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Abstract

Currently local optimization algorithms are used by the Mantid software
package to fit parameters to crystal field data, however such fits are extremely
sensitive to the selection of initial parameters. Even introducing a small per-
turbation to the initial parameters can change the fitting significantly, hence
there is a need to consider a global, rather than a local, optimization approach
to fit crystal field data. In this report, we propose and test several different
global optimization algorithms that could be integrated into Mantid’s fitting
routines to try and make crystal field fitting more robust. Our numerical
results on two real-world datasets demonstrate that there is great benefit to
the use of global optimization for crystal field parameter fitting in Mantid.
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1 Introduction
Mantid is an open-source project that provides a framework for the computation
and visualisation of neutron scattering and muon spectroscopy data [1, 2]. Mantid
utilizes different optimization algorithms for fitting the measurements of spectra
from scientific experiments, such as calculating and fitting the measurements of the
transitions between Crystal Field (CF) energy levels [1,2]. We are interested in the
CrystalFieldSpectrum function and how it fits parameters for Inelastic Neutron
Scattering (INS) spectra.

This report comprises four sections. Section 1 introduces the crystal field prob-
lem and gives a brief introduction to Mantid nonlinear least-squares problems. Sec-
tions 2 and 3 outline the global optimization algorithms that we have developed
to solve the problem, and the results of benchmarking the best candidate global
optimization algorithm against the current local optimization algorithms used in
Mantid, respectively. Section 4 concludes with suggestions of the next steps for
taking global optimization in Mantid further.

1.1 Crystal Field Parameter Fitting in Mantid
Currently local optimization algorithms are used by Mantid to fit parameters to
crystal field data. However, the INS spectra are extremely sensitive to the selection
of initial parameters. Figure 1 shows parameter fitting using highly-tuned param-
eters and parameter fitting when we perturbed these parameters slightly (namely
rounded up several of them). We can see that even introducing a small perturbation
to the crystal field parameters changes the fitting significantly. Local optimization
methods often struggle on problems that have many local minima, and this increases
the risk that these optimizers may find minima that fit crystal field data poorly.

(a) Crystal field fitting with expert-
tuned initial parameters.

(b) Crystal field fitting with the expert
initial parameters perturbed slightly.

Figure 1: Plots of crystal field fitting with different sets of initial parameters.

The crystal field problem can be treated generically as a nonlinear least-squares
fitting problem, as we detail in the next section. Since the INS spectra are very
sensitive to the parameters chosen, there is a need to consider a global, rather than
a local, optimization approach to fit crystal field data. In this report, we consider
a range of different global optimization algorithms that could be integrated into
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Mantid’s fitting routines to try to make crystal field fitting of INS spectra more
robust.

1.2 Nonlinear Least-Squares Problems
Nonlinear least-squares optimization focuses on minimizing functions of the form

f(x) = 1
2

m∑
i=1

r2
i (x) = 1

2‖r(x)‖2, (1)

where ri is the i-th residual function. For fitting problems, the residual function
describes the discrepancy between the model and the observed data [3].

As an example, given a set of scalar inputs {ai}m
i=1 and outputs {yi}m

i=1, one
might be interested in finding the straight line

y = x1a+ x0

that ‘best’ fits them. Our aim is then to find the parameters x0 and x1. If we define
the residuals

ri(x0, x1) = x1ai + x0 − yi,

we may choose x0 and x1 to minimize

f(x0, x1) = 1
2

m∑
i=1

r2
i (x0, x1) = 1

2

m∑
i=1

(x1ai + x0 − yi)2.

Since we are measuring ‘best’ by minimizing the sum of squares of linear functions,
this is a linear least-squares problem. For nonlinear problems we seek a curve of
best fit.

In order to minimize (1) we make use of the gradient of f(x), given by

g(x) = ∇f(x) = J(x)T r(x),

where the Jacobian matrix J(x) is defined by its components Jij(x) = ∂ri(x)/∂xj.
For the crystal field problem, the objective function we want to minimize is1

f(x) =
m∑

i=1
r2

i (x) =
m∑

i=1

(
CF(ai, x)− yi

ei

)2

, (2)

where CF(a, x) is the crystal field model function, (ai, yi) are the set of m data
points, x is the set of parameters to be optimized, and ei are scaling weights that
often represent approximations to data error standard deviations (e.g. due to mea-
surement error).

