LEVOMNCG COPY

DL/SCI/TM33T

5263 ~100

technical memorandum

Daresbury Laboratory

. "
THE ALCHEMY LINER MOLECULE INTEGRAL GENERATOR
by

C.J. NOBLE, Daresbury Laboratory.

NOVEMBER, 1982

Science & Engineering Research Council

Daresbury Laboratory

DL/SCI/TM33T







CONTENTS

1. INTRODUCTIOHN
2. THE ALCHEMY LINEAR HMOLECULE INTEGRAL PACKAGE
1. COULOHMB AND HYPRID INTEGRALS
3.1 PFProgram details
4, THWO-ELECTRON ONE-CENTRE INTEGRALS
4.1 Program detailsa
5. EXCHRNGE INTEGRALS
5.1 Program detaiis
6. ONE-ELECTRON INTEGRALS FOR SLATER BASIS FUNCTIONS
6,1 One-centre integrals
6.2 Two-centre integrals
6.3 Three-centred nuciear attraction integrals
6.4 Program details
7. PROPERTY AND HUHERICAL ONE-ELECTRON INTEGRALS
7.1 Program details
8. RENORMALISATION, BOURDARY AMPLITUDES AND MOLECULAR ORBITALS
8,1 Integral renormalimation
8.2 COontinuum molecular orbital generation
8.3 Boundary ampiltudes
8.4 FProgram detalls
9. QUADRATURE AND TRANSFORMATION ROUTIHES
10, INPUT DATA SPECIFICATION
10.1 Ramelist EINPUT
10,2 Integration mesh parameters
10,3 Wamelist &GET
10,4 Namelint &GETI
10,5 Namelist S§VECTOR
10.6 Namelist &PUT
APPENDICES
A Example input dataseats
{1) STO integrale
(i1} 5T0/numérical basis integrals
B Disk Ffile directory
c Installation details

REFERENCES

1. INTRODUCTION

For many years it has been recognised that electron-molecule acatter-
ing processes could be calculated within the framework of R-matrix or
other variational reaction theories by modifying existing quantum chemis-
try configquration interaction (CI) computer program packages., However,
attempts to implement this idea have shown that the quality of the results
obtained depends ssnsitively on the extent to which the discrete molecular
orbital basis used 1s able to represent the scattering continuum., The
region of Hilbert space which is spanned ls dependent on the amount of
linear depandence which 1s tolerable within the orbital basis and, there-
fore, effectively on the accuracy with which the undsrlying atomic integ-
rals may be computed, Th; compromise which must be wmade betwaeen obtaining

the integrals to a high degree of accuracy while keeping the computational

time to within reasonable liwits has meant that it has been possible to

' obtain accurate gcattering phase ehifts only for a narrew range of scat-

tering energies. This range is typlcally from threshold to about

1.0 Rydberg when using an analytio Slater orbital basis.

The present integral package is designed to reduce this limitatien.
Although the STO integral generator from the IBM CI Program ALCHEMY is the
starting point of the new code the technigques employed to restrict the
integration domain to the finite R-matrix region are entirely different
from those used by Kendrick and Buckley‘l). In addition many new facili-
ties have been added. Before listing these features it may be helpful to

summarise the salient sespects of R-matrix theory for electron-molecule

gcattaring.,

The application of R-matrix theory to molecular processes involves

the division of configuration space into distinct internal and external



Fig. 13



uged and to provide an overall view of the program structure. Comments

within the source listing should be consulted for finer detells about the
program. The next two sections deal with the generatlon of quadrature
waights and nodes and with the calculation of boundary amplitudes and

continuum molecular orbitals.

The input data to the integral package ls essentially the same as
that for the original IBM bound state code and therefore the notes pre-
pared by B, Liul3) should be conaulted. However, for convenlence, the
entire input data will be described in this report including some details
of parameters controlling the integrstion mesh gensration since these were
not described in detail in the original notes and wlll posaibly have to be
In appendices we provide sample input

varied in scattering calculations.

data, a summary of disk files used and finstallation detalls.

435aBB

2. THE ALCHEMY LINBAR MOLECULE INTEGRAL PACKAGE

The present program has been developed from the ALCHEMY Slater
Integral generator for linear moleoules, SCPWFORD, written by B. Liu of
IBM, 5an Joas{5}, The basic slgorithes used Iln the orlginal package have
not been modified., However, as outlined in the introduction, the opticona
available have been considerably expanded and the package ia now sultable
for computing all integrals required in scattering calculatione within the
R-matrix, variational or hybrid formalisme. Apart from permitting the
integrals to be computed over a finite region of epace, it ia now possible
to use basis functions which are defined numerically to represent the
continuum,

The ovarall etructure and oparation of the program may most easily be
sean by refering to figs.1{a) and t{b). Flgure 1{a) illustrates the sub-
routine calling struoture in the inltial atages of the computation and
showa the set-up of the dynamic core allocation scheme and the reading and
printing of the control and input data, The calculation may eycle over
seta of lnput parametersy thls operation ia the principel role of the

subroutine DRIVER.

The baslc supervisory program in the package la LINTP which ia an
entry point of subroutine LINT. Fligure 1(b) lLllustrates the agubroutines
called directly by LINTP. Subroutines lower down the calling tree ere
shown only for the initial section which is concerned with processing the
input data and producing those fundamental arrays (mostly polnter arrays)
which are used extensively throughout the reat of the package. PEach of
ths required integral types are then computed in turn and written to disk
files, The integral computation sectlons are followed by an integral
rencrmalisation eection which is necessary becsuse integrals over s finite

reglon are initially computed without renormalising the baaie functions -
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mmmmm

(e >—T =
(o ]
[ —
[ —
G —
R e —
[ —_
= —
omae | —
[ —
| [ |—
[ | o]
—ﬁboEIgmomTi -
[ —
e B
[oa— m
[ —
Gt
@I'uxﬂﬁ




.

3. COULOMB AND HYBRID INTEGRALS
The.twouelectron Coulomb and lybrid integrala involve either two or
three centres and are characterined by two one-centre dismtributiona and by
a one-centre and a two-centre charge distribution, respactively.

{a) Coulomb:

1
IIdTl dra ﬂa(‘) Tiz ﬂ;(z’ )
(b} Hybrid:
1
[fany atz 4,00 = a.(2) (2)

In general the two-centre charge distribution, ﬂhc, may be written in

terma of the basia functions X as

-+ L
B A1 = x;(r.a x(ry} {3)

. -
= R {ry) Rc(rll Yb(rll ¥ (e} (4)
using the centre labels to alasc represent the quantum numbers of the basis

gtate., For STO baals functiona

n=-1 =-Lr
b a cb (5)

Rb(r) = lh r

nb+|/2

o -1/2
where N I{2n )11 t2c) . (6}

Using the analyeis ocutlined by HcLean(G), it is straightforward to ehow

that the radial distribution functions may be written as

- Ry L Rz
= a ] —_

Daa(r' Rnlll(r) anlztr) en Gml N mg {7)
and

- 1 +1 "

o g ] om, o (xR G JGHO)

" -1
m3 me,
% ylalcosﬂb)flh(cosﬂc) (8)

where

£3x) = ¢, Bx) i (9)
o |2 (eemyi | 12
Ctn [ 2 u+‘.m‘] to)

and

Lt
c ! 2_,3;2[

1 yﬂ 1 ‘?H ymz
=, My A dx 1I(X) le) LZ‘X) (1)

P:(xl is the wsuval associated Lagendre function as defined by Measiah!{?,

Potential functions may be defined in terms of the radial distribu-

tions by
= L+1
FIM(r) = /41 ..-I-[ ar' ' pM{cr) (12)
r
where centre labels have been suppressed.
‘The required Couloab and Hybrid integrals are then given by

- LM LM
Ia;bc 1'.: £ F‘“(r) Fbc(r)dr. (13)

The one-centre potential function may be written in the case of STO basis
functione as

£y L k3 njing

PH(r) = miN; G [teyeeaie] (14)

my M m3 t An|+n2--l.-l

where the auxiliary inteqral, A“lxl, is given by

An(x) - ]- dy y" e”XY : (15)
1

and may be aimply evaluated using the method of Wahl et all®},

To evaluate Coulomb and Hybrid integrals within a finite reglon it

ahould be noted that long-range contributions to the integrals can only
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RSRQ
Thia subroutine is analogous to OCPQRQ, setting up pointer arrays to

enable the two-centre (in general) distributions given by eq.(B) to ba

computed.

CHINT

This subroutine performs the numerical integration over the potential
functiona given by eq.{13) and carries out the summation over orbitsl
angular momenta, L, to give the required integrals. If the basis func-
tions in the one-centras distribution are 5T0'as, the corresponding poten-
tial function is determined anslytically according to eq.(14). The auxil-
iary R-integral, eq.(15), is computed by recursion; for diffuse basis
functions fn R-matrix calculations the value of FEE(R) is computed using

eg.{t4) [R is the R-matrix radfus] and subtracted from Féglr).

FRSR
The second potential function, F%Z(r). is computed by the two-
dimensional quadrature implied by eqgs.(8) and (12}, The algorithm

employed ia
L~1

Ny L
ry 1 ry
FiM(r ) = £ w_,rf—+ —Du"(r'l] + Fif(z ) {16)
be i =1 rj 1 rj Jan bc' ) Eya bc"i~t
denoting r' quadrature weights and nodes by Hr; and ri respectively. The
r-points, T,r are chasen no that r, < LI

QUADTH
Determines the angular x-integration weights, v and nodes, xj,
uged to evaluate eq,(8), Note that the radial nodes, ri, were computed by

QUADR, and chosen to tover each subinterval of the primary r-mesh used to

evaluate the integrals of eq.(13).

12
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STOTBL
™
Computea a table of basis function values, Rn i {r ) = iplp(cosﬂp).

PP P

correaponding to a specific palr of {r',x)-valuea, Only those basis func-

tions which can form sultable distributions are evaluated., TIf ths basis
function ia found to correspond to a numerical continuum function, sub-
routine RCO is called to provide ths required value, Assoclated lLegendre

functions are obtained by calling subroutine PLMX3.

FPQR
In cases where the one-centre potential is regquired for numerical
continuum functiona, FPQR is called to perform the required numeriecal

integration. 1In fact

Lo\ - R .\
- ] - [} L]
G"'l M ny gz = ¢ ]r dr (r') Rnlh(r 'anlz(r ) (17}

18 computed using an algorithm analogous to eq.{16).

HCHINT

The £inal phase of the calculation, deleting those integrals with a
magnitude less than a specified threshold value, and grouping the remain-
der, with their corresponding labals, into buffer loads is performed by
WCHIRT. The integrals are then written to the disk flle associated with
unit NFT2E.

The header on each output record gives the number of symmetries, the

total number of integrals, and the number of inteqrals for each symmetry.

The remaining subroutina calls are largely to ilnitialisation or other
subsidiary entry points, Table 2 lists each subroutine used in this
section together with its entry point identifiera, Entry points QUAD, and

WRINT are called dlrectiy from LINT.

13
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OCINT

The one-centre integrals are evaluated in OCINT using the expression
given in eq.(20). If necessary, long range contributions are estimated
using eq.{23) and subtracted. ‘The angular coeffliclents, G, are passed

from the firat section of aubroutine TEOCH.

EINT

Computes the auxiliary E-integral gliven by eq.(24).

435ABB

Se EXCHANGE INTEGRALS
The exchange Integrals are defined as those two-alectron integrals

which involve two twowcentre charge distributions,

1 Y
Toges = jjanarznpqm v a2 (25)

In general, therefore, between 2 and 4 distinct centres might be involved,
The reduction of the integrale {25) to a computable form has been desacrib-
ed by mcLaan(5) and hence only the moat significant points will be

sumnariased here.

