
Gathering Requirements for an Integrative
Biology Project

The project
The Integrative Biology project is a second
generation e-Science project, funded by EPSRC,
which will build on the output of first round
projects and integrate these and other new
developments into a customised Grid
framework for:

§ running large scale, whole organ HPC
simulations,

§ managing a growing database of
simulation results and

§ supporting collaborative analysis and
visualisation.

The long-term goal driving the project is
development of an underpinning theory of
biology and biological function capable of
sufficiently accurate computational analysis that
it can produce clinically useful results.

The Requirements Process
Gathering requirements can be approached in
many ways, from videoing current work-
practises, to interviewing potential users, to
rapid prototyping. The approach taken depends
very much on the type of users who expect to
use the system being developed and on what is
to be delivered by the project. As a second-
generation project, an integration project and a
production system development project,
Integrative Biology raises a number of
interesting requirements gathering and
representation issues. This paper aims to
identify the variances in gathering requirements
and outlines the approach that the Integrative
Biology project has taken to address the needs
of the user community for this project.

In the commercial field, the process of gathering
requirements is driven by several key factors:

§ The client budget
§ The timescales for delivering a solution
§ Pre selected technology

These factors dictate the most cost effective
process for a company to determine what is to
be built, or solution requirements. Where the
client has a budget or time constraint, the
process of gathering requirements is typically
carried out in phases:

1. The exploratory stage
This process determines the opportunity for the
vendor. Does the client have a large budget to
spend? Do they have existing technology that

should form part of the ‘solution’? Do they have
any preconceived idea of what the system
should look like or do? Who are the users and
how computer literate are they? Who will be the
key stakeholders that determine what is to be
developed? This process underpins the
requirements exercise. If this process is not
carried out, the vendor is likely to suffer
conflicts later in the project with poorly met
expectations.

2. The Scoping exercise
At this point in a project, the client is often
paying for the delivery of a scoping document.
This document contains details of what will be
delivered (what is in scope) and what is out of
scope. This involves interviewing project
stakeholders and key users. The client then
signs off this document when they are confident
that it reflects their expectations. Only when this
is signed off does the vendor proceed to capture
the detailed user requirements. Frequently, this
phase is separately funded from the main
developments, and this document then forms the
basis for the development contract.

3. The Detailed User Requirements
This process is carried out by more technical
consultants and is charged to the client. This
process is iterative and involves working
directly with the users to document what they
expect the system to do and how they want the
system to look. Companies use a variety of
methods to capture this information, from
textual representations to case modelling. Again
the user community signs off this document of
captured requirements before moving onto
technical design. The document then goes on to
form the basis of the acceptance tests that the
developed system has to meet. A key point to
make here is that before the project commences,
a resource is identified who takes the role of
‘super-user’ and who will act as an arbitrator for
the user group.

4. The Technical Design
This process defines and documents technical
architecture from the agreed requirements and is
charged to the client. The primary objective of
this phase is to produce a specification that the
development team can build. The key issue is
to ensure that the system built will actually
satisfy the requirements. Ideally, two related
documents are produced, an architecture
document that is oriented towards the end users,
so that they can fully understand the system
being developed, and a high level system design
document oriented towards the IT developers,

that provides the necessary decisions and
structure needed for the implementation.
Unfortunately, in most cases, only one
document is produced to carry out these two
functions. One key point is that it should be
possible to trace each requirement to the part of
the system that will satisfy it. Sometimes this is
done formally; often it relies on the abilities of
the users to understand the technical design
documents.
By following the above process, the vendor is
more likely to be successful in managing the
expectations of the client.

Looking at research projects, there is often no
clear user, and no clear deliverable. The key to
these projects is innovation. Often though, there
is an element of development in these projects.
Determining what to build requires a process
very similar to that used in the development of
products in industry:

1. Identify Market or Research

Opportunity
This process identifies the fundamentals of a
research project in academia and identifies a
new product direction for a commercial
company. This exercise looks at competitors,
looks at current trends and looks at innovative
solutions. The output of this exercise may be a
feasibility report and return on investment
analysis. In the research world, it is more likely
that this information is part of the research
proposal and the acceptance of the proposal is
taken as implicit approval of the “requirements”
stated.

2. The Detailed User Requirements
If a feasibility study identifies a market
opportunity or a research project, this process
requires the resources to work with a cross
section of users to determine the wish list for a
potential product. There is often no user
representative who acts as arbitrator, and indeed
often no group of users with the motivation to
contribute the significant effort needed to
produce fully comprehensive requirements. This
results in the requirements gatherer having to
sift through many requirements, often
conflicting, to determine a baseline system from
which to work. The definition for the product
or project deliverables therefore has to be taken
by the vendor or project team in the face of
incomplete requirements information. The only
saving grace is that the vendor or project
principals are frequently knowledgeable about
the domain.