1.3 The Crystal Field Model
The crystal field model function can be thought of as a weighted superposition of
p peak functions, e.g. Gaussians, the i-th being centered at ci with scale parameter
σi, that is

CF(a, (B, S, σ)) = S
p−1∑
i=0

Ii(B) exp
(
−(a− ci(B))2

2σ2
i

)
. (3)

1Note that here we drop the 1/2 in front of the objective, this merely scales various quantities
in the optimization algorithms that follow but otherwise has no implications for the optimization.
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where S is a scaling parameter for the weights (or intensities) Ii. For clarity we
present Gaussians here, although the problems we will subsequently test on use
Lorentzians with scale parameters γi, that is

CF(a, (B, S, γ)) = S
p−1∑
i=0

Ii(B)
(

γ2
i

(a− ci(B))2 + γ2
i

)
. (4)

The peak centers ci and intensities Ii themselves depend on parameters B of the
Stevens’ crystal field Hamiltonian, and thus the parameters to be optimized in this
case are x = (B, S, σ) or x = (B, S, γ), with a being a data point x-value as before.
Note that rather than optimizing over the scale parameters directly, Mantid uses the
Full Width at Half Maximum (FWHM), defined as the width of the peak measured
at half of its maximum amplitude. For a Gaussian fwhmi = 2

√
2 ln 2σi and for a

Lorentzian fwhmi = 2γi. More specifically, the peak centres ci and intensities Ii

depend on the eigenvalues λj(B) and discretised eigenfunctions ψj(B) of a time-
independent Schrödinger operator, specifically on the solutions to the eigenvalue
problem

H(B)ψ = λψ,

with the Stevens’ crystal field Hamiltonian H(B) given by2

H(B) =
∑

k=0,2,4,6

k∑
q=−k

Bk
qO

k
q

with known Stevens’ operator matrices Ok
q . Given the eigensolutions, we then have

ci(B) = λj(B)− λk(B)
Ii(B) ∝ |ψT

j (B)Dψk(B)|2

for the appropriate transitions between energy levels j and k, and known magnetic
dipole operator D. We refer the interested reader to [4] for further details of crystal
field theory and its use within Mantid.

2The k = 0 term B0
0O0

0 only introduces a uniform shift in the values of all the eigenvalues, but
as we are only interested in the differences between eigenvalues here, it is often ignored or omitted.
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2 Developing Global Optimization Algorithms
We investigate different approaches to global optimization of nonlinear least-squares
problems of the form

f(x) = 1
2

m∑
i=1

r2
i (x) = 1

2‖r(x)‖2. (1)

In particular, we focus on three multi-start global optimization methods in this
section — the multi-start selective search algorithm, a multi-start regularisation
approach, and a multi-start linesearch approach — implement each, and compare
all three on problems formulated in [5]. The algorithms are implemented using the
NumPy [6], SciPy [7], and Surrogate Modelling Toolbox [8] packages in Python.

2.1 Multi-start Optimization Algorithms
The idea behind multi-start global optimization algorithms is a simple one. The
main weakness of using traditional (so called ‘local’) optimization algorithms to find
global minimisers is that they can (and often do) get stuck at local optima. In order
to remedy this, multi-start algorithms simply run a local optimization algorithm
from multiple starting points within the parameter space. The key to their success
is therefore to ensure that the multiple starting points are well spaced-out within
the parameter space. There are multiple techniques for this, but one of the simplest
and most effective is to use Latin Hypercube Samples (LHS) [9]. To generate a Latin
Hypercube Sample of l points in 2D, one creates an l× l equally spaced square grid
in the parameter domain and arranges the l points at random such that there is one
centered in every row and column of the grid (see Figure 2 below). This approach
generalises to higher parameter dimensions in the obvious way.

Figure 2: Four Latin Hypercube Samples for two parameters A and B.

2.2 Multi-start Selective Search (MS3)
The multi-start selective search method, outlined by Velázquez et al. [5], was the
first candidate that we considered. This approach incorporates a variation of the
Levenberg-Marquardt method and a multi-start strategy, with the assumption that
having multiple initial points will improve the ability of the algorithm to find global
minima for small or zero-residual least-squares problems. Algorithm 1 below shows
the pseudocode for the MS3 algorithm.
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The Levenberg-Marquardt method [3] is one of the most popular and widely-used
algorithms for nonlinear least-squares problems. At every iteration k, Levenberg-
Marquardt calculates a step sk that gives us a new iterate xk + sk by solving the
perturbed normal equations

(J(xk)TJ(xk) + µkI)sk = −J(xk)T r(xk)

for some carefully chosen perturbation µk ≥ 0. For µk = 0, Levenberg-Marquardt
becomes the Gauss-Newton method (i.e. Newton’s method where the Hessian H has
been approximated by its first-order term JTJ). Conversely, for sufficiently large
µk Levenberg-Marquardt approaches the steepest-descent method with a suitable
stepsize.

Notice that in MS3 there is no attempt to enforce uniform descent of the residuals
‖r(x)‖, and this has the potential to allow iterates to move between basins containing
different local minimizers. Note also that the choice of τ here is largely problem-
dependent.