The integral (25) is simplified by a technique analogous to that em-
ployed for the Coulomb/Hybrid Integrala; the major difference “1a that
rather than using a spherical coordinate system with origin located on the
centre of the one-centre charge dlatribution, it 1a now nscessary to nae a
prelate apheroidal coordinate system with focl at centres p and q. Fig-
ure 4 liluatrates the coordinate system, with origin at the midpoint of pq.

r +r

e — {26)
¢ = tan~liy/x)

An STO baala function located on centre p may then be wrltten in the form

n_-1 n -1 <R[ (E+W) m
.o P P P @ P [1tEn
xp(rp) Np R {E+n) e tp (E+n ﬁp(i) (27}
where
(4 = SLERRY.T (28)
Van

A charge distribution on centres a,b may then be written as

17
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tribution of the required typs and sets up pointer arrays for lecating

thege basisg functions during the integral culculatién.

XINT

This subroutine performs the x-integration of egq.{31) to yield the
required exchange integrala in the case where centres p,q are not ldenti-
cal to the r,s centre palr. The potential functions, E, may be read or

written to temporary disk files assoclated with units 10 and 1\ during the

calculation.

XINTTR
Performs the same function as XINT in the case that the pg palr ie

identical to the rs-centre pair.

EPQXI
Two-centre potentiaml functions, B, are computed using egs.{32}, (33}
by this subroutine, The integration proceeds upwards from the lower limit
point x=1, otherwise the organisation of the calculation is exactly simi-~
lar to that used in the Coulomb/Hybrid calculation, Basls functions at
specific elliptic coordinates are obtained via calle to STOXE) the compu-
tation does not depend therefore on whether the values being returned

corregspond to STO functions or tp a numerical function determlned exter-

nally by RCO.

WXINT

Integral labels are generated In routine WXINT. These and the com-
puted integrals are then written to the disk file asscciated with unit
HFT2E. Integrals with magnitude leas than a specified threshold value

{THRINT) are deleted.

20
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PLHX4

This routine computes a table of unnormalised associated Legendre
functiona, each entry being multiplied by two welghting factors, The
sacond factor ig raised to the power correspondlng to the order of the

Légendre function.

The remaining subroutine calls in this section are either initialls-
ation calls or calls to the routines used to generats the various quadra-
The latter subroutines will be considered further in

ture fornulaeluaed-

gaction 9 of this wemorandum,

21
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6.2 Two-centre integrals

Three types of two-centre one-electron integrals need ba conesidered:
(1) overlap;
{i1) nuclear attraction; a, b distinct, c colncident with a or by
{111} nuclear attraction; a, b identical, ¢ diastinct.
All are most conveniently treated by using the spheroidal coordinata
system introduced for exchange integrals taking the distinct centres as

foci {(see fig.4).

The overlap integrals may then be written in the form

njpz+l _
Syp = & N N (R) E d,, A (RL12)BO9({-RE)2) {44
12 mmp nyk) naka 1,1 i3 "1 f12 3 12 . l
where
Tizg= 0y - L2 © (45)
and integral B is given by
mt +1
o (t-m)t _n2ym /2pm B{n-1)
By (8) = HE2L L an md(1-n2)" 23 n)e (46)

and R 1s half the separation of centres 1 and 2. The coefficlants dlj

appearing in eq.(44) are defined by
"l "2 21 f1een) 22 fri-en
- — —_—) 5 ¢ .
(E+n) (E-m .9",_1 (EM ‘9'!.2 o Iag,k nd (am

It is clear that a similar result to eq.{44) will hold for the nuclear
attraction integrals of type (i1). The power of R will be reduced by one
in (44) and also the exponent n) or nz on the left hand side of (47) will
be reduced by one depending on whether 1 or 2 is the attracting centre

respectively.

Similarly for type (1ii)} nuclear attraction integrals, assuming b ia

24

the centre of attraction

nyz
m Ol
o ﬁmlmznnlllunzlzn fj dij R (REy2) BS’ (-rREy2) {48)
and
njz-1 my ng
L L) Iy L) R B TR0
(£ + n) " (un v, (o 5 % gind (49)

Thera will clearly be no long-range contributions to these two-centre
Integrals when the charge distribution involved is two-centred - however
case (111} given by eqgs.{48) and {49) will have long-range contributions
when centre a corresponds to the scattering centre G. It ls essential
that these long-rangs contributlions to the integral are computed in a

apherical coordinate system with an origin located on G. It can then be

shown that
1 r\L Ly L 23 n)z
o, - p—1 =} w ,n ,6 a & (5)2a)
GG L /2041 (=11 a njt; natam) O my n2=L-1 12 (50}

where the upper factor in the braces ls to bae taken if centre C is to the

right of G, and the lower is to ba used if it is to the left,

6.2 Three-centred nuclear attraction integrals

These integrals are treated by introducing a spherical coordinate
system with the orlgin located on the attracting centre C. The two-
centred charge distribution muat then be expanded about this point in
complete analogy with the case already considered for Coulomb/llybrid

integrals. It is found that

L +1
llib=5gg(r=0}"£dyy[_‘dxxaxb (51}

where F 1l the potential function defined by eq.(12).

25
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gubroutine. The calculation is divided intc three sectlons corresponding
to (A) one-centre integrals, (B} two-centre integrals with a one-centre
charge distribution, (C) two-centre integrals with a two-centre charge
distribution as ipdicated in fig.7. ‘The methods uesed are identical to
those Eor overlap integrals. In R-matrix calculations, the Gaunt

coefficients G required in eq.{50) are read from disk file ITALM.

UPQ3IC

The looping over centres and symmetries is combined in this sub-
routine which supervises the 3-centre nuclear attraction integral
Note that nuclear attraction integrals carry the type label

computation.

3 in addition to the sequence number of the attracting centre.

UPONI
performs the two-dimensional integration of eq.{51) and sc evaluates

the three-centre nuclear attraction integrals,

HWUPD
This subroutine computes block and inteqral labals before writing the

three-centre nuclear attraction integrals to disk file NFTIE.

WOEILNT
Writes one- and two-centre one-electron integrals to the diak file

attached to unit HFTME,

28
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7. PROPERTY AND NUMERICAL ONE-ELECTRON INTEGRALS
The integrals of this clase are defined as one-electron integrals

{involving batween one and three centres) of the form

Lok ® | any 8,Mmo . (54}

nab ias the usual one- or two-centred charge distribution while ths

operator Ok may take either the form

[+]

- :gtt-xg)"z xi Pix ) . (8) . (55)

where = coaBk or alternatively

]
ok = TR (s6)
Ta Tk
By taking a apherical ccordinate ayastem with the origin located on the
property centre the evaluation of the integrala (54) 1s easlly reduced to

a two-dimensional guadrature.

7.1 Program detalls

Property integrals and numerical one-electron integrals are calcula-
ted by separate calls to the same group of subroutines from subroutine
LINT. Thia calling sequence 1a shown schematically in f£ig.8 and the

subroutines invelved listed in Table 6.

True property integrals involving operators of the form given in
Pq-(55) are computed over the infinite domain and carry the type label 4.
The full block header label is an octet of numbers of the form
4nti3j k Lm0, The operation of this section is controlled by the awitch
IFLINT{5). Of course for the integral to be convergent the value of the

parameter n must satiefy n » - 1, Integrale are written to the diak flle

attached to unit IOEU.

29
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TABLE 3. TWO-ELECTRON ONE-CENTRE INTEGRAL SUBROUTINE LIST
Entry Polnta
1. EINT
2, OCBLKS
3. OCPQRQ I0CPQ
4, TEOCH
5. HWOCI COCINTI OCINT HOCF
TABLE 4. EXCHANGE INTEGRAL SUBROUTINE LIST
Entry Polnts
1. ARC ELTBL ELINT ELINY
2. GAUSS
3. IEPQAI  EPQXI
4. INPAR
5. IPLMX
6, NPTD NPTI
Te. PLMNP
e, PLMX2 IPLMX2
9, PLMX4 IPLMX4
10,  PQCHT
11. PRTTH
12. QUADXE QUADXX QUADE? QUADE
13, INCO RCO TRCO BRCO
i4, 5TO1 5TO2 STOXE STOTB SBLOCH BTOTBL
15. TABLE1 TABLE2
16,  TCPQRQ
17. TETCH
18. WRXINT WXINT
19. XBLKS
20, XINT
21. XINTTR
72
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TARLE 5.

SLATER OWE-ELECTRONM INTEGRAL SUBROUTINE LIST

1. BIHLB
2. EBINT
3.  GAUSS
4. INPAR
S.  IPEMX
6. HKPTD
7. OTCUPQ
8.  PLMX3
9.  PMY2V

10. PMY2V2

11.  qQuap

12, STOY

13,  sTPQ

14,  STUMX

15.  UPQMI

16. UppaC

17.  ¥N3
18.  WOEINT

19. WuPp

TABLE 6.

NPTI
IPLHX2

PHY2V3
QUAOR
STO2

VNI
IHOR
WUPQI

Entry Points

PMY2V4

QUAD1 QUADTH

STOXE STOTBE SBLOCH
xNJ WHIY

PROPERTY INTEGRAL SUBROUTINE LIST

1. GAUSS
2. INcO
3.  INPAR
4. IOEOP
5. IPLMX
6. HrTD
7. OCOEME
8. OEINT
9.  OEMXLP
10. OTPGRD
1.  PLMXZ
12, PLMX3
13.  QUAD
14,  5ORTOP
15.  STO1
16.  WOEMX

7. WOEMX2

RCO
OEQP1

RPTI

IPLMX2
IPLMX3
QUADR

STO2
HWOEMX1

Entry Polnts

TRCO BRCO

OCOEOP

QUAD1 QUADTH

STOXE STUTB SBLOCH

73
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8. RENORMALISATION, BOUNDARY AMPLITUDES AND HMOLECULAR ORBITALS

8.1 Integral renormalisation

All integrals computed in previous sections of the program have been
calculated with basls functions normalieed over all space. In R-matrix
calculationa thege muat be renormalised to the volume of the R-matrix
internal region, This implies that those integrals which have been com-
puted from truncated basis functions must be wultiplied by factors egual
to the inverse esguare root of the corresponding (truncated) diagonal over-
lap matrix element in order to form a correctly normalised integral.

Hence, for example,

SR ogli2g-lizg - (57)
12 11 22 Tz

where labela 1 and 2 correspond to complete sets of basie function quantum
numbare and the value on the left correaponds to the correctly normalised

overlap element.

8.2 Continuum molecular orbital generation

Several optionas exist within the program for generating continuum
molecular orbitals by orthogonalisation technigues. The target molecular
orbltals are first read in. This is followed by a Schmidt orthogonalisa-
tion, symmetry by symmetry, of the continuum basis functions with respect
to the target orbitals. The continuum orbitals which result may then be
gymmatric orthogonalised amongat themselves. Alternatively the entire set
of functiona may be Schmidt orthogonalised. In both casea the linear
dependance of the generated orbital aet ia monitored (orbltals are deleted
if they would lead to normalisation errors) and may be restricted to be

leas than some epecified value,
In cases where numerical orbitale which alresdy form an orthonormal

set with the target orbitals are used it ls poselble to generate affectlive

32
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molacular orbital wavefunctions in the standard ALCHEMY format without any
orthogonalisation. The reasultant wmolecular orblital eet may be output in a
variety of formats including that of a standard ALCHEMY molecular orbital

dumpfile.

8.3 Boundary amplitudes

Cnce an orthonormal set of molecular orbitals including continuum
orbitale ia avallable the construction of boundary amplitudes according to
aq.{16b} of Burke et 2110} 3, straightforward., HNote that the amplitude
definition contains the (2a)~17/2 factor as well as the orbital angular

momentum projection of the radial molecular orbltal wavefunction on the

R-matrix boundary.

