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ABSTRACT: The Imperial College Ocean Model (ICOM) is an open-source next generation ocean model build upon finite
element methods and anisotropic unstructured adaptive meshing. Since 2009, a project has been funded by EPSRC to
optimise the ICOM for the UK national high-end computing resource, HECToR (Cray XT4). Extensive use of profiling tools
such as CrayPAT and Vampir, has been made in order to understand performance issues of the code on the Cray XT4. Of
particular interest is the scalability of the sparse linearsolvers and the algebraic multigrid preconditioners required to solve
the system of equations.
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1. Introduction

The Imperial College Ocean Model (ICOM) has the capa-
bility to efficiently resolve a wide range of scales simulta-
neously. This offers the opportunity to simultaneously re-
solve both basin-scale circulation and small-scale processes
such as boundary currents, through-flows, overflows and
geostrophic eddies. For Earth system and climate mod-
ellers, the underlying numerical software technology offers
the opportunity to focus resolution in regions of particular
importance, such as boundary currents and overflows, with-
out increasing the computational cost above that of a con-
ventional coarse-resolution model. As the climate change
research agenda moves to addressing impacts and consid-
ering how to adapt to them, fully integrated models that
can address interactions between global and localised phe-
nomena will need to be developed. Therefore, there is an
urgent need to improve both their fidelity and their capa-
bilities to provide more confident assessments at small, re-
gional and global scales. Furthermore, the development of
such a model will have a wide range of applications in other
related areas, such as ocean forecasting, flood defence, pol-
lution/contaminant dispersal, sustainability of water quality
and fisheries.

ICOM is build on top of Fluidity, an adaptive unstruc-
tured finite element code for computational fluid dynamics.
It consists of a three-dimensional non-hydrostatic parallel

multiscale ocean model, which implements various finite el-
ement and finite volume discretisation methods on unstruc-
tured anisotropic adaptive meshes so that a very wide range
of coupled solution structures may be accurately and effi-
ciently represented in a single numerical simulation without
the need for nested grids [1, 2, 3].

Developing an unstructured mesh ocean model is signifi-
cantly more complex than traditional finite difference mod-
els. Apart from the numerical core of the model, significant
effort is also required to develop pre- and post-processing
tools as there are no standards yet established within the
community. For example, initial mesh generation must con-
firm to complex bathymetry and coastlines, which exerts a
critical influence over the dynamics of the ocean. In prac-
tice, there is a trade-off between how close the discretised
domain is to reality, and how appropriate it is for numerical
simulation with limited computational resource. To achieve
this, specialised mesh generators such as Terreno [4] have
been developed as the geometries do not lend themselves
to standard packages which use CAD models. A typical
bathymetry conforming unstructured mesh is presented in
Figure 1.

ICOM can also optimise the numerical mesh to con-
trol modelling error estimates using anisotropic mesh adap-
tivity. Large load imbalances are to be expected follow-
ing the mesh adaptivity, therefore dynamic load-balancing
is required. When rebalancing the mesh a combination
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Figure 1: Unstructured meshes are an ideal choice for rep-
resenting complex problem domains

of diffusion repartitioning, and clean parallel repartitioning
with domain remapping, is used to minimise data migra-
tion. While this is currently done using a combination of
ParMETIS and a bespoke code for data migration (see [5]),
work is being done on integrating Zoltan [10] instead.

Solving sparse linear equations is one of the most time
consuming parts in ICOM. For systems of equations with
low/moderate condition number, ICOM uses standard pre-
conditions and solvers from PETSc [9]. When the condition
number is high ICOM use an AMG preconditioner designed
specifically for this problem which outperforms all conven-
tional preconditioners and black box AMG preconditions
tested (e.g. Prometheus and HYPRE/BoomerAMG). How-
ever, attention must always be paid to the scaling as coars-
ening the matrix (reducing the size of the problem) makes
scaling more difficult.