Algorithm 1 MS3 Algorithm with LHS
Require: ε > 0, τ > 0
Set fmin =∞ and xmin =∞
Generate lmax points using LHS and set l = 0
while l < lmax and ‖r(xk)‖2 > ε do

Select an unused LHS point x0 and set k = 0
while k < kmax and ‖g(xk)‖ > ε do

Set µk = τ‖r(xk)‖
Solve (J(xk)TJ(xk) + µkI)sk = −J(xk)T r(xk)
Set xk+1 = xk + sk and increment k

end while
if f(xk) < fmin then

Set fmin = f(xk) and xmin = xk

end if
Increment l

end while
return xmin

Although it was possible to reproduce the results for the lower dimensional prob-
lems in Velázquez et al’s paper, the MS3 algorithm struggled to consistently find
global minima in higher dimensions. Fitting in higher dimensions for the test prob-
lems from [5] is challenging because the number of local minima increases rapidly as
the number of dimensions increases. Therefore the higher the dimension, the more
difficult it becomes to find global minima. It proved possible, after increasing the
number of iterations to search for the global minima to 4, 000, to find global minima
for the higher dimensional problems. Unfortunately, due to the nature of the crystal
field objective function, the MS3 algorithm was not able to find global minima in
this case. As a result we conclude that this algorithm is not a good candidate for
such problems. However, for completeness, the results from running the algorithm
for the test problems in [5] will be included.
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2.3 Multi-start with Regularisation
The second approach we considered was a multi-start variant of a quadratic regulari-
sation method with adaptive regularisation [10]. In this approach, at every iteration
k, we approximate the objective function f around xk using the quadratic model

mk(s) = 1
2‖J(xk)s+ r(xk)‖2 + σk

2 ‖s‖
2 (5)

with adaptive regularisation parameter σk. We then minimize (5) to find a step sk

that gives us a new iterate xk + sk with lower objective value. In order to minimize
(5) we find zeros of its gradient

∇mk(sk) = (J(xk)TJ(xk) + σkI)sk + J(xk)T r(xk) = 0

by solving the above set of linear equations, called the perturbed normal equations.
Algorithm 2 below outlines the pseudocode for this multi-start method, including
how the regularisation parameter σk is chosen adaptively based on the level of agree-
ment ρk between the objective function f and the quadratic model mk.

Algorithm 2 Multi-start Regularisation Method
Require: ε > 0, εs > 0
Set fmin =∞ and xmin =∞
Generate lmax points using LHS and set l = 0
while l < lmax and ‖r(xk)‖2 > ε do

Set σ0 = ‖g(x0)‖/10 and k = 0
while k < kmax and ‖g(xk)‖ > ε and ‖sk‖ > εs do

Solve (J(xk)TJ(xk) + σkI)sk = −J(xk)T r(xk)
Compute ρk = (f(xk)− f(xk + sk))/(mk(0)−mk(sk))
if ρk ≥ 0.1 then

Set xk+1 = xk + sk

end if
if ρk < 0.1 then

σk = min{
√

2σk, σmax}
else if ρk ≥ 0.75 then

σk = max{
√

0.5σk, σmin}
end if
Increment k

end while
if f(xk) < fmin then

Set fmin = f(xk) and xmin = xk

end if
Increment l

end while
return xmin

Note that here σmax and σmin are chosen to prevent numerical overflow or under-
flow when the regularisation parameter is increased or decreased, respectively. For
our experiments we used σmax = 1020 and σmin = 10−15.
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2.4 Multi-start with Linesearch
The third approach that we considered was a multi-start variant of a backtracking
linesearch method [3]. In this approach, at every iteration k, we take a step sk along
the Gauss-Newton direction

sk = −(J(xk)TJ(xk))−1g(xk) = −(J(xk)TJ(xk))−1J(xk)T r(xk)

which is just the Newton direction −H−1g where the Hessian H has been approxi-
mated by its first-order term JTJ . In order to guarantee convergence, the step sk is
scaled by a step-size αk computed using a standard backtracking Armijo linesearch.
Algorithm 3 below outlines the pseudocode for this method, where κ(J(xk)) denotes
the condition number of J(xk), i.e. the ratio of largest to smallest singular value.

Algorithm 3 Multi-start Linesearch Method
Require: ε > 0, τ > 0
Set fmin =∞ and xmin =∞
Generate lmax points using LHS and set l = 0
while l < lmax and ‖r(xk)‖2 > ε do

while k < kmax and ‖g(xk)‖ > ε do
if κ(J(xk)) > 108 then

Set µk = τ‖(r(xk)‖
Solve (J(xk)TJ(xk) + µkI)sk = −J(xk)T r(xk)

else
Solve J(xk)TJ(xk)sk = −J(xk)T r(xk)

end if
Set ∆k = 0.5 g(xk)T sk and αk = 5
Perform backtracking to compute αk:
while f(xk + αks) > f(xk) + αk∆k do