In large c¢alculations there are considerable advantages to the use of
partitioning techniques and the introduction of an optical potential. This
aspect haa been emphasised by Nesbet!*) (aee also Oberoi and
Hesbet{13,14))  with these considerations in mind it is possible to
pecform an orthogonal transformation on the ge;eratad molecular orbital
set ao that only one orbital for each asymptotic channel has a non-zero
This transformation la included as an option within

boundary amplitude.

the code,

8.4 Program detalls

The calling sequence of the subroutines involved in the generatlion of
continuum molecular orbitals and in the computation of boundary amplitudea
is illustrated in fig.9. The corresponding subroutine names and entry

polnte are listed in Table 7,

TRHSDR

The target molecular orbitals are input by subroutine TRNSODR either

33
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APPENDIX C. INSTALLATION DETAILS
The special programming features used in this package imply that it will
only run correctly on a computer with IBM compatible architecture. It is
currently implemented on the NAS 7000 computer at the Daresbury I
Laboratory.
1. Source Code

File NB .DARLAB,TAILMY.FORT

(May be archived)

2, load module

HO.LOAD(TAILYV)
3. JCL
(1) for compilation: HBE.DARLAB . TAILMY . FORT{ COMP)
{11) for link editing: HB,DARLAB, TAILHY. FORT{LINK}

Input and output files corresponding to the examples given in Appendix A
may be found in the archived files HB.DARLAB.TAILMY.DATA and

WB.DARLAB.TALLMY.TEXT.
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9. QUADRATURE AND TRANSFORMATION ROUTINES
The efficiency of the program depends ultimately on the speed and
accuracy with which various numerical integrations can be performed. As a
consequence rather alaborate proceduras have been adopted for generating
Six subroutines are involved:

QUAD,

the quadrature nodes and welghta.
QUADXE, INPAR, CGAUSS, ARC, NPTD, The entry polnt names associsted with
these routines are listed in Table B, The loglcal structure of the two
rajor routines, QUAD and QUADME, is quite involved and therefore wiil he
briefly described here. The underlying physical picture which ehould be

kept in mind during this discussion 1s as follown.

The appropriate integration mesh for use in a particular integral
calculation le determined by the effective potential eeen by an electron
at each spatial point, For example In the case of a homonuclear molecule,
the dominant feature is the occurrence of the nuclear singularities (at a
radial distance, r = LW say). In some region which may typically extend
up to 0.5 Bohr either side of this point ths effective potential will be
rapidly varying and ba dominated by the static componente, Momt Lntegra-
tion mesh points therefore must be concentratéd in this reglon and should
be distributed symmetrically about the singularity. At smaller radial
distances the potentlal will ba strong but nearly conetant and consist of
an approximately equal mixture of exchange and statio components. Beyond
the nuclear region the exchange and static components will again ba com-
parable. At still larger radial distances (> 2 er the exchange corpon-
ants will ba decaying rapldly and the static component will tend to assume
a amoothly varying multipolar character, Hence both the outer two regions

will require fewer mash points than the nuclear region.

QUAD

This routine generates integration formulae uwsed for Coulomb/Hybrid,

36

435n88

numerical one-electron and property integral calculations. The two major
entry points are QUADR, which generates formulae for tha radial integra-
tions, and QUADTH which generates the angular theta mesh, Recall that a
spherical coordinate system la used with origin located on one of the
centres and that betwaen one and three centres may be involved in the

integral.

QUADR
Input data controlling the computation of the radial mesh is of three
types
(1} centre data
RNUC specifies the characteristic range associated with the
charge distribution on the centre i.e, the region about
the nuclear singularity where the static potential
dominates
DRNUC gives the number of integration pointe per unit path
length in the region associated with the centre
(1i1) TIRIP an array of data determining the order of Gauss formulae
to be used in various subintervals
(111) DRIP an array of data determining distance acales and the posi-

tioning of the transformation points within a subinterval

The mesh 18 determined for the interval between each pair of centres In

turn and then for the region beyond the last centre. For each palr of

k and L% {see Fig,10) the number of integration gubranges

1 1+t
into which the interval is divided depends essentially on the size of the

centren r

Intermediate reglon, denoted by Fpe

(a) r, < r;

Then in the case of Coulomb integrals two sublntervals are created
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TABLE A2

ZETA=6.21292, 6.21292, 9.36827, 9.36827, 1.46786, 1.46786,
2.26642, 2.24642, 1.52853, 1.52853, 3.33678, 3.33678,
1.93500, 1.93500,

1.52853, 1.52853, 3.33678, 3.33678, 2.43700, 2.43700,

/! EXEC FGG,LLBRARY='HO.LOAD' ,HEMUER=TALLV,REGION~1999K,TIHE=(29,59)
/1G.FTO8FO01 DD DSN=NB.N2SGP3.DATA,DLSP=SiiR ,UNIT~3330~1,

// DCB=(RECFM=VBS ,BLKSIZE=6400 , BUFNO=1) ,SPACE=(TRK,(2,2),RLSE)
//G.FTOBFOU2 DD DSN=NB.N2SGP4.DATA,UNIT=3330-1,D1SP=SIIR,

/1 DCB={RECFH=YBS BLKS1ZE=6400, BUFNO=1),5PACE=(CYL,(6,6),RLSE), 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
/7 VUL=SER=DLO298 ¢.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
//G.ETO9F00L DD DSN=NB.N2SGP5.DATA,UNLT=3330,D1SP=SHR, €¢.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
// DCB~(RECFM=VBS,BLXS12ZE=6400, WUFNO=1) ,SPACE=(CYL,(1,1),RLSE), 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
/1 VOL=SER=DNPLIJ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
/U FT10FC0L DD DSN=8&DUMM3 ,UNLIT=3330,VOL=SER=DHPLI],DLISP=(NEW ,DELETE), 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
// DCB=(RECFM=VBS ,BLKSIZE=6400, BUFNO=1) ,5PACE=(C¥L ,(5,5) ,RLSE) 0.0000, €¢.0000, 0.0000, 0.0000, 0.0000, 0.00G0,
//G.FT11F0O01 DD DSN~&&DUMMA4 ,UNIT=1330,V0OL=SER=DNPL3I, DISP=(NEW ,DELETE), 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
// DCB=(RECFM=VBS, BLKS1ZE=~6400,8UFNO=1) ,SPACE=(CYL,(5,5) ,RLSE) ¢.0Uv0, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
//G.FT12FO0L DD DSN=88KATL2 ,UNLT=3330,V0L=SER=DNPL33,DISP=(NEW,DELETE), ¢.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
// DCH=(RECFM=VB3,BLYS1ZE=6400, BUFNO=1) ,SPACE=(TRK, (50,90) ,RLSE) * 0.0000, 0.0000, 0,0000, 0.0000, 0.0000, 0.0000,
//G.FTI3F001 DI} DSN=&SKATL3,UNIT=3330,VOL=SER=DNPLI],D1SP=(NEW ,DELETE),

// DCB=(RECFM=VBS,BLXS1ZE=6400, BUFNO=1) ,SPACE=(TRK,(90,90) ,RLSE)

//G.FT15F001 DD DSN=&SKAT14,UNLT=3330,V0L=SER=DNPL33,D15P~(NEW,DELETE), NUCCEN=3,

// DCB=(RECFM=YBS ,BLKSI1ZE=6400, BUFNO=1) ,5PACE~{TRK, (90,90) ,RLSE)

//G.FT21F001 DD DSN=NB.N2S5GPO.DATA ,UNIT=1330,V0L=SER=DNFL3]}, IFLSYH=1, 1FLINT=74(, IPRINT=5%0,2%0,0, LREC~6300,
// DCB=(RECFM=VBS,BLKSLZE=6400,BUFNO=1),SPACE=~(TKK,(1C,10) ,RLSE), ICF=1,ICFP=1,

/1 DISP=SIR LEND

//G.FT22FQ01 DD DSNeNB .N2SGPLA.DATA,UNIT=3330-1,V0L=SER=DLO298, SUET

// DCB=(RECFH=VHS,BLKS1ZE=G400, BUFNO=1) ,SPACE={TRK,(1,L),RLSE), NSYM=2,

/1 DISP=SIR NBF=14,6, NOD=9,5,

//G.FT27F001 DD DSN=NB.V2.STON2N,DISP=SHR ITVCL=1,

//C.FT29F001 DD DSN=~QKV.N2FUN.SG0243.DATA,D15P=SHR SEND

//G.SYSIN DD * &GETI

S1NPUT

LBLOCH=Q, BBLOCH=0.0, RMATR=10.00,NUCCEN=3, I1FLOUT«0,0,

IVCS=27, NIND=9,

NAHME='N2 NESLET SLGMA-~G (S, D, G WAVES) 22-POLES (COUPLED),2 CORRELATM 14p=-1,0,1,3, 1,0,6,6, 1,0,9,9, 1,0,4,5, 1,0,7,8,
GEONUC= -1.034,1.034,0.0, NEF=86, NNUC=3, t,1,1,t, 1,1,3,4, 1,1,2,2, 1,1,5,5,
NL#K=L,0,0,1, 1,0,0,2, 1,0,0,1, 1,0,0,2, 2,0,0,1, 2,0,0,2, NBASE=0O

2,0,0,1, 2,0,0,2, 2,1,0,1, 2,1,0,2, 2,1,0,1, 2,1,0,2, SEHD

3.2,0,1, 3,2,0,2, 2,1,1,1, 2,1,1,2, 2,1,1,I, 2,1,1,2, &PUT

3.2,1,1, 3,2,1,2, CIIARG=7.0,7.0,0.0, NBF=80,6, NOB=31,5, NSYHM=~2,
1,0,0,3, 2,0,0,3, 23,0,0,1, 4,0,0,3, 5,0,0,3, 6,0,0,], TPROJ==1.0D0, ITVCI=0, LORTHO=1,NFONE=9,
7,0,0,3, 8,0,0,3, 9,0,0,3, 10,0,0,3, 11,0,0,3, 12,0,0,3, MEGU=21, ISTOST=1,

13,0,0,3, 14,0,0,3, 15,0,0,3, 16,0,0,3, 17,0,0,3, 18,0,0,3, &END

19,0,¢,3, 20,0,0,3, 21,0,0,3, 22,0,0,3,

3,2,0,3, 4,2,0,3, 5,2,0,3, 6,2,0,3, 7.2,0,3, 8,2,0,3,

9,2,0,3, 10,2,0,3, 11,2,0,3, 12,2,0,3, 123,2,0,3, 14,2,0,3,

15,2,0,3, 1s,2,0,3, 17,2,0,3, 18,2,0,3, 19,2,0,3, 20,2,0,3,

21,2,0,3, 22,2,0,3, 23,2,0,3, 24,2,0,3,
5,4,0,3, 6,4,0,3, 7,4,0,3, B,4,0,3, 9,4,0,3, 10,4,0,3,

11,4,0,3, 12,4,0,3, 13,4,0,3, 14,4,0,3, 15,4,0,3, 16,4,0,3,

17,4,0,3, 18,4,0,3, 19,4,0,3, 20,4,0,3, 21,4,0,3, 22,4,0,3,

21,4,0,3, 24,4,0,3, 25,4,0,1, 26,4,0,],
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total interval involved in the integration is AR, 'This Lnterval may be
apiit into up to four segments depending on the location of the centres
and on the most important regions covered by the assoclated charge dia-

tributions. The most general case occurs if there are centres located

both to the right and left of the coordinate orlgin on ZE and the integra-

tion arc intersects the important reglons of both charge distributions.

This case 18 illuastrated in fig.13.