3. The Technical Design
This process defines a technical architecture to
support the product definition.
Many of the projects undertaken in large multi-
disciplinary research projects follow variants of
the latter process. The deliverables are often
prototypes or demonstration capability.

The eDiaMoND project followed a similar
process and identified the challenges in working
with a disparate user community with no
standard ways of working. In this project,
extensive effort was put into understanding the
domain through observing clinical staff in situ
and observing their work practices. The
complications then stem from having to
decipher this knowledge and determining
baseline system requirements to enable an initial
prototype to be developed.

Communicating with Users
The language used when communicating with
users is crucial to ensure common
understanding between users and project teams.
Users who are technology aware or have
existing and often deficient systems are usually
able to articulate what they want from a system
in a language understood by those developing
systems. Users who have no existing systems
on which to base their needs for improvements
or are not as aware of what technology can do
for them require assistance with this process, as
they are often unable to articulate their needs.

The language used and the ways in which user
needs are described and documented in terms of
system functional or non-functional
requirements varies, although Use Case
Modelling has been used widely in industry for
several years. This language used may be
textual, diagrammatic or through the use of
rapid prototypes to ‘mock-up’ systems to enable
true feedback through experiential exercises.

Another problem with the use of UML in this
particular project is that many of the
requirements are defined at higher levels of
abstraction as the interaction with the computer
and the software system is an aid to expert
decision making through data exploration. What
is required is to develop a modular problem-
solving environment that is flexible and
dynamic to support data exploration and
steering by a group of experts. As a
consequence, we are likely to use UML based
language and methodology more a tool for
reasoning about the architecture and the
modules amongst the architect and the software

developers rather than as a tool to gather user
requirements.

The Integrative Biology Challenges
The Integrative Biology Project will be
developing a simulation framework, which will
offer users the potential for more collaborative
working, access to HPC resources and a more
interactive way of working on these complex
problems. The potential users of the system
work in very different ways to each other. They
typically are able to use mathematical modelling
tools or develop their own software packages to
enhance the science. Their working
environment is usually their laptop or desktop
machine and they work within these confines by
adapting the way they work to fit these
constraints. Their understanding of technology
varies from able to develop parallel codes,
which will run on HPC machines to obtain the
best performance for their modelling codes, to
little or no understanding of how collaborative
systems could enhance the science. Also, each
group of scientists have home grown software
that encapsulates their knowledge of their field,
their research focus and the familiarity they
have of the desktop tools. The requirements for
performance are different. A generic
architecture needs to build in different views

Some of the scientists on the project have
worked collaboratively for many years but that
process has involved joint publications and the
sharing of developed models, code and data
informally.

For example, the team in Auckland have
worked extensively with Denis Noble’s group in
the UK and with other groups in the US and
have incorporated their models into the CMISS
repository [1]. This code is provided to the
research community as open source executables.
These collaborators have not, to date, been able
to work collaboratively on a daily basis and in
real time so the vision we are portraying for the
project are far from how these scientists work
today.

Our Approach to the Initial Requirements
for Integrative Biology
The Integrative Biology Project is seeking to
introduce several changes in the way its end
users work, providing access to more powerful
resources, encouraging the use (and reuse) of
available tools and supporting a much more
collaborative working environment. It has
therefore adopted an iterative approach to
requirements capture through the development

of an initial prototype, from which the project
will iterate through reviews and further
requirements definition. It is envisaged that the
prototype will act as a tool for working with the
scientists to determine the true requirements for
a modelling ‘collaboratory’ for bio-simulations.
This initial phase therefore required a different
approach from the later requirements exercises,
as the starting point was almost a clean slate,
with little to show the users other than
descriptions and demonstrations of what other
first generation e-science projects have
produced, and which may form a basis for
improving the tools available to them.

The definition of the initial prototype required
the project team to determine the essential
features of a potential simulation framework to
ensure that the development work started from a
strong base and ensured the buy-in from the
user community by developing a prototype that
excited them.

With this in mind, the project underwent an
initial requirements capture exercise with heart,
cancer and molecular modellers. One of the
advantages of the project is that it incorporates
within itself a good cross-section of end users,
so is not reliant on busy and somewhat
unmotivated external users. The team explored
the different methods for extracting these
requirements and decided to utilise scenarios as
the language for communication.