αk = αk/2
end while
Set xk+1 = xk + αksk and increment k

end while
if f(xk) < fmin then

Set fmin = f(xk) and xmin = xk

end if
Increment l

end while
return xmin

Notice, in particular, that the precaution introduced when J(xk) is ill-conditioned
to prevent the method from stalling is vital, and resembles to a certain extent the
approach adopted by explicit regularization in the previous section. Unfortunately,
due to the nature of the crystal field objective function, J(xk) turned out to be
particularly ill-conditioned, leading the multi-start linesearch method to compute
poor search directions sk despite our precautions, making it unsuitable for fitting
crystal field data.
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2.5 Sine Components Test Problems in High Dimensions
We compared the rival algorithms on two classes of related test problems taken
from [5] (note that these problems can be rewritten in the form (1)). In [5], these
problems are referred to as test problems 2-7. The first class involves a function
containing sine components:

f(x) = π

n

(
10 sin2(πy1) +

n−1∑
i=1

[
(yi − 1)2(1 + 10 sin2(πyi+1))

]
+ (yn − 1)2

)
(6)

where yi = 1 + 0.25(xi − 1), −10 ≤ xi ≤ 10, i = 1, 2, ...n
We choose n = 2, 3, 4 for this function, and these give us problems 2–4.

The second class of problems are variants of the first, and involve the function

f(x) = π

n

(
10 sin2(πx1) +

n−1∑
i=1

[
(xi − 1)2(1 + 10 sin2(πxi+1))

]
+ (xn − 1)2

)
; (7)

we considered this function with n = 5, 8, 10, and these give us problems 5–7.
The global minima of the functions (6) and (7) are f(x∗

i ) = 0 and occur for all
xi = 1. Each algorithm used 15 initial starting points selected randomly using Latin
Hypercube Sampling (LHS) [9] and searched for the minimum over 4,000 iterations
(rather than the 400 iterations used in [5]). We chose to use Latin Hypercube
Sampling to generate random initial points in order to ensure that we had a wide
range of initial points and to avoid generating clusters of initial points.

For these test problems, the algorithms were implemented for Python 3.8.2, and
LHS was provided by the SciPy library [7]. For FitBenchmarking in the later sections
of this report, Mantid at the time of this report was only compatible with Python
3.6 and so the Surrogate Modelling Toolbox [8] was used to provide LHS as the
Scipy package compatible with Python 3.6 did not yet support LHS.

Tables 1 and 2 show the results for test problems (6) and (7) respectively.

P D M Method Global min f(x∗) Time (s)

2 2 25
MS3 [1. 1.00000001] 2.600807e-18 7.41
Regularisation [0.99999902 0.9999753 ] 6.915500e-11 11.58
Linesearch [1. 0.99999999] 5.141708e-18 25.45

3 3 125
MS3 [1. 1.00288098 0.44927581] 8.148573e-07 16.31
Regularisation [1. 0.6114404 6.61058064] 1.482229e-02 21.37
Linesearch [ 1.00204555 0.90349506 -8.94670272] 9.552993e-04 60.48

4 4 625
MS3 [1. 1. 1. 0.99999999] 2.548132e-20 23.76
Regularisation [ 1.11194848 0.86463193 7.500665 -1.20510409] 1.262897e-01 36.70
Linesearch [5.09998398 1.08516193 4.3481204 8.28728688] 1.822146e+00 80.53

Table 1: Results of Multistart algorithms on Velázquez et al’s Test Problems 2-4
(P - Problem Number, D - Number of Dimensions, M - Number of Local Minima)

From Table 1, we can see that for the lower dimensional problems MS3 has
been able to find the global minimizer for problems 2 and 4, however it struggles
to find the global minimizer for problems 6 and 7 from Table 2. This suggests
that although the MS3 algorithm works for finding the minima in lower dimensions,
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P D M Method Global min f(x∗) Time (s)

5 5 105
MS3 [1. 1. 1. 1. 1.] 1.221638e-21 41.35
Regularisation [1.99005591 1.00000028 1. 1.00000009 1.00313873] 6.220209e-01 53.11
Linesearch [1. 1. 1. 1. 1.] 3.981310e-20 69.55

6 8 108
MS3

[-1.96969121 -1.99647615 -3.98709658
-4.14596438 -1.15071274 1.
0.99999999 1.23710579]

6.985101e+01 136.41

Regularisation
[ 5.94896522 -3.99793217 1.00121448
1.04761504 3.32587584 1.
-0.18652503 -1.9788127]

2.572665e+01 135.72

Linesearch [1. 1. 1. 1. 1. 1. 1. 1.] 1.968636e-20 175.68

7 10 1010
MS3

[ 1.04102684e-02 1.95090534e-02 -3.90188515e+00
5.08711096e+00 1.26143798e-03 -3.90728964e+00
6.08185861e+00 4.10667882e+00
6.95810223e+00 -3.74890973e+00]

1.270703e+02 234.88

Regularisation

[ 1.00000000e+00 1.49566561e+00
3.88833753e+00 -5.99150671e+00 5.99896373e+00
2.99914778e+00 9.97716261e+00 -9.99956728e-01
-9.94941357e-01 2.53953430e-03]