The first case to be considered is that when R is amall. Only the
charge-distribution assoclated with ZE is deemed relevant and there is no
pubdiviaion of the full integration arc. Input parameters deflne the

number of Gaussian points to be used per unit arc length.

In other cases the distance batween each centre and the integration
arc must be determined. If no centres are close to the integration path
there again i8 no subdivision of the interval, Variable b = lzk—nl for
centre k, is used to linearly scale the number of mesh polnts per unit
arc length corresponding to the reglon agsoclated with centre kX, Having
determined the gsubintervals and numbers of grid points, subroutine INPAR
is again called to trangform the Gauss-Legendre weights and nodes thus

constructing the compound gquadrature formula,

QUADXI
This routine is used to construct the E-integration mesh used in the
avaluation of exchange integrals. The overall structure and moat of the
detailed logic used is identical to that employed in routine QUADR and
therefore need not be repeated here.

Batween two and four centres may be

involved.

be two-centred and short-ranged, differences arise from QUADR only because

of the different integration variable.
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Apart from the fact the charge distributions are all assumed to

QUADE

This entry point of subroutine QUADXE is used to determine the
n-inteqgration mesh used in the exchange integral calculation. The routine
has a ailmilar structure to QUADTH the differences resulting from the fact
that the integration path is elliptical rather than circular, To handle
the geometric problem of determining elliptic arc lengths subroutine ARC

with entry points ELTBL, ELINT and ELINV is used, An initial cail to ARC

!
sets up a compound integration rule based on the 2-point Gauss-Legendre
formula for the O to w interval. Using this rule, ELTBL is called to set
up a table of arc lengths corresponding to each wultiple of w/32, Entry
ELINT may then be used to determine the arc length subtended by any two
angles by Linear interpolation on the arc-length table. Thls process ls
inverted by entry ELINY. The division of the n-arc length into sub-

intervals according to the proximity of the varlous charge-distributions
followa the pattern estaplished by QUADTH. Once the Intervals, orders and
transformation polnts have been established, INPAR is again called to

generate the required welghts and nodes.

a1
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MEGU

NBF

RBFT

RPBF

NFONE

HOB

NS Y™

1. TRB

AZERnTN

i 1y I%4; 27

Unit for the output of the generated molecular orbital vectors

in the case that ITVCI<1

HSYMy 21; I*4; 21%Q

Number of basis functione in the generated vector set for each
of the HSYM symmetrias

ts 1) 1*4;, 0

Total number of basis functions (summed over symmetries) in
the generated set of molecular orbitals

NBFT; 1503 I*4;

Array g9iving for each of the complete set of output basle
functions, the corresponding basle functlon sequence number
within a given symmetry set

1) 1) I*4; 9

Unit mumber from which overlap matrix elements are to ba read
in subroutine ENLARG in order to perform the orthogonalisation
of the molecular orbitals

HSYHM) 21y IM; 2130

Humber cof molecular orbitale which are to bea constructed
{including the target orbitals) for each symmetry in the
output molecular orbital set

1y 17 I%4;

Humber of symmetries ln the generated set of molecular
orbitals

Yr 1) I*4y 449

Humber of coefficliente to be written in each output record of
the generated set of molecular orbitals. The complete record

size wiil be (LTRB*2+1)*4 bytes

60
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1y ¥y R*8; 1,0D0-5

The smallest eigenvalue of the molecular orbital overlap
matrix which is to be retained; orbitals which are more
linearly dependent are deleted

If TPROJ = ~1,D0D all oxbitals are retained
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IPROPU

PRNAME

I2PCDE

ITALH

RFTR

RFTC

RETIH

NFT1E

435ABD

The mcattering centre should be first followed by nuclear centres
in order of decreasing nuclear charge, The code will force G to
be first,

1y 1y I%4y 9

Unit number for output of property integrals
(2,20); (2,20); m*8; * '

Property names each having a maximum of 16 characters.
8,200 (8,20)) 1*2,

Octets, each specifying a one-electron property operator, of the
form

4, n, 1, 3, x, 1, ]ﬂln 0

Iml 1 1!n|0k
rg cosjBk ainiﬂk Py (coaﬂk) 7 °

k ldentifies the centre which acte as coordinate origin

1 1y I*4; 21

Unit for scratch storage of Legendre Eunction integrals computed
by VCCOEF

1; 17 I*4y 22

Unit for the output of boundary amplitudes

1; 1) I*4; 29

Unit for the input of data defining the numerical continuum basis
functions

1y 1 I*4; B

Unit for the output of data defining the run

15 43 I*a; 1]

Unit for the output of one-elactron integrals, The integral

labels may not be symmetry-ordered and the integrals themselvas

will not be renormalilssd.

414

RFT1X

NFT2E

HFT21

THINT

'IFLOUT

IXORD

LREC

435A8BD

1y 1y I%4; 9
Unit for the output of one-electron integrals. Labels will
correspond to symmetry-ordered baals functions as required in
other ALCHEMY program modules.
1y 1, I, 12
Unit for the output of two-electron integrals. ILabels will
correspond to the order in which the basls-functions were input
and may not be symmetry-ordered,
17 1y I*4; B
Unit for the output of two-electron integrals. Ilabels will
correspond to eymmetry-ordered basis functions ae required by
othexr ALCHEBY programs.
Yy 1y R%8; 5.0D-8
Delets all two-electron integrals with magnitude less than THINT
2y 2y I*a5 2%0
Print awltch for integration mesh data
IFLOUT(1) unused
IFLOUT(2) =0 wno printout
=1 print primary radial integral subranges and orders
and secondary orders
=2 as 1 plus print angular subranges and orders

Switch applies to all numerical integrals
1y 1y I*42 1
=1 order centres in two-electron exchange integral calculation

according to decreasing Z-coordinates
==1 order centres according to increasing Z-coordinates

1 1) I*4y 7200

Maxinmum length in bytes for a logical output record of integrals
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NFTA3 11 1) It 21
Unit number from which targat molecular orbitals are tc be
read
ROB NSYM; 21) I*4; 2i*0
Humber of target molecular orbitals for each symmetry
HSYH 1y 1) 1I*4,
Number of different symmetries in the input set of target
molecular orbitals (HSYH<2%)
VCIN NTp 1700; R*8;
Packed array of target molecular orbital coefficlients - read
if ITVCI=Q
HSYM
KT = I NOB(L)*NBF(L)
L=t
10,4 RHKamelist &GET1
This namelist is read in by subrocutine GETVC in the case that
ITVCI=1. It contains contro)l variables for the selection of target
molecular orbital coeffiecients from a dumpfile attached to unit IVCS. The
gelected orbitals are written as the firat file on unit IMEGU,
CcGU {2, number of basis Ffunctions}; (2,150); R*8;
Array used when dealing with a dumpfile containing vector co-
efflclents in Dnv format., For details refer to the source
listing of subroutine WMEGU. There are two entries for each
bagie function giving the sign with which it enters into the
corresponding g~ and u-symmetrised basis functions. The other
menber of the pair is defined by array HT. A zero ie entered
for basls functions on the central atom of a molecule with an

odd number of nuclel.
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IFLSYM

IVCS

IND

MT

NBASE

NIND

1y 1; 1*41 O
Switch indicating the type of vector coefficients in the

dumpfile 1.e. Cmv, D Normally only the dsfault is used

"
implying Cuv storage.,
Ty 1y I®4; 27

Unit of the dumpfile from which the tsrget molecular orbital
coefficients are to be selected

{4,NIND); (4,100)) I*4;

NIHD quartets {a,b,c,d) which deflne the tasrget molecular

orbitals which are to be melected

a the set number
b symmetry typa
c ptarting orbital
orbital sequence numbers
d final orbital

number of basis functions; 150; I*4;

Pointer array used in conjunction with CGU in the D_, case,

*h
Each entry of MT refera to a basis function and gives the
serial number {using the serialisation within a symmetry class

established by input to the integral program) of the basis

-function which is to be asacciated with that function in a

symmetrised basils function.

1 1y 1I*4 O

A bage number by which all the orbital set numbers in IND are
incremented

17 1) I*4y

The number of quartets in array IND used to Belect the

required molecular orbital coefficients

57



10,2 Integration Mesh Parameters

Many parameters must be passed to the quadrature generating
subroutines QUAD and QUADXE. In general the default values provided by
data statements in the code will be adequate; however in scattering cai-

culakions involving very diffuse Slater orbitals or highly ocascililatory

numerical continuum functionas some may need to bhe adjusted,

Two lndependent sete of parameters are entered for subroutine QUADy
one set is used for the Coulomb/Hybrid calculation, the other for property
and numerical one-electron integrals. For this reason the external vari-

able names of the first set will be used in the following description and

related to the second set in a later section.,

Parameters relating to the radial integration meshes generated by

Bubroutine QUAD

DRIP 105 15; R*8;
DRIP{1} AR number of Gaugs points per unit interval to be
used in the internal region between centre regions
DRIP(2) BR exponent determining the weighting to be given to
an interval in the internal reglon when
determining the number of integration points
Typically for an interval Ar in the central region
the pumber of pointe will be
b,
4n = a_ x (4r)
r
DRIP(3) CR fraction determining the position of the transfor-
mation peint within a subrange
DRIP{4) DR exponent determining the weighting to be given to

the internal region when partiaily included in a

asubrange extending into a centre region
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DRIP{5) RMIN centres which are closer together than this

dietance are regarded as identical

DRIF(6) the distance between the centre farthest from the

origin and the largest radial mesh point

{"infinity")

DRIP(7) P1 detarmines the fraction of centre reglon grid

points of the primary radial mesh which are to

correspond to secondary radial grid subranges with

NGI~order Gauss formulae

DRIF{8) RCINF the distance of the transformation polnt in the

last (highest radial grid pointa) subrange from

the start of the subrange

DRIP{9) RTHR parameter determining the division of the interval

baetween centres into subranges by setting the

scale., Variables r3' and ry' of section 9 correa-
pond to 2 and 4 times RTHR, respectively

DRIP(10) RTHRL the distance between the boundary of the centre

reglon furtheat from the origin and the initial

point of the final “semi-infinlte™ aubrange

The remaining § entries of array DRIP are unused,

The column following the varlable name corresponds to the Internal

»variable moat closely related (not necessarily identicall) to the external

variable.
IRIF 71 t5; 1*4,
1RIE(1) NRINF Order of the Gauss formula to be used Lin the
ocutermost radial subrsnge
IRIP(2) DHRMN2 The internal reglon between centre regions 1is
49
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DTHIP(B)

DTHIP(9)

RO1

RO2

generated (assuming the orders are ldentical) centres located on both sides of the origin

minimum radius of the inner reglion assoclated with ITHIP(10) DHTHNR winimum number of integratlon points in a non-
the centre located at the orligin centre raglon
minlmum radius for the outer part of the reglon The remaining entries of ITHIP are unused,

agpociated with the centre at the origin
Centre parameters

The remaining entries of DTHIP are unused,

ITHIP

ITHIP{1)

ITHIP(2)

ITHIP(3)

ITHIP(4)

ITHIP(S)

ITHIP(6)

ITHIP(T)

ITHIP(B)

ITHIP(9)

107 157 I*4¢

DHTMNI

DHTHMXI

DHTMNO

OHTHRO

DNTHNF

DTHX1

DTHXN2

DTHMX3

DTMXA

DIPHUC(3,I} RTHUC({I) basic region slze to be associated with centre I

DIPNUC{4,I}) ATHRUC(I) meximum number of integration polnts per unit
minimum number of LIntegration polnts for am arc in interval in the reglon associated with the centre
the region assoclated with the centre at the origin DIPNUC(5,I) CTHNUCII) maximum value of the factor determining the
maximum number of integration points for an arc in position of the transformation point in a subrange

the region associated with the centre at the origin including the centre reglon

minimum order Gauss formula to be used in non- S 7 )
Parameters relating to the radlal integration hes generated by

centre regions ' . subroutine QUADXE

maximum order Gauvss formula to be uvsed in non- Theoe parameters are completely analogous to thome passed to
centre reglons subroutine QUAD and hence it suffices to establish the correspondence
minimun order formula to be used for a complete between the two sets,

arc which does not intersect centre raglons DXIIP 10y 15; R,

maximum number of integration points for the non- Determines the integration subranges and should be compared to
centre gector of the quadrant which has a centre array DRIP

subrange (centres on.one alde of the origin) IXIIP Ty 15; I*4;

maximum number of integration polnts for a quad- betermines the orders for the primary and sscondary £

rant which has no centre subrange {centres on one quadratures. Compare with array IRIP

gide of the origin) Differences are due entirely to the coordinate definitions (i.e. R+*f),
maximum number of intgration polnts in a non- This is also true for the centre parameters.

centre gector when there are centres on both sides DIPNUC(6,X} RXNUC(I)

of the orlgln pIpNUC(?,1} DXNUC{ I}

maximun order formula In a non—centre region for a

gquadrant having no centre-gubrange when there are
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DTHIP(B)

DTHIP(9)

RN

RO2

generated {asgsuming the orders are ldentical} centres located on both sides of the origlin

minimum radius of the ilnner raglon asgoclated with ITHIP(10) DNTHMNR minimum number of integration points in a non-
the centre located at the orlgln centre region
minime radiuvs for the outer part of the reglon The remalning entriea of ITHIP are unuged.

assoclated with the centre at the origin
Centre parameters

The remalning entrles of DIHIP are unused.