ICOM use state-of-the-art and standardised 3rd party
software components whenever possible. For example,
PETSc [9] is used for solving sparse linear systems
while Zoltan [10] is used for many critical parallel data-
management services both of which have compatible open
source licenses. Python is widely used within ICOM at run
time for user-defined functions and for diagnostic tools and
problem setup.

The present paper mainly considers scaling ICOM on
HECToR for an non-adaptive simulation. The detailed pro-
filing and performance analysis are described in the follow-

ing.

2. Benchmark Test Cases and Numer-
ical Background

2.1 Wind-driven baroclinic gyre

A gyre in oceanography is a large system of rotating ocean
currents, particularly those involved with large wind move-
ments. The flow is dominated by a balance in the hori-
zontal between the Coriolis force and the free surface gra-
dient. In a baroclinic gyre a density stratification, typical
for the ocean domain, is taken into account. The equations
used by ICOM to model this configuration are the 3D non-
hydrostatic Boussinesq equations. In a domainV ⊂ R
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these take the form:

Du

Dt
+ 2Ω× u−∇· (ν · ∇u)+ (1a)

+∇p+ g∇η = fwind + ρgk, (1b)

∇ · u = 0, (1c)

DT

Dt
+∇ · (κT∇T ) = 0, (1d)

ρ ≡ ρ(T ), (1e)

whereD/Dt = ∂/∂t + uuu · ∇∇∇ is the total derivative,p is
the perturbation pressure,g is the acceleration due to grav-
ity, η is the free surface height,ρ is the perturbation density
andfwind is the wind forcing term. Rotation of the Earth
is taken into account via the vectorΩ = (0, 0, f)T , where
f = f0 + βy, the so called beta-plane approximation.T
is the temperature, but additional scalar fields such as salin-
ity and tracers can be dealt with analogously, in which case
they may be included in the equation of state (1d). A diago-
nal viscosity tensorν is used to represent (effective) stresses
in the model.κT is the thermal diffusivity tensor, also as-
sumed to be diagonal. No turbulence models have been ap-
plied in this benchmark.

A linear stratification has been used as an initial condi-
tion for the temperature:

T = Tsurface+
z∆T

H
, (2)

with a surface temperature ofTsurface = 20 and a tempera-
ture difference∆T = 10. The vertical coordinatez is cho-
sen such thatz = 0 at the surface andz = −H = −2000m
at the bottom. A simple linearised equation of state is used:

ρ(T ) = ρ0 (1− α(T − T0)) , (3)

whereα = 2.0× 10−4 K−1 is the thermal expansion coef-
ficient, andT0 = 10.

The wind forcing,fwind, is applied as a stress integrated
over the surface, given as the analytical function:

τwind = −τ/ρ0 cos(2πy/Ly). (4)
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The domain extends fromx = 0 tox = Lx = 1000 km and
y = 0 to y = Ly = 1000 km. This simulates a mid-latitude
double gyre, with easterly winds in the north and south, and
westerly wind in the middle of the domain. The amplitude
of the wind stress isτ0 = 0.1 Nm−2.

2.2 Numerical configuration of the test case

The Boussinesq equations (1a) and (1b) are discretised via
a finite element integration using aP1DG − P2 velocity,
pressure element pair. This element pair has a number of
advantageous properties for ocean simulations,a.o. its ben-
eficial balance properties [6]. The incompressibility con-
straint (1b) is enforced through a pressure correction ap-
proach. The non-linearity in the advective terms, and the
coupling of the heat equation and the buoyancy term are
dealt with in a Picard iteration. The free surface is solved in
conjunction with the pressure equation [7]. Finally the heat
advection diffusion equation is solved with a standardP1
SUPG discretisation [11].

The mesh used in the baroclinic gyre benchmark test
case has 10 million vertices; resulting in 200 million de-
grees of freedom for velocity due to the use of DG. The
basic configuration is set-up to run for 4 time steps and not
to adapt. It hence considers primarily the matrix assembly
and linear solver stages of a model run. For these problems
the simulation reads in the input files at start and default
behaviour is to dump output files at the beginning and at
the end. In addition, a statistics file is output every time
step, this includes global integrals, maxima and minima of
solution fields and other diagnostic output. All other in-
put/output is switched off, although this can be switched on
to examine I/O performance.

