with its preservation properties. However,

there is still considerable scope for further improvement in SPEQS. In particular,

SPEQS needs to incorporate an efficient mechanism for semantically validating values

asserted in a SP record. This could involve integrating SPEQS with a suitable

controlled vocabulary. Furthermore, the SPEQS Data Store should be subjected to

effective long-term preservation technique, e.g. by integrating it with an efficient long-

term preservation archive, to ensure longevity of the SP records. Additionally, to cater

for a wider range of software projects, SPEQS would benefit from incorporating

support for other widely used software development environments, such as NetBeans
12

10

 Subversion - http://subversion.tigris.org/
11

 Databases specially configured to store and enable querying large RDF models.
12

 NetBeans - http://www.netbeans.org/

http://subversion.tigris.org/
http://www.netbeans.org/

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones 13

5th International Digital Curation Conference
December 2009

and other software repositories, such as SourceForge
13

 and CVS
14

. Despite these

shortcomings, we believe that SPEQS is demonstrates the potential of a

comprehensive software system that would facilitate capturing, validating, and

querying preservation properties of software.

7. Conclusions
In this report we have developed a conceptual framework to express a rigorous

approach to software preservation. It develops and extends the notion of performance

and emphasises the notion of adequacy and relates it to authenticity; proposes a

measurement of adequacy to the preservation of properties which are testable within a

performance; and uses the concepts introduced within the OAIS model within the

framework to categorise the identified preservation properties. Thus this framework

can be seen as a specialisation of the OAIS model to handle the case of software.

We believe that this is a general and principled approach which can cover the

preservation needs of a wide range of different software products, including modern

distributed systems and service oriented architectures, which are typically built of pre-

existing frameworks and have a large number of dependencies on a widely distributed

network of services, many of which are outside the control of the typical user (e.g.

DNS services, proxies, web services provided by external organisations such as

Amazon Web Services
15

). Further, the performance model presented here, which has a

notion of user feedback to influence the performance, may represent an approach to

preserving the user interface and the user interaction model, although work is required

to further develop that notion.

Further work is required to test this model and to provide tools. Some initial work has

been undertaken to integrate the capture of preservation properties of software within a

software development process, and also to use the framework within case studies.

Further work on case studies is required, especially across a range of software types to

cover the diversity of software and to consider how to support the preservation of

legacy software.

Acknowledgements
We would like to thank our colleagues David Giaretta, Esther Conway, Steven Rankin,

Brian McIlwrath and other members of the Digital Curation Centre and CASPAR

projects for their advice and discussions, and to Jim Woodcock of the University of

York for contributing to case studies. The work was carried out under the JISC study

into the Significant Properties of Software and the JISC project Tools and Guidelines

for Preserving and Accessing Software Research Outputs.

References

[report] Heslop, H., Davis, S., Wilson, A. (2002). An Approach to the Preservation of

Digital Records, National Archives of Australia, 2002. Retrieved July 29, from

2008, from http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-

888.pdf

13

 SourceForge - http://sourceforge.net/
14

 CVS - http://www.nongnu.org/cvs/
15

 Amazon Web Services - http://aws.amazon.com/

http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf
http://sourceforge.net/
http://www.nongnu.org/cvs/
http://aws.amazon.com/

14 A Framework for Software Preservation

5th International Digital Curation Conference
December 2009

[report] Matthews, B.M., McIlwrath, B., Giaretta, D., Conway, E. (2008). The

Significant Properties of Software: A Study. JISC report, 2008. Retrieved 3
rd

August, 2009, from

http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesof

Software.doc

[report] OAIS. (2002). Reference Model for an Open Archival Information System

(OAIS). Recommendation for Space Data Systems Standard, January, 2002.

CCSDS Blue Book. Retrieved July 27, 2009, from

http://public.ccsds.org/publications/archive/650x0b1.pdf

[report] IFLA, (1998). Functional Requirements for Bibliographic Records, IFLA

Study Group. 1998. Retrieved July 27, 2009, from

http://www.ifla.org/VII/s13/frbr/frbr.pdf

[report] PREMIS (2005). Data Dictionary for Preservation Metadata, PREMIS

Working Group. May 2005 Retrieved July 27, 2009, from

http://www.oclc.org/research/projects/pmwg/premis-final.pdf

[report] Computer History Museum. (2006). The Attic & the Parlor: A Workshop on

Software Collection, Preservation & Access, Workshop, May 5, 2006.

Retrieved July 29, 2008, from http://www.softwarepreservation.org/workshop/

 [proceedings] Matthews, B.M., Shaon, A., Bicarregui, J.C., Jones, C.M

, Woodcock,

J.C.P., Conway, E. (2009a) Towards a methodology for software preservation

iPres 2009 The Sixth International Conference on Preservation of Digital

Objects. October 2009.

[proceedings] Matthews, B.M., Shaon, A., Bicarregui, J.C., Jones, C.M

, Woodcock

J.C.P.. (2009b) An approach to software preservation. PV 2009 Ensuring

Long-Term Preservation and Adding Value to Scientific and Technical Data,

December 2009.

http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesofSoftware.doc
http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesofSoftware.doc
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://www.ifla.org/VII/s13/frbr/frbr.pdf
http://www.oclc.org/research/projects/pmwg/premis-final.pdf
http://www.softwarepreservation.org/workshop/