ITHIP

ITHIP(1)

ITHIP{ 2}

ITHIP(3)

LTHIP(4)

ITHIF(5)

ITHIP(6)

ITHIP(7)

ITHIP{ D)}

ITHIP(9)

10y 157 I*4y

DNTHNL

DHTMXT

DHTMHO

DNTHMXO

DHTMNF

DTHX2

DTMX3

DIPHUC(3,I) RTHMUC(I) baslc reglon elze to be assoclated with centre I

DIPNUC(4,I) ATHNUC(I) maximum number of integration points per unit
minimum number of integration points for an arc in Interval in the reglon assoclated with the centre
the region asscclated with the centre at the origin DIPHUC(S,I) CTHNUC(I) maximum value of the factor determining the
maximusw number of integration polnts for an arc in poeltion of the transformation point in a subrange
the region assoélatad with the centre at the origin including the centre reglon

minimum order Gauss formula to be used In non- o ) ) o
Parameters relating to the radial integration meshes generated by

centre reglons ’ , subroutine QUADXE

maximum order Gausa formula to be used in non- These parameters ate completely analogous te thoge passed to
centre reglions gubroutine QUAD and hence it suffices to establish the correspondence
minimum order Formula to be used for a complete betwaen the two pets.

arc which does not intersect centre reglons DRIIP 10; 15; R*g;

maximum number of integration points for the non- Determines tha Llntegration subranges and should be compared to
centre pector of the quadrant which has a centre array DRIP

gubrange (centres on.one alde of the origin) IXIIP 71 15 1I*4,

maximam number of Lntegration points for a gquad- bDetermines the orders for the primary and secondary £

rant which has no cantre subrange {centres on one quadratures, Compare with array IRIP

slde of the origin) Differencea are due entirely to the coordinate definitlons (i.e. R+¥),
maximum nuaber of intgratlon points in a non- This ls alsc true for the centre parameters.

centre pector when there are centres on both sides DIPNUC(6,I) RXNUC{I)

of the origin DIPHUC{T,I) DXNUC(I)

maximum order formula in a non-centre reglon for a

quadrant having no centre-subrange when there are
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10.2 Integratlon Hesh Parameters

Many parameters must be passed to the quadrature generating
subroutines QUAD and QUADXE. In general the default values provided by
data ptatements in the code will be adequate; however in scattering cal-

culations involving very diffuse Slater orbltals or highly oscillatory

numerical continuum functions some may need to be adjusted.

Two independent sets of parameters are entered for subroutine QUAD;
one get 18 used for the Coulomb/Hybrid calculatlion, the other for property
and numerical one-electron integrals. For this reason the externai vari-

able names of the first set will be used in the following description and

related to the second eet in a later asection,

Parameters relating to the radial integration meshes generated by

asubroutine QUAD

DRIP 10; 15 R*8)

DRIE(1) AR number of Gauss points per unit interval to be
used in the internal region between centre reglions
DRIP(2) BR exponent determining the welghting to be given to
an interval in the internal region when
determining the number of integration points
Typically for an interval Ar in the central region
the number of points will be

tn = a_x mr)b”
DRIF{3) CR fraction determining the position of the tranafor-
mation point within a subrange
DRIEP{4) DR exponent determining the weighting to be given to
the internal reglon when partially included in a

subrange extending into a centre region
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DRIP(5]) RMIN centrea which are closer together than this

distance are regarded as ldentical

DRIP(6) the distance between the centre farthest from the

origin and the largest radial mesh point

("infinity")

DRIP(7) b2 determines the fraction of centre region grid

points of the primary radial mesh which are to

correspond to secondary radial grid subranges with

NGl-order Gauss formulae

DRIP{8} RCINF the distance of the tranaformation polnt in the

last (higheat radial grid pointa) subrange from

the start of the subrange

DRIP(Z) RTHR parameter determining the diviasion of the interval

between centres into eubranges by setting the

scale. varlables rj3' and ry' of section 9 corres-
pond to 2 and 4 timee RTHR, respectively

DRIP(10) RTHRL the distance between the boundary of the centre

region furthest from the origin and the initial

point of the final “"semi-infinite"™ subrange

The remaining 5 entrles of array DRIP are unused,

The column following the varlable name corresponds to the internal

+variable most closely related (not necesparily identicall) to the external

variable,
IRIFP 7t 15 I*4
IRIP(1) NRINF Order of the Gauss formula to be used in the
cutermast radial subrange
IRIP(2) DNRMN2 The internal region between centre regions is
49
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HETA3

HOB

RSYH

17 15 I*4; 21
Unit number from which target molecular orbitals are to be
read
HEYM; 215 I*4) 21%0
Rumber of target molecular orbitals for each eymmetry
17 t; I%4;
Number of different eymmetries in the input set of target
molecular orbitals (NS5YM<21)
NTy 1700; R*8;
Packed array of target molecular orbital coefficlents - read
if ITVCI=0
HSYM

HT = 1
L=t

HOB{L)*NBF(L)

10.4 HNamellst &GET!

ITVCI=1.

This namelist 1a read in by subroutine GETVC in the case that

It contains control variables for the selection of target

molecular orbital coefficients from a dumpfile attached to unit IVCS. The

selected orbitals are written as the fivat file on unit IHEGU.

cGu

{2, number of baois functiomse); {2,150); R*8;

Arcvay used when dealing with a dumpfile containing vector co-
efficienta in Duv format. For details refer to the source
listing of subroutine WMEGU. There are two entries for each
basle function giving the sign with which it enters into the
corresponding g- and u-symmetrised basis functions. The other
member of the pailr 1s defined by array MT. A zero is entered
for basie functions on the central atom of a molecule with an

odd number of nuclei,
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IFLSYH

IVCS

IRD

HT

NBASE

NIND

11 1 I*4; 0
Switch indicating the type of vector coefficlents in the

dumpfile 1.e. Cuv, D Normally only the default ig used

oty ®
implying va storaga.
1 1p I*4; 27

Unit of the dumpfile from which the tamrget molecular orbital
coefficients ere to be pelected

{4,NIND)y (4,100); I*4;

NIND quartets {(a,b,c,d) which define the target moclecular

orbitals which are to be pelected

e the set number
b symmetry type
c etarting orbital
orbital sequence numbers
a final orbital

number of basis functions; 150; I*4)

Pointer array used in conjunction with CGU in the D_, case,

oh
Each entry of MT refers to a basie function and gives the
serial number {(using the serialisation within a symmetry class

established by input to the integral program) of the baals

-function which is to be associated with that function in a

symmnetrised basig function.

1y 1y I*4; 0

A base number by which all the orbital set numbers in IND are
incremented

1) 1y 1%

The number of guartets in array IND used to select the

required molecular orbital coefficients
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IPROPU

PRHAME

I2PCDE

ITALH

NFTR

HFTC

NFTIH

NFTI1E

435ABD

The scattering centre should bhe firat followed by nuclear centres
in order of decressing nuclear charge. The code will force G to
be first,

iy 17 I*4; 9

Unit number for output of property integrals

(2,20} (2,20)) R*8; * '

Property names each having a maximum of 16 characters.

(8,20} (8,20); I*2

Octeta, each specifying a one-electron property operator, of the
form

4 n 1, 3, k, 1, =], 0

|m| 1 1|n|9k
rg coajﬂk alniﬂk P, {coaﬂk) 757

k identlfies the centre which acts as coordinate origin

1 1y I*4y 21

Unit for scratch storage of Legendre function integrals computed
by VCCQEF

1y 1y 1%4; 22

Unit for the output of boundary amplitudes

13 1 I*4; 29

Unit for the input of data dsfining the numerical continuum basis
functions

1) 1y I*4; 8

Unit for the output of dats defining the run
1y 1) I*4; 13

Unit for the cutput of one-elactron integrala. The integral
labels may not be symmetry-—ordered and the integrals themselves

will not be renormalised,
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NFT11

RFT2E

NFT21

THINT

'IFLOUT

IXORD

LREC

435ABD

1 1) I*4) 9
Unit for the output of one-electron integrals. labels will
correapond to symmetry-ordered hssis functions as required in
other ALCHENY program modules,
1y 1) I*4; 12
Unit for the output of two-elactron integrals. Labels will
correspond to the order in which the basis-functions were input
and may not ba symmetry-ordered,
1y 1; 1*4; 8
Unit for the output of two-electron integrals, Labels will
correspond to symmetry-ordered basis functions as required by
other ALCHEMY programs,
13 15 R*8;y 5.0D-8
Delete all twn-electron integrals with magnitude less than THINT
2; 25 I*4; 2*0
Print gswitch for integration mesh data
IFLOUT(1) unuged
IFLOUT(2) =0 no printout
=1 print primary radial integral subranges and orders
and secondary orders
=2 as 1 plus print angular subranges and orders

Switch applies to all numerical integrale
1 1y I*4) 1
=1 order centrea in two-electron exchange integral calculation

according to decreasing Z-coordinates
=-1 order centres according to increasing Z-coordinates

1y 1y

I*4; 7200

Haximum length in bytes for a logical output record of integrals
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MEGU 13 1y I*4y 27 TPROJ 1y 1y A*By 1.0D-5

Unit for the output of the generated molecular orbital vectors The smallest ¢ligenvalue of the molecular orbital overlap

Ln the case that ITVCIS| matrix which is to be retalned; orbitals which are more
NBF NSYMy 21 I*4; 2140 linearly dependent are deleted

Humber of basis functions in the generated vector pet for each If TPROJ = =1.D0 all orbitals are retained

of the NSYM symmetries

RBFT ty 1) 14 O
Total number of basis functions (summed over symmetries) in
the generated set of molecular orbitals

NPBF NBFT; 150, I*d4;
Array giving for each of the complete pet of output baels
functions, the correeponding basis function seguence numbex
within a glven symmetry met

NFONE Ty ¥y I%4y 9
Unit number from which overlap matrix elemente are to ba read
in subroutine ENLARG in order to perform the orthogonaligation
of the molecular orbitals

ROB NSYM; 21; I%4; 2140
Rumber of molecular orbitals which are to be constructed
{incluwding the target orbitals} for each symmetry in the
output molecular orbital set

H5YH Ty 4 I*4y
Humber of symmetries in the generated pet of molecular
orbitals

LTRB 1) 1y I*4y 449
Number of coefficlents to be written in each output record of
the generated pet of ﬁolecular orbitals. The completa record

size will be (LTRB*2+1)%4 bytes
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total interval involved in the integration ia /IR, This interval may be
eplit into up to four segments depending on the location of the centres
and on the most important regions covered by the associated charge dis-
tributions. The most general case occurs 1f thera are centres located
both to the right and left of the coordinate origin on ZE and the integra-
tion arc intersects the important reglons of both charge distributions,

This case is 1lluatrated in fig,13.