2.3 Solver comparisons

ICOM uses the PETSc library for the solution of the sparse
linear systems arising from the numerical discretisation.A
wrapperpetscsolve, it takes in the CSR matrix, and con-
structs a PETSc matrix data type, sets the solver and pre-
conditioner options, and then passes the system to PETSc
to solve. This wrapper offers full access to several classic
algorithms contained in PETSc and also get the extra bene-
fits with new added algorithms without extra work.

For the gyre test case, the pressure matrix has a very
high condition number, making it very difficult to solve
using conventional preconditioners and solvers. Here we
use an AMG preconditioner which is the best choice for
large systems (because of their better scaling properties),
and ill-conditioned systems, such as those in large aspect
ratio problems, or more generally problems in which there
is a large variety in length scales. An algebraic multigrid
method targeted specifically at large-scale, large aspect ra-

tio ocean problems is developed for the ICOM model [8].
This multigrid method is applied as a preconditioner within
a Conjugate Gradient iterative method.

PETSc provides a 3rd interface to other AMG methods
such as HYPRE/BoomerAMG [13]. The parallel efficiency
for pressure solver using ICOM MG and BoomerAMG pre-
conditioners are in Figure 2. We can see ICOM MG has
better scalability than BoomerAMG due to its specialised
nature.
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Figure 2: Comparison of pressure solver efficiency using
algebraic multigrid method from ICOM MG and HYPRE
BoomerAMG

3. Profiling and Performance Analysis
Users should not spend time optimising a code until after
having determined where it spends the bulk of its time on
realistically sized problems. Profiling is the best way to ad-
dress both the serial execution of the code(such as cache
usage, vectorisation) and parallel aspects, such as parallel
efficiency, load balancing and communications overheads.
Profiling using CrayPAT and Vampir on HECToR has been
performed on the gyre benchmark test case which is of par-
ticular relevance to GFD applications.

Ideally, it would be expected that the process for using
profiling tools like CrayPAT and Vampir would consist of
firstly running a representative benchmark test case with
tracing enabled to produce trace files, then viewing the trac-
ing data using specialised tools. However, in the case of
large benchmark test cases this may not be possible. Even
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for a relatively small ICOM dataset of 0.21 million nodes,
with CrayPAT suggested automatic profiling options, trace
files can be hundreds of GBytes which makes analysis im-
possible. The size of the trace file data depends on the na-
ture and intensity of the profiling experiment and the dura-
tion of the program run. Using runtime variables such as
PAT RT SUMMARY in CrayPAT could make a big reduc-
tion of data size but at the cost of fine-grain details. Specifi-
cally, when running tracing experiments, the formal param-
eter values, function return values, and call stack informa-
tion are not saved. Determining a way to control profiling
data size whilst at the same time gathering in-depth and in-
formative is key for understanding the performance bottle-
necks in large realistically sized problems. Under such cir-
cumstances, a starting point is to use simple timing hooks in
the code to get a coarse grain profile of code performance,
then to use these results as a basis for more fine grain pro-
filing with the CrayPAT/Vampir API in the identified areas
of interest.

3.1 Basic timings

Following above idea, we focus on the solution of the mo-
mentum equation (1a) in combination with the incompress-
ibility constraint given by the continuity equation (1b), as
this is by far the main cost of the simulation, and dominates
the overall scaling of the simulation. The solution process
consists of the assembly of the linear systems representing
the discretised momentum equation and the pressure equa-
tion, and the solution of those. Thus the scaling analysis
of the momentum equation is naturally broken down into
4 parts: assembly of the pressure matrix, linear solve for
the pressure equation, assembly of the discretised momen-
tum (velocity) equation, and linear solve of the momentum
(velocity) equation.