The various aspects of the system were split into
clearly distinct areas:

- Visualisation and Computational Steering
- Data Management
- Simulations and Modelling
- Security

These areas were assigned leaders for the
requirements process. These leaders were able
to work with the users to articulate the possible
benefits of potential tools. The individual
groups devised questionnaires for the users, to
ensure that key aspects of requirements in each
of the above areas were considered. These
questionnaires were sent to users to consider
prior to a detailed briefing on the process so that
the users understood why their contribution was
important.

These scenarios were described as:
- Something users want to be able to do,

described in terms of the steps required to
achieve it

- Having no more than 5-10 steps per
scenario

- Able to inter-relate to other scenarios
- Can be described by the potential users
- Have a distinct ID so traceable

The aim was that users articulated what they
want to be able to do in terms of scenarios
without having to consider the system
requirements. Example scenarios were provided
for reference from the Principal Investigator to
both encourage the users to contribute and also
provide them with samples of what the team
require. The user community was briefed
through presentations and access grid calls on
what the requirements team required from them.

One of the sample scenarios was:

Simple: A collaboration between a team of
mathematicians and experimentalists has
resulted in the development of a simulation code
that is sufficiently CPU intensive to require
HPC.

The group take their code, write a (simple)
wrapper, based on a template provided, that
will interface their code's I/O to that of the HPC
host, and rebuild with the supplied HPC
versions of their libraries. The compiler will
"optimise" for the HPC. Via a portal, they
upload their input data and executable onto the
HPC system and submit the job. Through the
portal they can see their job's status, and when
it completes they download the result datasets
ready for visualization using their existing
visualization tools.

The users were shown how these scenarios
would be used to determine system
requirements:

A Web based application portal needs to:

• display a list of HPC resources and current
load on these.

• allow the user to select the HPC on which
the simulation needs to run.

• show the wrapper template in an editable
text box (wrapper editor).

• show the appropriate libraries for the
chosen HPC.

• ask the user for file names to store resultant
data.

• submit the job for optimisation and
execution as a proxy for the user.

• display the execution state via the portal
interface.

• inform the user (possibly via email if the
simulation takes long time) when the job is
complete with enough information about
where the result is stored, file formats and
file sizes.

A ‘twiki’ repository was set up for all staff to
access, with a section created for the input of
‘User Scenarios’.

The users were then asked to input their main
scenarios, which described key aspects of how
they work, into the project repository. These
scenarios described their day-to-day work,
whether it is running new or existing
mathematical models on existing technology, or
developing new tools to enhance the science.

The initial plan had been to take these scenarios
and get the requirements team leaders to
develop the system requirements from these
scenarios. The scenarios, however, did not
provide the level of details required to perform
this task fully but they did provide sufficient
information to identify the key elements of an
initial prototype.
The plan had been to develop a list of specific
requirements that would have the following
properties:

- Each requirement will incorporate only
one idea

- Each requirement will be clear and
quantifiable and verifiable

- Each requirement will be categorized
and prioritised

- Each requirement will be traceable,
back to a scenario and forward to the
system design

Reviews with users would then have qualify
where possible that the requirements have been
captured correctly and these requirements would
then form the basis, together with an existing
technology review, of the initial prototype for
the project.

The results of the initial requirements
exercise for Integrative Biology
The requirements process lasted for
approximately four weeks and required
extensive effort from the requirements team to
cajole the users into documenting their
scenarios. Where the barrier to providing this
information was the use of the repository, the
project team captured these scenarios from the

users and documented these for the users to sign
off on. Many of the project staff had never used
a project repository or an intranet before and
were even resistant to signing up to this service
despite the benefits articulated to them of a
central repository for project knowledge. This
resistance may have been an indication of the
low levels of active collaboration between the
users.

A key finding during this process was that users
were used to working with what they had been
given or provided with. They were not used to
being asked for their opinions on what a system
could do for them, let alone asked what their
ideal way of working would be. The users
therefore needed much handholding to give
them the confidence to express their ideas.

Whilst it is considered poor practise to build
systems which the developers think are suitable
for users without determining the needs, we
have experienced a sense of either fear or ‘I
don’t want to be the first’ in providing
information.
One user stated,
‘I have never been asked what I wanted before –
we have always had to make do with the tools
available’.
Another stated,
‘I am only a lowly modeller and do not feel
comfortable stating requirements for a
prestigious community of experienced
scientists’.