The first case to be consldered is that when R is small, Only the
charge-distribution associated with ZE is deemed relevant and there is no
subdivision of the full integration are, Input parametera define the

nunber of Gaussian points to be used per unit arc length.

In other cases the distance between each centre and the integration
arc must ba determined., If no centres are cloee to the integration path
there again 1s n¢ subdivieion of the interval, Variable D = Izk—Rl for
centre X, ls used to linearly scale the number of mesh points per unit
arc length corresponding to the reglon associated with centre k. Having
determined the subintervals and numbers of grid points, subroutine IHPAR
ia again called to transform the Gauwss-Legendre welghts and nodes thus

conetructing the compound quadrature formula,

QUADXI

Thie routine is used to conatruct the E-integration mesh used in the
evaluation of exchange integrals. The overall structure and most of the
detalled logic used ie identical to that employed in routine QUADR and
therefore need not be repecated here. Between two and four centres may be
involved., Apart from the fact the charge distributions are all assumed to

be two-centred and short-ranged, differences arise from QUADR only becauss

of the different integration variable.
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QUADE

Thia entry point of subroutine QUADXE is used to determine the
n-integration mesh used in the exchange integral calculation. The routine
has 8 aimilay structure to QUADTH the dlfferences resultlng from the fact
that the integration path is elliptical rather than circular. To handle
the geometric problem of determining elliptic arc lengths subroutine ARC

with entry points ELTBL, ELINT and ELINV is used, An initial call to ARC

aats up a compound integration rule besed on the 2-point Gauss-Legendre
formula for the O to w interval., Using this rule, ELTBL is called to set
up a table of arc lengthe corxresponding to each multiple of w/32, BEntry
ELINT may then be used to determine the arc¢ length subtended by any two
angles by 1ihear interpclation on the arc-length table. Thia process is
invertad by entry ELINV, The division of the n-arc length into aub-
intervals according to the proximity of the various charge-diatributions
followa the pattern estaplished by QUADTH. Once the intervals, orders and
tranaformation points have been established, INPAR is again called to

generate the required welghtas and nodes.
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TABLE A2

ZETA=6.21292, 6.21292, 9.36827, 9.36827, 1.46786, 1.46786,

// EXEC FGG,L1BRARY='NO.LOAD' MEHUER=TAILV,REGION=1999K,T1ME=(29,59)
2.24642, 2.24642, 1.52853, 1.52853, 13.33678, 3.33678,

//G.FTOBFOU1 DD DSN=NB.N25GP3.DATA,DISP=SHR ,UNIT=3330~1,
// DCB=(RECFH=V35,BLXS1ZE~6400, BUFNO=1),5PACE~(TRK,{Z,2),RLSE) 1.93500, 1.93500,

//G.FTOBFOU2 DD DSN=NB.N2SGP4.DATA,UN1T~3330~1 ,D15P=SlR, 1.52853, 1.52853, 3.33678, 3.33678, 2.43700, 2.43700,
// DCBl=(RECFH=VES,BLKSIZE=6400, BUFNO=1), SPACE=(CYL ,{6,6) ,RLSE), 0.0000, 0.0000, 0.0000, 0.000C¢, 0.0000, 0.0000,

/7] VOL=SER~DLO298 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
//G.FTO9FOUL DD DSN=NB.N2SGP5.DATA ,UN1T=3330,D1SP=SHR,
/7 DCE={RECFM=VBS,BLKSLZE~6400, BUFNG=1) ,SPACE=(CYL,{1,1),RL5E),
/] VOL=SER=DNPL3}
//G.FTLOFOO1 DD DSN=88DUMMI,UNLT=3330,V0L=SER=DNPL3},D15P=(NEW ,DELETE),
// DCB=(RECFM=VBS ,BLK51ZE=6400, BUENO=1) ,SPACE={CYL,{5,5) ,RLSE)
//G.FTLLFOOL DD DSN=&&DUHMA ,UNLT=3330,V0L=SER=DNPLI3,DISP=( NEW,DELETE),
// DCB=(RECFH=VBS,BLKS1ZE=6400, BUFNU=1) ,SPACE={CYL,{5,5),RLSE)
//G-FT12FO0L DD} DSN~BEKATL2,UNIT=3330,V0OL=SER=DNPLI3,D15P=(NEV ,DELETE),
// DCH=(RECFHM=VBS,BLXS1ZE~6400,BUENO=1) ,SPACE~(TRK,(50,90) ,RLSE) *
//G.FT13F001 DU DSN=65KAT13,UNIT=3330,VOL=SER=DNPLI],D15P=( NEW,DELETE),
// DCB=(RECPM=VES,BLKS1ZE=6400, BUFNO=1),SPACE=(TRK,{90,90) ,RLSE)
/G .FT15F001 DD DSH~&S&KATL4,UN1T=3330,V0L~SER=DNPL3II,DISP={NEW,DELETE),
/] DCB={RECFM~VBS,BLKSIZE=6400, BUFNO=1) ,SPACE=(TRK,(90,90) ,RLSE)
//G.FTZ1FO01 DD DSN=NB.N25GPO.DATA,UN1T=3330,VOL=SER=DNPL]],
// DCB={RECFM=VES,BLKS1ZE=6400, BUFNO=1 ), SPACE=~(TRK,{10,10),RLSE),
// DISP=SHR
//G.FTZ2F001 DD D5N=NB.N2SGPLA.DATA,UNIT=3330-]1,VOL=SER=DLO298,
// DCB=(RECFH=VES,BLKS1ZE=(400,B0FNO=1),SPACE=(TRK,{1,1),RLSE)},
// DISP=SHR
//G.FT27F001 DD DSH=NB.V2.STON2N,D1SP=SIR
//G.FT29F001 DD DSH=QKV.N2FUN.560243.DATA, D1SP=SHR
//G.SYSIN DD *
SINPUT
NAHE="HZ NESBET SIGHA-C (5

r Dl

GEONUC= -1.034,1.034,0.0, NEF=B6, HNUC=3,

NLMK=1,0,0,1, 1,9,0,2, 1,0,0,1, 1,0,0,2, 2,0,0,1, 2,0,0,2,
ziololll 2.0,0,2. 2.1.0.[. 2.[.0,2. 2.1,0.1. 2lllolzl
3,2,0,1, 3,2,0,2, 2,1,1,1, 2,1,1,2, 2,1,1,1, 2,1,1,2,
3,2,1,1, 3,2,1,2,

1,0,0,3, 2,0,0,3, 3,0,0,3, 4,0,0,3, 5,0,0,3, 6,0,0,3,
7,0,0,3, 8,0,0,3, 9,0,0,3, 10,0,0,3, 11,0,0,3, 12,0,0,3,
13,0,0,3, 14,0,0,3, 15,0,0,3, 16,0,0,3, 17,0,0,3, 18,0,0,3,
19,0,0,3, 20,0,0,3, 21,0,0,3, 22,0,0,3,

3,2,0,3, 4,2,0,3, 5,2,0,3, 6,2,0,3, 7,2,0,3, 8,2,0,3,
9,2,0,3, 10,2,0,3, 11,2,0,3, 12,2,0,3, 13,2,0,3, 14,2,0,3,
15,2,0,3, 16,2,0,3, 17,2,0,3, 18,2,0,3, 19,2,0,3, 20,2,0,3,
21,2,0,3, 22,2,0,3, 23,2,0,3, 24,2,0,3,

5.,4,0,3, 6,4,0,3, 7,4,0,3, B,6,0,3, 9,4,0,3, 10,4,0,3,
11,4,0,3, 12,4,0,3, 13,4,0,3, 14,4,0,3, 15,4,0,3, 16,4,0,3,
17,4,0,3, 18,4,0,3, 19,4,0,3, 20,4,0,3, 21,4,0,3, 22,4,0,3,
23,4.0.3' 2&.’1.0’3. ZS'ADDDJ' ZGIAIOIJI
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0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.000U, 0,0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, ©.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.00U0, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0-0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.000C, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

NUCCEN=3,

1BLOGH=0, BBLOCI~0.0, RHATR=10.00,NUGCEN=3, IFLOUT=0,0,
IPRINT=5%0,2%40,0, LREC=6300,

IFLSYH=1, LFLINT=7%0,
ICF=1,1CFP=],
&END
SCET
NSYM=2,
NBF=14,6, NUB=9,5,
ITVC1=1,
SEND
SGET1
IVCS=27, NIND=9,
I+1,0,1,3, 1,0,
1,1,1,1, 1,L,
NBASE=0
SEND
SPOT
CHARG=7.0,7.0,0.0, NUF=B0,6, NOD=31,5, N5YM=2,
TPROJ=-1.0D0, ITVCI=0, IORTHO=1,NFONE=9,
HEGU=21,I5TOST=1,
SEND
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9, QUADRATURE AND TRANSFORMATION ROUTINES
The efficlency of the program depends ultimately on the speed and
accuracy with which various numerical integrations can be performed, As a
consequence rather elaborate procedures have been adopted for gensrating
$ix subroutines are involved:

QUAD,

the quadrature nodes and welghts.
QUADXE, INPAR, GAUSS, ARC, NPTD. The entry point names associated with
these routines are listed in Table 8, The logical structure of the two
major routines, QUAD and QUADXE, is quite involved and therefore will be
briefly described here. The underlying physical picture which should be

kept in mind during this discusalon is as follows.

The appropriate integration mesh for use in a particular integral
calculation is determined by the effective potential seen by an electron
at each spatial point, For exampla in the case of a homonuclear moleculs,
the dominant feature 1s the occurrence of the nuclear singularities {at a
In some region which may typically extend

radial distance, r = r say).

n
up to 0.5 Bohr either side of this polint the effective potential will be
rapidly varying and be dominated by the static components. Most integra-
tion mesh points therefore must be concentrateéd in this reglon and should
be distributed symmetrically sbout the singularity. At smaller radial

distances the potentisl will be etrong but nearly constant and consist of
an approximately equal mixture of exchange and static components. Beyond
the nuclear region the exchange and static components will again be com-
parable. At s8till larger radial distances (> 2 rN) the exchange compan—

ents will be decaying repidly and the static component will tend to aseume
a smoothly varying multipolsr character. Hence both the cuter two regions

will require fewer mesh points than the nuclear reglon,

QUAD

This routine genaratas integration formulae used for Coulomb/Hybrid,
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numerical one-electron and property integral calculations, The two major
entry points are QUADR, which generates formulae for the radial integra-~
tions, and QUADTH which generates the angular theta mesh. Recall that a
spherical coordinate eystem 18 used with origin located on one of the
centres and that betwggn one and three centres may be involved in the

integral.