From Figure 3, we can see that matrix assembly for pres-
sure and velocity can take more than30% of the total sim-
ulation time with 1024 cores, where pressure solver occupy
nearly53.9% of the total simulation time. The matrix as-
sembly phase is expensive for a number of reasons includ-
ing: significant loop nesting, where the innermost loop in-
creases in size with increasing quadrature; indirect address-
ing (due to unstructured meshes) and cache re-use.

Comparing with 1024 cores, Figure 4 and Figure 5 show
the speedup and efficiency of momentum solver and each of
its components. As we can see from the graphs, the scaling
is very respectable. Velocity is being solved using a discon-
tinuous Galerkin method (DG). This is showing very good
scaling characteristics.

The pressure assembly is showing the less parallel ef-
ficiency than the velocity assembly. It is to be noted that
this assembly only occurs once in an entire model run, so is
expected to take only a small fraction of runtime in a nor-

mal run with a lot more time steps. Due to non-linearities
the momentum equation does have to be re-assembled every
non-linear iteration within a time step.
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Figure 3: Wall time for the assembly and solve of the mo-
mentum and pressure equation

3.2 Communication overhead and load bal-
ance analysis

Using CrayPAT, we obtained the statistic of three groups
of functions, namely MPI functions, USER functions and
MPI SYNC functions. MPISYNC is used in the trace
wrapper for each collective subroutine to measure the time
spent waiting at the barrier call before entering the subrou-
tine. Therefore, MPISYNC statistics can be a good indica-
tion of load imbalance. The time percentage of each group
is shown in the Figure 6.

With core counts from 1024 to 4096, we can see that
the time percentage spent in MPI increases from28.7% to
33.1% while USER functions drop from45.5% to 24.9%,
and time percentage of MPISYNC increase from25.7%
to 42.0%. This lead us to identify the top time consuming
functions in each group along with their calling hierarchy.

3.3 Top time consuming functions in each
group

Figures 7-9 give the top time consuming functions in each
group. In Figure 7, the speed up of the linear solver KSP-
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Figure 4: Speedup of the assembly and solve of the mo-
mentum and pressure equation
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Figure 5: Efficiency for the assembly and solve of the mo-
mentum and pressure equation

Solve is about3.5 with 4096 cores comparing with 1024
cores according to the CrayPAT tracing results. The func-
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Figure 6: Profile by function group

tion main represents the functions that have not been traced
in the code. These functions are outside of momentum
solver. Future work will focus on these functions of poor
scaling behaviour.

1024 2048 4096
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
e
rc

e
n
ta

g
e
 o

f 
T
o
ta

l 
T
im

e

Profile by User Functions 

main
KSPSolve
__momentum_dg_MOD_construct_momentum_dg

__vtk_interfaces_MOD_vtk_write_fields

__sparse_tools_MOD_csr_matmul_t_preallocated

Figure 7: Top time consuming user functions got from
CrayPAT

The most time consuming of the MPI groups is
MPI Allreduce. It is expected that this collective operation
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does not scale well. However on the XT4 the scaling is rel-
atively good from 2048 to 4096 cores in Figure 8. From
the call tree generated by CrayPAT, it becomes clear that
this function is called from PetscMaxSum within PETSc.
MPI Waitany is indicative of the quality of the load balanc-
ing. Given that this amount does not increase significantly
between runs on 1024 to 4096 cores in Figure 9, it does not
appear that load-balancing is worsening noticeably as the
core count increases.
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Figure 8: Top time consuming MPI functions

In Figure 9, MPIAllreduce accounts the most part of
waiting time spent in the barrier, it is worth to check if there
are possibility to combine several MPIAllreduces together.
MPI Bcast and MPISCAN are becoming more significant
on 4096 cores, compared to runs on 1024 and 2048 cores.

3.4 Some guidelines for ICOM supporting
third party libraries tracing

As ICOM uses makes extensive use of third party software,
it is also important to obtain insight in performance issues
in these other software packages.

