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Temperature dependence of the physical properties of  

Bose-Einstein condensed gases and liquids 

J Mayers, Rutherford-Appleton Laboratory, Chilton, Didcot, OX110QX,UK 

 

 

Abstract 

Gases and liquids in the presence of Bose-Einstein condensation (BEC) have unique and very 

striking macroscopic physical properties. For example they exhibit flow without viscosity, 

quantised vortices and two-fluid behaviour. Macroscopic quantum interference effects in the form 

of density oscillations are observed when two or more clouds of ultra-cold Bose-Einstein 

condensed atoms overlap. The microscopic properties of Bose-Einstein condensed liquid 4He are 

also uniquely anomalous, and unexplained. Neutron and X-ray scattering measurements show 

that liquid 4He in its superfluid phase is the only known liquid in which pair correlations between 

atomic positions decrease upon cooling. The liquid also shows an anomalous thermal expansion 

upon cooling.  Inelastic neutron scattering shows that it is also the only known liquid which has 

sharp peaks in its dynamic structure factor. It is shown here that all the above phenomena can be 

explained in a physically transparent and quantitative way by two simply stated postulates. The 

first is that in the presence of BEC at finite temperature, the many particle wave functions of 

occupied states can be written as the sum of a component which is localized in coordinate space 

and a component which is delocalized. The second is that the delocalized component is identical 

to the ground state wave function. It is argued that these postulates are in fact forced by basic 

quantum mechanics, existing theoretical treatments of BEC and a wide range of experimental 

measurements of Bose-Einstein condensed liquid 4He. 
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1. Introduction 

Experiment shows that in the presence of Bose-Einstein condensation (BEC), ultra-cold gases 

and liquid 4He have uniquely anomalous physical properties. For example liquid 4He flows without 

viscosity [1] and exhibits quantised vortices [2]. Quantised vortices are also observed in ultra-cold 

gases [3,4]. Macroscopic density oscillations are observed when two or more Bose-Einstein 

condensed clouds of atoms overlap [5

It was shown in a previous paper [

].  It is widely accepted that these phenomena are due to 

the fact that BEC implies macroscopic single particle quantum behaviour (MSPQB) – that is in the 

presence of BEC every particle behaves as if it occupies the same single particle quantum state, 

with a single particle wave function which is non-zero over macroscopic length scales.  

 

6

1

] that in gases and liquids at zero temperature, MSPQB is a 

necessary consequence of BEC. This paper considers the behavior of gases and liquids in the 

presence of BEC at finite temperature.  The best known finite temperature effect associated with 

BEC is "two fluid" behaviour. Bose-Einstein condensed liquid 4He behaves as if it were two fluids, 

"freely intermingling, with no viscous interaction"[ ].  As is well known the "superfluid" component 

has zero entropy and no viscosity, whereas the "normal" fluid has entropy and behaves viscously. 

As the temperature is raised the superfluid fraction diminishes, vanishing at the condensation 

temperature CT .  Although two-fluid behaviour has yet to be observed in Bose-Einstein 

condensed gases, it is generally accepted on theoretical grounds [7

Many other fundamental experimental properties of liquid 4He in the presence of BEC are both 

highly anomalous and unexplained. For example neutron [

] that it must also occur in 

weakly interacting systems. 

  

8] and X-ray [9] measurements show 

that 4He in its superfluid phase is the only known liquid in which pair correlations between atomic 

positions reduce as the liquid is cooled.  The liquid also undergoes an anomalous thermal 

expansion as it is cooled [10]. It is also the only known liquid which has very narrow peaks in its 

dynamic structure factor, measured by inelastic neutron scattering. [11, 12,13]. The highest 

resolution measurements [14 0→T] show that these peaks have apparently zero widths as . In 



 3 

all other liquids such peaks have widths in wave vector transfer of aq /1~∆  where a  is the 

average nearest-neighbour distance between atoms. 

  

It is shown in this paper that all these phenomena can be explained quantitatively by two simply 

stated postulates. The first is that at finite T  in the presence of BEC, the many particle 

Schrödinger wave functions of occupied states are a superposition of a component which is 

delocalized in coordinate space and a component which is localized. The second postulate is that 

the delocalized component is identical to the ground state wave function. It is argued that these 

postulates are in fact forced by basic quantum mechanics, existing theory of BEC and a wide 

range of experimental data on liquid 4He. 

  

In section 2 the terms "delocalization" and "localization" of the many particle wave function Ψ are 

given a precise definition. The "conditional wave function" is also defined in terms of Ψ . Section 

3 summarizes previously obtained [6] results at zero temperature. In section 4 it is shown that as 

the temperature is raised in the presence of BEC, the many particle wave functions of occupied 

states must change from delocalized functions at zero temperature to localized functions as T  

approaches the transition temperature. Section 5 presents the two basic postulates as to how this 

change occurs. Sections 6 and 7 derive the physical consequences of these postulates and show 

that these consequences agree quantitatively with measurements. In section 8 is argued that the 

two postulates are forced by extensive experimental data on liquid 4He and by generally accepted 

theoretical treatments of BEC. 