The requirements team had to stress the
importance of the user’s knowledge and the
importance of steering the development team
towards a truly useful prototype. One
explanation for this may be that the scientists
have immediate problems to solve, which they
perform using existing, possibly primitive tools.
Their methods and extent of collaboration are
limited and true collaborative working will be a
social as well as a technical hurdle. This tactical
focus on removing immediate barriers within
their existing environment rather than
strategically deciding how they would ideally
like to work was probably the most common
problem the requirements team met.

One of the scenarios extracted by the authors of
this paper was that of an integrated problem-
solving environment for cancer modellers. The
user requirement was gathered by one of the
authors by sitting beside one of the modellers,
just observing them carry through a routine
modelling, simulation and testing activity the

results of which had just been published by her.
The user agreed to be interrupted with questions
by the author. The user had asked the author to
familiarise with the topic at the level of an
intelligent layperson by reading through four
research papers in the topic. The author also
undertook background Web search to
familiarise herself with the terminology and the
barest basics, so that the above observation
action could be undertaken more effectively.
The user and the author used this session to
discuss the activity that the user is undertaking
and to discuss how the scenario could be used,
by the author, to determine the requirements for
a more integrated environment.

The user, as well as the cancer modelling
community, uses MatlabTM as their desktop
modelling tool. Researchers are mathematical
modellers and hence find the built-in
capabilities of this generic problem-solving
environment for symbolic computation,
handling of modest sized matrices, algebraic
manipulation and simulation testing and
traditional visualisation of modest amount of
data very useful. It provides a high-level
scripting interface to test ideas and rapid
prototype algorithms. The users want to retain
the familiar high level scripting interface and
the history mechanism and similar facilities that
Matlab supports. That sets the client interface
requirement.

While discussing how the software was used
and what the user was trying to do (as opposed
to what the interactions were or what the
code/application was), it emerged that the
modeller was trying to define the governing
equations to model cancer cell growth in silico
which will then be solved numerically and the
predictive power of the model compared against
experimental data. Components/modules of the
governing equations and/or its numerical
solutions and input into it are borrowed from
literature some times. So the modeller needed
access to such modules and codes and the
associated literature, which describe the
underlying assumptions behind those so that
appropriate modules may be adopted into
current model. This suggests the development of
a server-side database and associated user
interface tools that will allow collaborating
researchers:
• to submit their models, with annotations on

the underlying assumptions
• to submit a copy of the published work

based on that model

• to submit the numerical simulation/code
fragments of the model along with
compilation instructions.

This will need to be accompanied by the
development of client-side modules that can
query, access and display the contents of the
database, as well as fetch, compile and execute
the codes as part of a workflow system that has
modules of the users alongside those from the
database. A Web Services and XML based
methodology that will allow transparent and
standard communication protocol between the
two systems.

The third requirement gleaned from the
observation and discussion was that an associate
of each modeller carries out an equivalent in
vitro experiment, and the data from that is used
to validate the mathematical model. The in vitro
experiment takes roughly about 30 days to
complete and data is delivered after the
completion of an experiment. This means that
the modeller is designing and testing her model
and equations many, many times without being
guided by the data that can guide this
prototyping, when such data is available but not
accessible easily as the practice stands now. The
author and user then discussed that a productive
problem-solving environment should be
developed
• to upload experimental data as it is being

collected, build data query and access to
that experimental data as it is being
gathered (cell growth data is collected
every other day by the experimental
scientist)

and
• build a secure Web Services based access

to the query and access the data service
from the desktop environment.

Improving the performance of the solvers and
numerical schemes will allow the user to
increase the complexity of the model, including
more realistic governing parameters. The Grid
and Web services based application solving can
then be built around with the simulation
executing on a remote Grid compute layer.

Security needs were handled separately. The
security questionnaire was circulated to all users
to attempt to capture identifiable assets and the
users view on what should be kept confidential,
what should be kept integral and the availability
needs of these assets. It was interesting to note
that only the project manager returned this
questionnaire initially and that users did not

consider their software, hardware or data as
assets! An in-depth interview with a key user by
the security team concluded that valuable
resources like key software packages were not
adequately secured or backed-up (much to the
user’s horror) thus introducing key risk
elements to the existing science and
highlighting key deliverables in terms of
policies and security infrastructure for the
prototype. The process of performing this
activity for all project members will be lengthy.