5.547867e+01 231.98

Linesearch [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] 1.961076e-20 282.89

Table 2: Results of Multistart algorithms on Velázquez et al’s Test Problems 5-7
(P - Problem Number, D - Number of Dimensions, M - Number of Local Minima)

it cannot consistently find the global minimum when the number of dimensions
increases. For the Regularisation and Linesearch algorithms we can see that they
can find the global minimum for a 2D problem (problem 2). In Figure 3 we can
see the path that all three algorithms took in order to reach the global minima for
the 2-dimensional problem. However while the regularisation algorithm struggles to
find the global minimum for higher dimensions, the Linesearch algorithm is able to
find the global minimum for problems 5-7. We found, however, that for the crystal
field problem the Regularisation algorithm performed consistently better than the
Linesearch algorithm.

However, Table 2 indicates that as the dimensions are increased the MS3 algo-
rithm struggles to find the global minimum. This is also the case for the regular-
isation algorithm. However the Linesearch algorithm was able to successfully find
global minima for test problems 6 and 7.

Although the MS3 algorithm was able to perform better on these test problems,
it was not able to fit data from the crystal field problem. This is possibly due to
how the crystal field problem has been scaled. The Regularisation and Linesearch
methods however were able to fit the data better than MS3. As a consequence, in
the remaining sections of this report, the MS3 algorithm will not be considered as
a candidate for crystal field parameter fitting.
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Figure 3: The search paths the three multi-start algorithms took to the global
minimiser at (1, 1) for test problem 2. Notice in particular how each starts with
an x-coordinate close to 1, showing the importance of starting a local search in the
basin of attraction of the global minimiser.
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3 Fitting Crystal Field Data from Mantid
The next step is to benchmark the global optimization algorithms against the current
local optimization algorithms being used in Mantid. The multi-start regularisation
algorithm was identified as a suitable candidate for fitting crystal field data. In
this section we will describe the crystal field datasets that we used for benchmark-
ing, outline the algorithms that were benchmarked, and discuss the results of these
algorithms for fitting crystal field parameters.

3.1 Crystal Field Test Problems
We used two different datasets for benchmarking crystal field parameter fitting.

3.1.1 Test Problem 1

The first test problem we use is taken from the Mantid crystal field examples [11] and
consists of fitting the INS spectrum of NdOs2Al10 measured at 5K using a 35meV
neutron beam at ISIS.

3.1.2 Test Problem 2

The second test problem we use is taken from the paper by Ritter et al. [12] and
consists of fitting the INS spectrum of NdOs2Al10 measured at both 5K and 15K
using a 35meV neutron beam at ISIS. Note that this is the same compound as in
test problem 1 but using a different set of measurements, hence the INS spectra fits
at 5K are very similar to test problem 1 but not identical.

3.2 Benchmarking Optimization Algorithms
The FitBenchmarking suite [13] was used to benchmark and compare the perfor-
mance of multi-start global optimization algorithms against the current local opti-
mization solvers in Mantid. It’s important to note here that the Mantid solvers are
implemented in C++, while the multi-start algorithms were implemented in Python.
This difference has an influence on the runtimes of the algorithms applied to the the
crystal field data, which can be seen in Figures 8 and 20. As well as the difference in
implementations, the global multi-start algorithms have several more stages when
searching for the global minima, and the nested Python loops implemented to do
this increase runtime further. The cost function in FitBenchmarking is defined as
the weighted nonlinear least-squares cost function precisely as described in (2) for
the crystal field model with Lorentzian peaks (4).

3.2.1 Multi-start Global Optimization Algorithms

In addition to the multi-start regularisation algorithm, we also compare to a multi-
start L-BFGS-B algorithm as a baseline. We omit results for the multi-start line-
search algorithm since it struggled to fit crystal field data due to ill-conditioning of
the Jacobian. As a result, two multi-start algorithms were benchmarked:

• Multi-start L-BFGS-B
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• Multi-start Regularisation

The Multi-start L-BFGS-B method repeated parameter fitting with different
initial points using the L-BFGS-B local optimization algorithm from SciPy and
returned the minimum with the smallest cost function value across all fits. For
the multi-start regularisation algorithm, in addition to a gradient norm termination
condition of ε = 10−4, we included an additional termination condition, defined
in Algorithm 2, that stops the algorithm when the norm of the step size is less
than εs = 10−8. As well as this, we used an alternating optimization approach
for the regularisation algorithm, described in subsubsection 3.2.2. All multi-start
algorithms used 100 initial points for finding the global minima. These points were
generated by Latin Hypercube Sampling, using suitable bounds for each parameter
and scaled as described in subsubsection 3.2.3. All iterates were rescaled to the
original parameter scales before being passed to the cost function in Mantid. The
global minimum was returned scaled within the original parameter bounds. The
Jacobian was calculated outside of Mantid using finite-differences as described in
subsubsection 3.2.4.