Profilers like CrayPAT and Vampir normally require di-
rect access to the source file or the object file, which are
typically not available for third party package software in-
stalled on a given system. This will limit the view on
the overall performance of applications widely using such
software packages. For instance, ICOM use PETSc as the
sparse linear system solver; With nearly70% time spent in
the PETSc, it is necessary to know about the performance
profile within PETSc that will determine the whole perfor-
mance of ICOM. But without direct access to the source
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Figure 9: Top time consuming MPISYNC Functions

and object file, it is very hard to trace the specific functions
in PETSc. One possible solution is to rebuild and install
PETSc in the user home directory. In this case CrayPAT
can profile PETSc as normal USER functions. A prob-
lem will then be how to properly reduce the profiling data
from PETSc as there are very many different PETSc func-
tions, called from various places. This will generate a large
amount of profiling data. Using the API functions of profil-
ing tools may be a solution but it will require recompiling
the PETSc each time a different grouping is chosen. An-
other choice is to generate a specific function list which is a
subset of PETSc functions. Directly instrumenting the sub-
set of PETSc functions can also help to reduce the size of
large data and get some useful statistics.

Vampir has some valuable MPI tracing features. These
have been explored by recompiling ICOM with the Vampir
wrapper functions. A different benchmark, modelling a so
called open ocean deep convection process, has been used
to check the performance of the adaptivity part of ICOM.
Figure 10 shows the MPI message length statistics gener-
ated by the Vampir wrapper, used to instrument the adaptiv-
ity part of ICOM. The zero length messages were found to
come from calls within Parmetis.

By directly tracing a subset of PETSc functions, the
MPI statistics and call tree also show that MPIAllreduce
is called from PETSCSolveCG within PETSc (see Figure
8). With the new release of PETSc, this function is opti-
mised by combining the MPIAllreduce calls together. The
performance test will be carried out in the near future.
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Figure 10: MPI Message Length Statistics for OODC with
Adaptivity

4. Summary and Conclusions

The ICOM dCSE project has significantly improved the per-
formance of the code to enable efficient usage of large high
performance computing systems such as the Hector Cray
XT4. Presently the code is now scaling well up to 4096
cores on HECToR. Runs on even larger core counts could
be achieved if suitably partitioned datasets existed, these are
currently under construction. The current barrier to running
larger problem sizes is the memory footprint and compu-
tational cost of preprocessing tools; specifically the initial
domain decomposition which is essentially a serial bottle-
neck.

Porting the code to HECToR has involved several chal-
lenges. Firstly, the code requires a range of third party li-
braries which need to be maintained on the target platform.
Secondly, the code uses some of the latest features included
in Fortran 95 and this has on occasion tested the HECToR
compilation environment, leading eventually to several bug
fixes in the PGI Fortran compiler. This requires a lot of ef-
fort from different group including the developers, STFC
ARC group and HECToR Support.

Profiling the real world applications is a big challenge,
it required a considerable understanding of profiling tools
and extensive knowledge of the software itself. Determin-
ing a suitable way to reduce the profiling data size without
losing the fine grain details was critical for successfully pro-
filing. Inevitably this procedure involved much experimen-

tation requiring large numbers of profiling runs.
The introduction of manual instrumentation was re-

quired in order to focus on specific sections of the code.
To successfully and informatively profile a real world ap-
plication such as ICOM, an in-depth knowledge of profiling
tool usage became essential. Generally, profiling the real
world applications will face how to get proper data from
profiling tools. Finding a proper way to reduce the profiling
data size without losing the fine grain details is critical for a
successfully profiling.

As far as profiling ICOM has found, CrayPAT and Vam-
pir are well suited to fine grain profiling on specific sections
of the code, once the areas of interest have been identified.
Sometimes this has required the introduction of manual tim-
ing functions into the code by the user. These tools are also
very useful for generating MPI statistics for the whole sim-
ulation. In general we can conclude that the profiling anal-
ysis has been very useful for developing and optimising the
code.
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