An alternative approach has been taken in
defining a legal questionnaire for all project
collaborators to complete. This questionnaire is
a request for detailed information regarding
software and its use and terms, data and its use
and terms and the services to be provided and
the conditions under which they will be offered.
It is similar to the activity undertaken by legal
departments in defining materials transfer
agreements, but for software, hardware and
services. The objectives here are to underpin the
collaboration agreement and ensure that there
are common understandings relating to the
ownership of intellectual property. Any
infrastructure developed must be able to support
the range of collaborative scenarios envisaged
by the users. This questionnaire also provides
valuable information for defining the security
policies for the prototype.

For this initial stage of requirements, we have
limited our consideration of the user interface to
the knowledge of the existing tools that are used
and understand that detailed user requirements
would need to be carried out in subsequent
phases. The utilisation of developed prototypes
will enable this process to be carried out more
effectively.

Conclusions from the initial stages of
requirements gathering
The team have had to encourage the users into
feeling that all of their views will be taken into
consideration. It was also evident that you need
‘brave’ users to set an example and to make
others feel comfortable with imparting
information. The use of focused questionnaires
has certainly ensured that the right questions are
asked and experience has shown that
interviewing either in person through a ‘panel’
or over access grid results in better information
being provided as the users can be questioned
where issues are not clear. The requirements
gatherers used had extensive technical
experience so were able to articulate questions

to ensure that the team could document
requirements from the scenarios.
Our expectations initially were that users could
articulate what they did in terms of scenarios
from which we could define detailed system
requirements. This process did not result in
scenarios that enabled us to perform this task
but were more a detailed description of the
constraints under which we could work for this
initial stage. The language used in these
scenarios was typically ‘I have developed a
software package which.’
The scenarios were more of a knowledge
elicitation process, enabling the team to find out
what the users wanted and the gaps in their
capability. Moving these scenarios onto detailed
systems requirements was deemed impossible
for this stage of the project.
For this reason the technical team tasked with
delivering the initial simulation framework
architecture have taken the information
provided by the users to

a) construct an initial design for the

architecture to act as a straw man, and
b) define a set of usable demonstrators to help

explain to the users what is possible.

The architecture design describes the key
functions of the Integrative Biology
infrastructure, based on our understanding to
date. As part of building this understanding, an
evaluation of existing technology was
undertaken, and this highlighted some key e-
Science deliverables that may be utilised to
form a prototype or demonstrators. The
demonstrators are based on real applications
like the COR [2] and CMISS packages, adapted
to show some of the potential (and problems) of
the sort of environments proposed by the
project. Coming from real systems, these
demonstrators will themselves allow users to
extend the range of science the original systems
could tackle. Development of this architecture
and the adapting of existing models to match the
new architecture and will act as a basis for more
detailed discussions with users and requirements
definition. Once the prototype and
demonstrators have been built and studied by
the users, the scenarios will then be revisited.

The demonstrators and prototype will enable
simple observational studies to be carried out
with users working with the facilities provided.
This stage of requirements is expected to get us
back onto the initial anticipated approach,
defining detailed requirements linked to

scenarios. We will also utilise the prototype to
review the user interface needs.
The benefits of this approach are believed to be:

§ Earlier results
§ A better chance of standardisation
§ Hopefully, an increased buy-in from users

who see real science being done, not just
mock-ups.

The disadvantage of this approach is that there
is a danger that we are seen to be imposing our
solutions on users. We will have to ensure that
the initial prototype is ‘sold’ to the users as a
basis only and is only to be used to inform the
real needs of the users. We will also have to
make sure that the prototype can (or at the very
least, clearly has the potential to) enable the
users to carry out scientific investigations they
could otherwise not have done. The initial
scenarios will help us to shape the next
requirements phase to ensure that we do not just
get requests to refine the demonstrators.

The prototype will generate a set of definitive
experiences that can be quantified and qualified
in terms of what worked and what didn’t work
and why, which will be useful to this project
and others.

Acknowledgements
The authors wish to thank other members of the
Integrative Biology consortium for their input
into, and comments on, the work described in
this paper, in particular the role of the scientific
collaborators in determining the requirements
for this project. The authors wish to
acknowledge the support provided by the
funders of the Integrative Biology project: The
EPSRC (ref no: GR/S72023/01) and IBM

References
[1]CMISS-
http://www.bioeng.auckland.ac.nz/cmiss/cmiss.
php
[2]COR- -
http://www.hellix.com/People/AGarny/PhD/,
http://cor.physiol.ox.ac.uk/

	The Project
	The Requirements Process
	The Exploratory Stage
	The Scoping Exercise
	The Detailed User Requirments
	The Technical Design

	The Technical Design
	Communicating with Users
	The Integrative Biology Challenges
	Approach
	Results
	Conclusions
	Acknowledgements
	References