3.2.2 Alternating Optimization for the Regularisation Algorithm

Alternating Optimization was performed for the Regularisation Algorithm in or-
der to treat the crystal field problem as a lower-dimensional problem. To do this,
optimization was done for the crystal field parameters in two blocks: the B param-
eters (B0

2 , B
2
2 , B

0
4 , B

2
4 , B

4
4 , B

0
6 , B

2
6 , B

4
6 , B

6
6) and the shape parameters (S and either

fwhm0, fwhm1, . . . , fwhm4 at 5K or fwhm0, fwhm1, . . . , fwhm20 at 10K). The
stages for alternating optimization are as follows:

1. Fix the shape parameters and optimize over the B parameters for the crystal
field problem. The shape parameters are fixed to the default initial parameters
as defined for the crystal field data.

2. Fit the optimized B parameters and optimize over the shape parameters.

3. Fix the optimized shape parameters and optimize over the B parameters one
more time.

4. Fix the optimized B parameters and optimize over the shape parameters.

3.2.3 Bounds and Scaling Parameters for Multi-start Algorithms

The Latin Hypercube sampling for the multi-start algorithms requires bounds on the
parameters within which to sample the initial starting points, i.e. for the parameters
x we require lower bounds xL and upper bounds xU such that

x ∈ [xL, xU ].

For the crystal field B parameters, we used the Mantid built-in split2range func-
tion to determine suitable bounds. For the intensity scaling S, we used [0, 10] and
for the fwhm parameters we used [0.1, 5] (except for fwhm4 at 5K for both Problem
1 and 2 which used [0.1, 7]). Note that it does not matter if the global minimiser
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lies outside of these bounds, provided the basin of attraction of the global minimiser
for the multi-start algorithm lies at least partially within these bounds.

For the multi-start algorithms, the initial points were also rescaled using min-
max normalization to be within the range [0, 1], that is

xscaled = x− xL

xU − xL
.

This was done so that for each parameter the algorithm would take steps of similar
magnitude, which improved convergence to the global minimum. These scaled points
were rescaled to the original parameter scales once the global minimum was located.

3.2.4 Calculating the Jacobian for Multi-start Algorithms

The Jacobian was calculated using forward finite-differences outside of Mantid for
better accuracy. It was observed during benchmarking that the basins around the
global minimiser are often very narrow and the gradients of points close to the global
minimiser are very large. This makes it harder to estimate derivatives accurately,
and we therefore used SciPy forward finite-differences to calculate the Jacobian as
it was more numerically stable than using the estimated derivatives from Mantid.
The step-size influences the accuracy of the Jacobian and as a result the relative
step-size for approximating the Jacobian was fixed at ≈ 10−8 (

√
ε, where ε ≈ 10−16

is machine precision, which is considered optimal for forward finite-differences).

3.2.5 Local Optimization Algorithms in Mantid

There are nine local optimization solvers in Mantid that were successfully bench-
marked against the global optimization algorithms for the crystal field problem:

• BFGS

• Conjugate Gradient (Fletcher-Reeves imp.)

• Conjugate Gradient (Polak-Ribiere imp.)

• Damped Gauss-Newton

• Levenberg-Marquardt

• Levenberg-MarquardtMD

• Simplex

• Steepest Descent

• Trust Region

See [14] for details of the above methods. The two solvers from Mantid we are
particularly interested in are the Levenberg-Marquardt and Trust Region methods.
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3.3 Test Problem 1 Initial Points
To compare performance of local versus global optimization algorithms on the first
crystal field test problem, we used five different initial optimization starting points
for the local optimization algorithms (note that these were not used by the global
multi-start algorithms which used 100 Latin Hypercube Samples as starting points):

1. Ideal initial point

2. Imperfect initial point (rounded version of above)

3. Initial point selected at random using LHS

4. Another initial point selected at random using LHS

5. Perturbed ideal initial point

(a) Example 1 (b) Example 2

Figure 4: Plot of Initial Points for Examples 1 and 2

(a) Example 3 (b) Example 4

Figure 5: Plot of Initial Points for Examples 3 and 4
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Figure 6: Plot of Initial Point for Example 5

3.4 Test Problem 1 Results
Figures 7 and 8 show the performance in terms of accuracy (the value of the cost
function f at the minimiser x∗) and the CPU runtime in seconds. As we can see
from both figures, the Simplex method had raised an internal error (indicated by
the 3 in the superscript) and did not return any parameters. From Figure 7, we
can see that the Levenberg-Marquardt and the Trust Region methods from Mantid
show good results for Example 1. However, for Example 2 onwards the Levenberg-
Marquardt method does not perform as well as the Trust region method or the
Regularisation method (here denoted as scaled_regularisation to indicate we are
using scaled parameters). We can see that the Trust Region method shows similar
performance to the Regularisation algorithm for Examples 2 and 5, but does not
perform as well for Examples 3 and 4. The multi-start algorithms however perform
better for these examples, with the Regularisation algorithm consistently finding
global minima that fit the crystal field data well across all the examples. Figures
9–13 show the crystal field parameter fits for the multi-start global optimization,
Levenberg-Marquardt, and Trust Region methods in the next subsections.