QUADR
Input data controlling the computation of the radial mesh is of three
types
(1) centre data
RNUC specifies the characteristic range asaociated with the
charge diatribution on the centre 1i,s, the region about
the nuclear singularity where the static potential
dominates
DRNUC gives the number of integration polnts per unit path
length in the ragion associated with the centre
(11} 1IRIP an array of data determining the order of Gauss formulae
to be used in various subintervals

(11i) PRIP an array of data detarmining distance scales and the posi-

tioning of the transformation polnts within a subinterval

The mesh is determined for the interval between each palr of centres in

turn and then for the region beyond the last centre. For each palr of
centres r, and r,

i 141
into which the interval is divided depends eseentially on the size of the

(see flg,10) tha number of integration subranges

intermediate region, denoted by Lpe

‘ L]
(a) L ru

Then in the case of Coulomb integrals two eubintervals are created
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APPENDIX C. INSTALLATION DETAILS
The special programming features used in this package imply that it will
only run correctly on a computer with IPM compatible architecture. It ls
currently implemented on the NAS 7000 computer at the Daresbury .
Laboratory.
1. Bource Code

File HB.DARLAB.TAILHY.FORT

{(May be archived)

2. Load module
NO.LOAD{ TAILV)

i,  JICL
(1) for compllation: HB.DARLAP.TAILMY , FORT{COHMP)

(i1) for link editing: NB.DARLAB, TAILMY.FORT (LINK)

Input and output files correeponding to the examplee given in Appendix A
may be found in the archived files NB.DARLAB,TAILMY.DATA and

NBR.DARLAB,.TAILMY.TEXT.

435ABE

2,
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4.
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A, RENORMALISATION, BOUNDARY AMPLITUDES AHD MOLECULAR ORBITALS

8.1 Integral renormalisation

All integrale computed in previcus sectione of the program have been
calculated with bapls functiona normalised over all space. In R-matrix
calculations these must be renormalised to the volume of the R-matrix
internal reqion., This implies that those integrals which have been com-
puted from truncated basis functions must ba multiplied by factors equal
to the inverse square root of the corresponding {truncated) diagonal over-
lap matrix element in order to form a correctly normalised integral.

Hence, for example,

SR wg-liZg-lizg | - - (57)
12 11 22 12

where labels 1 and 2 correspond to complete seta of basis function gquantum
numbers and the value on the left corresponds to the correctly normalised

overlap alement,

8.2 Continuum molecular orbital generation

Several optiona exist within the program for generating continuum
molecular orbitals by ortheogonalisation techniquee. The target molscular
orbitala are first read in, This is followed by a Schmidt orthogonalisa-
tion, symmetry by symmetry, of the continuum bagis functions with reepect
to the target orbitals, The continuum orbitale which result may then be
symmetric orthogonalised amongst themaselvea., Alternatively the entire set
of functions may be Schmidt orthogonalised. 1In both cases the linear
dependence of the generated orbital set 1s monitored {orbitale are deleted
1f theay would lead to normalisation errors) and may be restricted to be

less than some gpecified value.

In cases where numerical orbitals which already Form an orthonormal

set with the target orblitals are used 1t 1la poseible to generate effective

32
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molecular orbital wavefunctions in the standard ALCHEMY format without any
orthogonalisation. The resultant molecular orbital set may be output in a
variety of Formats including that of a standard ALCHEMY molecular orbital

dumpfile,

8.3 Boundary amplitudes

once an orthonormal set of molecular orbitals including continuum
orbitals ias available the construction of boundary amplitudea according to
eqg.{16b} of Burke et a1(10) 44 aéraightforward. Note that the amplitude
definition contains the (2a}~1/Z factor as well as the orbital angular
monmentum projection of the radial molecular orbltal wavefunction on the

R-matrix boundary.

In large calculatione there are considerable advantages to the use of
partitioning techniques and the introduction of an optical potential. This
agpect has been emphasised by NHegbet{") (ace also cberoi and
Neabet{13:1%)) with these considerations in mind it is poseible to
perform an orthogonal transformation on the g;nerated molecular orbital
set eo that only one orbital for each asymptotic channsl has a non-zero
This transformation ia Included as an option wlthin

boundary amplitude.

the code.

8.4 Program detalls

The calling eequence of the subroutines involved in the generation of
continuum molecular orbitals and in the computation of boundary amplitudes
The corraaponalng gubroutine names and entry

i8 11luatrated in fig.9,

points are llsted in Table 7.

TRNSDR

The target molecular orbitals are input by subroutine TRNSDR either

33
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TABLE 3. TWO-ELECTRON QONE-CENTRE INTEGRAL SUBROUTIMNE LIST
Entry Polnts
1. EINT
2. OCBLKS
3., OCPQRQ 10CPQ
4. TEOCW
5. WOCL QCINTY QCINT WOCF
TABLE 4. EXCHANGE INTEGRAL SUBROUTINE LIST
Entry Polnts
te ARC ELTBL ELINT ELINV
2.  GAUSS .
3. IEPQXI  EPQAI
4, INPAR
5.  IPLMX
6. NPTD HPTX
7. PLHMNF
a8, PLHMX 2 IPLMX2
9. PLMX4 IPLMX4
10.  PQCNT
11. PRTTH
12. QUADXE QUADXI  QUADE!  QUADE
131, INCO RCO TRCO BRCO
14, 57101 5T02 STDXE 5T0TB SBLOCH BTOTBL
15, TABLE1 TABLE2
16, TCPQRQ
17, TETCH
1B, WRXINT WXINT
19, XBLKS
20. XINT
21, XINTTR
72
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TABLE 5. SLATER ONE-ELECTRON INTEGRAL SUBROUTINE LIST
Entry Points
1, BJHLB
2.  EINT
3. GAuUss
4, INPAR
Se IPLHX
6. NPTD NPTL
7. OTCUPQ
B, PLMX3 IPLMX3
9.  PHY2V
10.  PMY2V2Z  PMY2V3  PHMY2V4
11.  puap QUADR QUADY QUADTH
12.  5TOY 8702 STOLE STOTE  SBLOCH STOTBL
13.  STPQ
14.  STUMX
15,  UP(NI
16.  UpPpIC
17,  WNT vHT XHJ WHI1
18, WOEINT INOE
19. WUPQ WUPQH
TABLE 6. PROPERTY INTEGRAL SUBRQUTINE LIST
Entry Folnts
1. GAUSS
2. INCO RCO TRCO BRCO
3. INPAR
4. IOEOP  OECP1 OCOROP
5. IPLEX
6, KPTD KPTI
7. OCOEME
B, OEINT
9,  OEMXLP
10. OTPERQ
1.  PLMX2 IPLMX2
12, PLMX3 IPLMX2]
13.  QUAD QUADR QUAD1 QUADTH
14, SORTOP
15, STO1 §TOZ STOXE STOTB  SBLOCH STOTBL
16, WOEMX  WOEMX1
17.  WOEMXZ
73



gubroutine., The calculation is divided into three sections corresponding
to {A) one-centre integrals, {B) two-centre ilntegrals with a one-centre
charge distribution, {C) two-centre integrals with a two-centre charge
distribution as indicated in fig.7. The methods used are identical to
those for overlap integrals. In R-matrix calculationa, the Gaunt

coefficients G required in eq.(50) are read from diek file ITALM.

upglc

The looping over centres and symmetries is combined in this asub-
routine which supervigses the 3-centre nuclear attraction integral
Note that nuclear attraction integrals carry the type label

computation.

3 in addition to the sequence numbher of the attracting centre.

UPDHI

Perforams the two-dimensional integration of eq.{51) and so evaluates

the three-centre nuclesr attraction integrals.

WUPQ
This subroutine computea block and integral labels before writing the

three-centre nuclear attraction integrala to disk file NFTIE.

WOEINT
Hrites one- and two-centre one-electron integrals to the disk file

attached to unit WFTIE.

28
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7. PROPERTY AND NUMERICAL ONE-ELECTRON INTEGRALS
The integrala of this clasa are defined as one-electron integrals

{involving between one and three centres) of the form

Tapyx ™ [ an a0 . (54}

nab ia the ugual one- or two-centred charge distribution while the

operator 0& may take either the form
0 = eR(i-xZ)1/2 x) BBk ) B C4) (55)
where X, = coaﬂk or alternatively

1
0: - ];—:_'l . {56)
G k
By taking a aspherical coordinate aystem with the origin located on the
property centre the evaluation of the integrals (54) 1a easily reduced to

a two-dimensional quadrature,

7.1 Program details

Property integrals and numerlcal one-electron Integrals are calcula-
ted by separate calls to the sawe group of subroutines from subroutine
LINT. This calling sequence is shown schematically in fiq.8 and the

gubroutines involved listed in Table 6.

True property integrals involving operators of the form given in
gq.lSS) are computed over the infinite domaln and carry the type label 4.
The full block header label is an octet of numbers of the form
4nijk Ln0. The operation of thia section is controlled by the switch
IFLINT({5)Y. Of course for the inteqral to be convergent the value of the

parameter n muat satiefy n » - 1, Integrals are written to the disk file

attached to unit IOEU.

29
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6.2 Two-centre integrals

Three types of two-centre one-electron integralas need be considered:
(1) overlap;
{11} nuclear attractlony a, b dlstinct, c colncldent wlth a or by
{111) nuclear attraction; a, b identical, ¢ distinct.
All are most conveniently treated by using the spheroidal coordinate
system Introduced for exchange integrals taking the distinct centres as

foci (see fig.4).

The overlap integrals may then be written in the form

Siz = 6mnz"nH.l"nzl.zm)“lz+1 1:‘:1 ) A“RCH)B;O(-RC-H) S
where

E]z = L) - L2 + {45)
and integral B is given by

mt (t-mit M 29/2 BIn-1)

B, (g) = iElL ]_l an W (1-n28 /28 e 146

and R is half the separation of centres 1 and 2. The coefficlents dlj

appearing in eq.(44} are defined by

n hz ™y 1+En m2 1-En\ _ ‘
(E+m G-m F (E+n Py, \en =i:.d” g oo, (47)

It is clear that a similar result to eq.{44) will hold for the nuclear
attraction integrala of type {il1), The power of R will be reduced by ona
in (44) and also the exponent nj or nz on the left hand side of (47) will
be reduced by one depending on whathar 1 or 2 le the attracting centra

respectively,

Similarly for type {1i11) nuclear attraction integrals, assuming b is

24

the centre of attraction

ni2
] Of -
"‘:n .sml-znnlhnnzlzn fj dij A (RC)2) a;' (-RLy2) (448)
and
nj2~-1 _m) m2
P 1+Ln L R T I
(E +n) ' (—u“ .9”'2 o z dlj glnd (49)

There will clearly be no long-range contributione to these two-centre
integrals when the charge distribution involved is two-centred - however
case (111) given by ege.(48) and {49) will have long-range contributions
when centre a correeponds to the scattering centre G. It ls easential
that these long-range contributions to the integral are computed in a
spherlcal coordinate syetem with an origin located on G. 1t can then be

shown that

1 e\ L L} L &5 nja
Ugc -z EE Mttt fey o @ B -L—l(‘lza'
L Y21 [(-1)E 151 W22 m) © B2 niz {50
wheres the upper factor in the braces is to be taken if centre C is to the

right of G, and the lower is to be used if it is to the left.

6.3 Three-centred nuclear attraction integrals

These integrals are treated by introduclng a spherical coordinate
system with the origin located on the attracting centre C, The two-
centred charge distribution must then be expanded about this point in
complete analogy with the case already consldered for Coulomb/liybrid

integrals, It is found that
L» [H '
U:b = Fgg (r=0) = dy y - dx X, ¥, {51)

whera F is the potential function defined by eq.(12},

25
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tribution of the required type and sets up pointer arrays for locating

these baais functiona during the inteqral calculation.

XINT

This subroutine performs the x-integration of eq.{31) to yield the
required exchange integrala in the case where centres p,q are not identi-
cal to the r,s centre palr. The potential functions, E, may be read or

written to temporary disk flies assoclated with units 10 and 11 during the

calculaticon.