Figure 7: FitBenchmarking accuracy f(x∗) on Crystal Field Problem 1 (values in
brackets are relative to the best result). Superscript meanings: 1 - maximum number
of iterations exceeded, 2 - unable to converge to solution, 3 - internal error, 5 -
solution does not respect parameter bounds.
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Figure 8: FitBenchmarking runtime in seconds on Crystal Field Problem 1 (values
in brackets are relative to the best result). Superscript meanings: 1 - maximum
number of iterations exceeded, 2 - unable to converge to solution, 3 - internal error,
5 - solution does not respect parameter bounds.
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3.4.1 Results for Example 1

For this example, solvers requiring initial points used initial parameters that were
the best guess and close to the ideal parameters.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 9: Multi-start and Mantid fitting of Example 1
(Best overall fit for the example is shown in blue)
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3.4.2 Results for Example 2

In this example, solvers requiring initial points used initial parameters which were
not perfect (rounded versions of initial parameters in Example 1).

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 10: Multi-start and Mantid fitting of Example 2
(Best overall fit for the example is shown in blue)
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3.4.3 Results for Example 3

For this Example (and for Example 4), for solvers requiring initial starting points,
the initial parameters were chosen from a sample of parameters generated using
Latin Hypercube Sampling.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 11: Multi-start and Mantid fitting of Example 3
(Best overall fit for the example is shown in blue)
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3.4.4 Results for Example 4

Similar to Example 3, for solvers requiring initial starting points, the initial param-
eters were generated randomly using Latin Hypercube Sampling.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 12: Multi-start and Mantid fitting of Example 4
(Best overall fit for the example is shown in blue)
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3.4.5 Results for Example 5

For solvers requiring initial starting points, the initial parameters have been defined
as the perturbed starting parameters from Example 1.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 13: Multi-start and Mantid fitting of Example 5
(Best overall fit for the example is shown in blue)
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3.5 Test Problem 2 Initial Points
To compare performance of local versus global optimization algorithms on the second
crystal field test problem, we used ten different initial optimization starting points
for the local optimization algorithms (note that these were not used by the global
multi-start algorithms which used 100 Latin Hypercube Samples as starting points):

1. Ideal initial point at 5K

2. Imperfect initial point at 5K (rounded version of above)

3. Initial point selected at random using LHS at 5K

4. Another initial point selected at random using LHS at 5K

5. Perturbed ideal initial point at 5K

6–10. Same as 1–5. above but at 10K

(a) Example 1 (b) Example 2

Figure 14: Plot of Initial Points for Examples 1 and 2

(a) Example 3 (b) Example 4

Figure 15: Plot of Initial Points for Examples 3 and 4
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(a) Example 5 (b) Example 6

Figure 16: Plot of Initial Points for Examples 5 and 6

(a) Example 7 (b) Example 8

Figure 17: Plot of Initial Points for Examples 7 and 8

(a) Example 9 (b) Example 10

Figure 18: Plot of Initial Points for Examples 9 and 10

3.6 Test Problem 2 Results
Figures 19 and 20 show the performance in terms of accuracy (the value of the cost
function f at the minimiser x∗) and the CPU runtime in seconds. As we can see
from both figures, the Simplex method had raised an internal error (indicated by the
3 in the superscript) for three of the examples and did not return any parameters.
Similarly, internal errors were raised by the Levenberg-MarquardtMD method for
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Example 1 and the Trust Region method for Example 10. From Figure 19, we
can see that the Levenberg-Marquardt method shows good results for Example 2,
the Levenberg-MarquardtMD method shows good results for Examples 6, 8 and 10,
and the Trust Region method shows good results for Examples 1 and 7, all being
comparable to the the Regularisation method on these examples (which again uses
scaled parameters). However, for all the other examples the Levenberg-Marquardt,
Levenberg-MarquardtMD and Trust Region methods do not perform as well as the
Regularisation method. The global multi-start algorithms perform better for these
examples, with the Regularisation algorithm consistently finding global minima that
fit the crystal field data well across all the examples. Figures 10–25 show the crystal
field parameter fits for the multi-start global optimization, Levenberg-Marquardt,
and Trust Region methods in the next subsections.