AINTTR
Performs the same function as XINT in the case that the pq palr is

identical to the rs-centre pair.

EPQXI
Two—centre potential functions, E, are computed using eqs.{32}, (33)
by this subroutine. The integration proceeds upwards from the lower limit
point x=1, otherwise the organisation of the calculation ia exactly simi-
lar to that wsed in the Coulomb/Hybrid calculation. Basis functions at
gpecific elliptic coordinates are obtalned via calls to STOXE; the compu-
tation does not depend therefore on whether the values belng returned

correspond to STO functions or tp a numerical function determined exter-

nally by RCO.

WAINT

Integral labels are generated in routine WXINT. These and the com-
puted integrals are then writtan to the disk flle assoclated with unit
NFT2E. Integrals with magnitude less than a specified threshold value

(THRINT) are deleted.

20

PLMX4

This routine computes a table of unnormalised associated Legendre
functions, each entry being multiplied by two weighting factors. The
gecond factor is railsed to the power corresponding to the order of the

Légendre function,

The remaining subroutine calls in thia section are either initialis-
ation calls or calls to the routines used to generate the varlous quadra-
ture Eormulaelused. The latter subroutines will be considered further in

section 9 of thia memorandum.

21
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OCINT

The one-centre integrels are evaluated in OCINT using the expression
glven in eq,(20). IF neceasary, long range contributions are eptimated
using eg.{23) and subtracted. The angular coefficlents, G, are passed

from the firast section of subroutine TEOCW.

EINT

Computes the auxiliary E-integral given by eq.(24).

16

5. EXCIANGE YNTEGRALS
The exchange integrale are defined as those two-electron integrals

which Involve two two-centre charge distributions.

2ot = (25)

Locs ™ Ifd'l;dtzﬂpq(n 12 Ve

P

In general, therefore, betwean 2 and 4 distinct centres might be involved.
The reduction of the integrals (25) to a computable form has been describ-
ed by #cLoan{®} and hence only the most significant points will be

summarised here.

The integral (25) is eimplified by a technique analcgous to that em-
ployed for the Coulomb/Hybrid integrals; the major difference is that
rather than using a spherical coordinate system with origin located on the
centre of the one-centre charge distribution, it is now necessary to use a
prolate spheroldal coordinate system with focl at centres p and q. Flg-
ure 4 lllustrates the coordinate system, with origin at the midpoint of pq.

r +r

n= £__ 9 {26)
¢ = tan~ly/x)

An STO basls function located on centre p may then be written in the form

n -1 n -1 —RCP‘£+H)5PMP 1+En
E+ny

£} = P P d+en
xp(rp) up R (E+n) e "p ) ipH) (27)
whare
RO SLERRY.T I (28)

¥ax

h charge dlatribution on centres a,b may then be written aa

17
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RSRQ
This aubroutine 1s analogous to OCPQRQ, setting up pointer arrays to

enable the two-centre {(in general) diatributions given by eq.{(8} to be

computed.

CHINT

This subroutine performs the numerical integration over the potential
functiona given by eq.{13) and carries out thas summation over orbital
angular momenta, L, to give the required integrala. If the basis func-
tions In the one-centre distribution are ETO's, the corresponding poten—
tial function is determined apalyticslly according to eq.(14). The auxil-
iary A-integral, eg.{15), is computed by recursion; for diffuse basls

functions in R-matrix cslculatlons the valua of FEE(R) ia computed using

eq.(14) [R 1ls the R-matrix radius} and subtracted from Péglrl-

FRSR

The aecond potential function, thtrl, 18 computed by the two-
dimensional quadrature implied by eqs.{8) and (12), The algorithm
employed 1a

Ny v L~-1 \ ry L
FiM(y }y = £ w_.r[— — e |+ FiM(r. ) (16)
be "1 3= ri 1(:‘5) I:/‘" bec j] (.'1._1) be " i-1

denoting r' quadrature weights and nodea by Hri and r; respectively. The

r—points, ri, are choaan so that £, < rl

-1

QUADTH
Determines the angular x-integration weights, L) and nodes, xj,

3

Note that the rsdial nodes, r!, were computed by

used to evaluate eq.(8}, i

QUADR, and chosen to cover each subinterval of the primary r-mesh used to

evaluate the integrals of eq.{13).

12
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STOTBL

L]
h t (r ) x 5?lp(cosap|,

PP p
Only those bagls func-

Computes a table of basis function values, R
corresponding to a apecific palr of (r',x)-values.
tions which can form suitable distributions are evaluated, If the basis
function 18 found to correspond to a numerical continuum function, sub-
routine RCO is called to provide the required value. BAassociated Lagendre

functions are obtained by calling subroutine PLMX3,

FPOR
In capea where the one-centre potential is required for numerical
continuum functions, FPQR i@ called to perform the reguired numerical

integration. In fact

A PAN - R o\
- W_—_— L]
Gm1 M mg Fogltr =t jr dr (r‘) R“l'-l‘r )anlztr') arn

1s computed using an algorithm analogous to eq.{16}.

HCHINT

The final phase of the caleculation, deleting those integrals with a
magnitude less than a specified thrashold value, and grouping the remain-
der, with their corresponding labels, into buffer loads is performed by
WCHINT, The integrals are then written to the disk file associated with
unit HFT2E.

The header on each ocutput record gives the number of symmetries, the

total number of integrals, and the number of integrals for each symmetry.

The remaining subroutine calls are largely to initislisation or other
subsidiary entry points, Table 2 lists each subroutine used in this
section together with its entry point identifiers. Entry pointa QUAD, and

WRINT are called directly from LINT.
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3. COULOMB AND HYBRID INTEGRALS
'Ihe- two-elactron Coulomb and lNybrid inteqrale involve either two or
three centres and are characterised by two one-centre distributions and by
a one—centre and a two—centre charge distribution, respectively.

{a) Coulomb:

L 1
Jlaty arz @ (1) " e (2) (1)
{b) Hybrid:
1 -
JJaty axz a1 e Q.02 (2}

In general the two-centre charge diatribution, nbc' may ba written in

tarma of the basia functions Y as
_ Lt +
Bt = () xc(r]_) (3)

- & try) B_(r)) 1 (r)) ¥ (r)} (4)

using the centre labels to alac represent the quantum numbers of the basis

state., For STO basis functlions
n-1 =L r
nb(r)-ubrb ecb (5)
nb+t/2
whare N = [(an)!l'uz (2Cb) . (6)

Using the analyals outlined by chean“'), it 18 straightforward to ohow

that the radial distribution functions may be written as

k) L 22
pI¥(r} = R2  (r) @  {r) — ¢ (7}
aa i) nalka Jan Pl M m3
and
1 +1
LM - — H
DD = = s f Om,  Ar IR, (x )PHx)
2w -1
9!!!3 Ry,
x l3((:0133.)).9"I.(v::1:)sl3':=) {8)
-8
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where

L) =
_91(:) Chl":(:ﬂ . {9)
o |22t te-myi | 142
ct.m [ 2 u.+-)|] (o)
and
k L Ry 1 "y M ma
G - 23’2[ ax P (0)F () F, (x) N
mj M my o 3 L ko

P:(x) is the usual associated legendre functlon as defined by Hessiahl 7},

Potential functione may be defined in terms of the radial distribu-

tions hy
" L1
FiH(r) = /41 r['[ dr' r* DHM( ) (12}
4
where centre labels have been suppressed.

The required Coulomb and Hybrid intsqrals are then glven by

- LM
1 be I L l‘::tr) Filtrar . (13)

L
The one-centre potential function may be written in the case of 5T0O basis
functions as

Ry L k2 njinp

l‘::(rj = N)Ny G

) Mg ” '[(;,uz)r] (14)

An 1#nz-L-

where the auxiliary inteqgral, An(x), in given by
An(x) - [ dy y" e7%Y . {15)
1

and may be simply evaluated using the method of Wahl et a1(8),

To evaluate Coulomb and Hybrid inteqrals within a finite reglon it

phould be noted that long-range contributions to the integrals can only

435ABB
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used and to provide ap overall view of the program structure. Commants

within the source listing should be consulted for finer details about the
program. The next two sections deal with the generation of quadrature
waighte and nodes and with the calculation of boundary amplitudes and

continuun molecular orbitals.

The input data to the integral package 1s essentlally the same as
that for thea original IBM bound state code and therefore the notes pre—
pared by B. Liuf3? should be consulted, Howaver, for convenlenca, the
entire input data will ba described in this report including some details
of parameters controlling the integration mesh generation esince these were
not described in detail in the original notee and will possibly have to be
In appendices we provide sample input

varied in scattering calculations.

data, a summary of diek files used and installation detalls.

435hBD

2. THE ALCHEMY LINEAR MOLECULE IHTEGRAL PACKAGE

The preeent program has been developed from the ALCHEMY Slater
integral generator for linear molecules, SCFWFORD, written by B, Liu of
IBM, Ban Josel{3), he basic algorithms used in the original package have
not beaey modified., lowever, as outlined in the introduction, the optlians
avallable have been considerably expanded and the package ils now suiltable
for computing all integrals required in scattering calculations within the
R-matrixz, variational or hybrid formaliasma. Apart from permitting the
integrals to be computed over a finlte reqgion of space, it is now possible
to use basig functiona which are defined numerically to represent the
continuum,

The overall structure and operation of the program may most easily be
gaen by refering to figs.t1(a) and 1{b). Figure 1{a) illustrates the sub-
routine calling struoture In the lnitlal stages of the computatian and
shows the set-up of the dynamic core allocation scheme and the reading and
printing of the control and input data, The calculation may cycle over
gets of input parametere; this operation i1s the principal role of the

aubroutine DRIVER.

The baslc supervisory program in the package is LINTP which is an
entry point of subroutine LINT. Figure 1(b) illuatrates the subroutines
called directly by LINTP. Subroutines lower down the calling tree are
shown only for the initial sectlon which ls concerned with processing the
input data and producing those fundamental arrays (mostly polnter arraya)
which are used extensively throughout the rest of the package. Each of
the required integral types are then computed in turn and written to disk
files. The intagral computation sections are followed by an integral
renormalisation section which is necessary because integrals over a finite

reglon are initially computed without renormalising the basis functions -

435ABB
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1
2
+«3 Three-centred nuclear attraction integrals
4

1. INTRODUCTION

For many years it has been recognised that elactron-molecule scattar-
ing processes oould be calculated within the framework of R-matrix or
other variational reactlon theories by modifying existing quantum chemia-
try configuration interaction {CI) computer program packages, However,
attempts to implement this idea have shown that the quality of the results
obtained depends sensitively on the extent to which the diecrets molecular
orbital basia used is able to represent the scattering continuum, The
region of Hilbert apace which is spanned is dependent on the amount of
linear dependence which is tolerable within the orbital basis and, there-
fore, effectlvely on the accuracy with which the underlying atomic integ-
rals may be computed. Th; compromlse which must be made between obtaining
the integrals to a high degree of accuracy while keeping the computational

time to wlthin reasonable limits has meant that it has been poesible to

" obtailn accurate scattering phase shifts only for a narrow range of scat-

tering energles. This range is typically from threshold to about

1.0 Rydberg when using an analytio Slater orbital basis.

The pregent Integral package ls designed to reduce this limitation.
Although the STO integral generator from the IBM CI Program ALCHEMY is the
starting point of the new code the techniques employed to restrict the
integration domain to the finite R-matrix region are entirely different
from those used by Kendrick and Buckley(l). In addition many new facili-
ties have been added. Before liasting these features it may be helpful to
summarise the salient aspects of R-matrix theory for electron-nolecule

scattering.

The applicatlon of R-matrix theory to molecular processes involves

the divielon of configuration space into distinct internal and external
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