Figure 19: FitBenchmarking accuracy f(x∗) on Crystal Field Problem 2 (values
in brackets are relative to the best result). Superscript meanings: 1 - maximum
number of iterations exceeded, 2 - unable to converge to solution, 3 - internal error,
5 - solution does not respect parameter bounds.
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Figure 20: FitBenchmarking runtime in seconds on Crystal Field Problem 2 (values
in brackets are relative to the best result). Superscript meanings: 1 - maximum
number of iterations exceeded, 2 - unable to converge to solution, 3 - internal error,
5 - solution does not respect parameter bounds.
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3.6.1 Results for Example 1

For this example, solvers requiring initial points used initial parameters that were
the best guess and close to the ideal parameters.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 21: Multi-start and Mantid fitting of Example 1
(Best overall fit for the example is shown in blue)
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3.6.2 Results for Example 2

In this example, solvers requiring initial points used initial parameters which were
not perfect (rounded versions of initial parameters in Example 1).

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 22: Multi-start and Mantid fitting of Example 2
(Best overall fit for the example is shown in blue)
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3.6.3 Results for Example 3

For this Example (and for Example 4), for solvers requiring initial starting points,
the initial parameters were chosen from a sample of parameters generated using
Latin Hypercube Sampling.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 23: Multi-start and Mantid fitting of Example 3
(Best overall fit for the example is shown in blue)
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3.6.4 Results for Example 4

Similar to Example 3, for solvers requiring initial starting points, the initial param-
eters were generated randomly using Latin Hypercube Sampling.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 24: Multi-start and Mantid fitting of Example 4
(Best overall fit for the example is shown in blue)
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3.6.5 Results for Example 5

For solvers requiring initial starting points, the initial parameters have been defined
as the perturbed starting parameters from Example 1.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 25: Multi-start and Mantid fitting of Example 5
(Best overall fit for the example is shown in blue)
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3.6.6 Results for Example 6

For this example, solvers requiring initial points used initial parameters that were
the best guess and close to the ideal parameters.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 26: Multi-start and Mantid fitting of Example 6
(Best overall fit for the example is shown in blue)
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3.6.7 Results for Example 7

In this example, solvers requiring initial points used initial parameters which were
not perfect (rounded versions of initial parameters in Example 6).

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 27: Multi-start and Mantid fitting of Example 7
(Best overall fit for the example is shown in blue)
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3.6.8 Results for Example 8

For this Example (and for Example 9), for solvers requiring initial starting points,
the initial parameters were chosen from a sample of parameters generated using
Latin Hypercube Sampling.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 28: Multi-start and Mantid fitting of Example 8
(Best overall fit for the example is shown in blue)
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3.6.9 Results for Example 9

Similar to Example 8, for solvers requiring initial starting points, the initial param-
eters were generated randomly using Latin Hypercube Sampling.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt (d) Trust Region

Figure 29: Multi-start and Mantid fitting of Example 9
(Best overall fit for the example is shown in blue)
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3.6.10 Results for Example 10

For solvers requiring initial starting points, the initial parameters have been defined
as the perturbed starting parameters from Example 6.

(a) Multi-Start L-BFGS-B (b) Regularisation (Scaled)

(c) Levenberg-Marquardt

Figure 30: Multi-start and Mantid fitting of Example 10
(Best overall fit for the example is shown in blue)
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4 Conclusions and Future Work
Overall, our benchmarking results demonstrate that the global multi-start Regular-
isation algorithm is able to find ideal parameters for all the crystal field examples
tested, while the Trust Region, Levenberg-Marquardt and Levenberg-MarquardtMD
methods are the only Mantid solvers that can find ideal parameters for some of
the examples. The results suggest that if the initial parameters are close to the
global minimiser, then Trust Region will be better able to fit crystal field data than
Levenberg-Marquardt, although Trust Region can sometimes struggle with initial
parameters far away from the global minimiser.

The global optimization algorithms, however, are not dependent on the initial
parameters and have been able to fit all the crystal field spectra using random initial
starting points. Therefore, the multi-start Regularisation algorithm is a good candi-
date for improving Mantid’s performance in crystal field parameter fitting because
it removes the need to carefully choose initial parameters.

The trade-off, however, is the runtime as the global optimization algorithms
are several orders of magnitude slower than the Mantid local optimization solvers.
However, most of the runtime for the global optimization algorithms is taken up
implementing two nested loops in Python and evaluating every set of initial param-
eters, while Mantid’s solvers are already optimized in C++, and evaluate one set
of initial parameters. Implementing and optimizing the Regularisation algorithm
in C++ should reduce its runtime. Despite the downside of increased runtime, the
Regularisation algorithm removes the need to have precise initial parameters and
clearly outperforms the local solvers in Mantid in these cases.

Crystal field problems are highly sensitive to the choice of parameters, and the
majority of local optimization solvers in Mantid struggle to fit crystal field data
unless the initial parameters are close to the optimal parameters. By using a global
optimization approach, we can consistently find the global minimiser without relying
on expert insight to determine ideal initial starting points.

Now that we have a global optimization algorithm (namely the multi-start Reg-
ularisation algorithm) implemented in Python and benchmarked against the solvers
in Mantid, the next step is to implement this algorithm in C++, so that it can be
tested and potentially integrated into Mantid.
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