 

2. Definitions 

2a. Localization and delocalization of the wave function 

We consider the Schrödinger wave function )...,( 21 NrrrΨ  of a system of N identical Bose 

particles, contained within a volume NV ∝ .  Denoting one of the particle coordinates as r  and 
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the other 1−N coordinates as s ,  the wave function is written as ),( srΨ . The wave function 

),( srΨ  is defined as;  

"delocalized" if for every s  that occurs [15 ),( srΨ],  the function  is a non-zero function of r  

over  a volume V~ containing N~ atoms.   

"Localized" if for every s  that occurs [15], the function ),( srΨ  is a non-zero function of r  only 

over a a volume NV /~  containing ~1 atoms.  

In any Bose system of identical particles )...,( 21 NrrrΨ  is unchanged under interchange of 

particle coordinates. Hence if Ψ  is delocalized (localized) in any single coordinate r  it must be 

delocalized (localized) in all coordinates. The difference between localized and delocalized forms 

of ),( srΨ  is illustrated schematically in Figure 1. 

 

2b The conditional wave function 

According to its standard physical interpretation, 
2),( srΨ  is the probability distribution function 

(pdf) for the N coordinates sr, . Hence Ψ must be normalized 

 1),( 2 =Ψ∫ srsr dd         (2.1) 

It is convenient to define the "conditional wave function" (CWF) )(rSψ  [16

)(/),()( ssrrS PΨ=ψ

] as  

        (2.2) 

where 

 ∫ Ψ= rsrs dP 2),()(         (2.3) 

is the pdf for s .  The coordinates s  are included as a subscript in )(rSψ to emphasize that 

wherever )(rSψ  is used we consider its r  dependence at a given s . If ),( srΨ  is delocalized,  
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)(rSψ  must be a non-zero function of r  over a macroscopic volume V~ . If ),( srΨ  is 

localized, )(rSψ  is a non-zero function of r  only over a microscopic region of volume NV /~ .  

Localized and delocalized forms of  )(rSψ are also illustrated in Figure 1.  

 

 

 

Figure 1. The left hand figure illustrates a delocalized form of ),( srΨ and the right hand figure a localized form. The 

black circles indicate 1−N  atoms at a particular s , for which ),( srΨ  is non-zero. Assuming hard core repulsion 

between atoms, ),( srΨ  must be zero if r is too close to any of the atoms at s . Regions of r  for which 

0),( ≠Ψ sr  are sketched in red. ),( srΨ  can be a delocalized function of r if there is sufficient space in the fluid 

structure, as illustrated on the left.  In the right hand figure ),( srΨ  is localized, because there is only a single space 

which can be occupied without hard-core overlap with atoms at s . The figure also illustrates the form of the conditional 

wave function )(rSψ  in the two cases. 

 

In many respects )(rSψ  can be treated as a single particle wave function which is conditional 

upon s [6]. For example it follows from eqs. (2.1)-(2.3) that )(rSψ  is a normalized function of r  

 ∫ = 1)( 2 rrS dψ         (2.4) 



 6 

It also follows from the probability interpretation of 
2),( srΨ  that 

2)(rSψ is the conditional` pdf 

for coordinate r , given s . It is shown in section 6 and ref [6] that the conditional density, 

momentum distribution, flow, total kinetic energy and total potential energies can similarly be 

expressed in terms of standard single particle expressions, with )(rSψ  replacing the single 

particle wave function. The measurable values of these quantities are obtained from an average 

over s , weighted by  )(sP .   

 

3. Zero Temperature 

This paper considers only physical properties which are averages over a region of space 

containing 1>>ΩN atoms. It was shown in [6] that for the calculation of such properties, the 

ground state Schrödinger wave function )...,( 210 NrrrΨ in the presence of BEC can be 

approximately factorized into a single particle product.  

 ∏
=

≅Ψ
N

n
nN

1
0210 )(),...,( rrrr η        (3.1) 

where  

 )()( 0
2

0 rr ρη =          (3.2) 

and )(0 rρN  is the macroscopic particle density at 0=T .  The symbol ≅  means equal to within 

terms ΩN/1~ .   

 

It was also shown in [6] that, to within terms ΩN/1~ , the time dependence of )(0 rη  is given 

by the single particle Schrödinger equation, 

 ),(),()(),(),(
),(

2 0002
0

22

t
t

itttV
t

m eff rrrrr
r

r
ηηη

η
∂
∂

≅Ξ++
∂

∂



  (3.3) 

where m is the atomic mass, )(rΞ  is an externally applied potential and ),( tVeff r  is an effective 

single particle potential, equal to the ground state energy per atom at the local density ),(0 trρ .  
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It was shown in [6] that at 0=T , eqs (3.1)-(3.3) are a necessary consequence of two properties 

of liquids and gases in the presence of BEC;   

(a)  BEC implies that the many particle ground state wave function is delocalized, in the sense 

defined in section 2. Hence integrals of the ground state CWF )(0 rSψ are possible over 

macroscopic regions of r space containing 1>>ΩN atoms. 

(b)  In liquids and gases there are by definition no long range correlations between particle 

positions. This leads to randomness in the r dependence of )(0 rSψ  (see Figure 1). The central 

limit theorem then implies that the integral of any functional of  )(0 rSψ  over a region containing 

ΩN~  atoms [6] is precisely defined to within terms ΩN/1~ .  Eqs (3.1) -(3.3) are thus 

accurate only when 1>>ΩN .  For example they accurately describe the t  and r dependence of 

the fluid density ),(0 trρ  over macroscopic length scales, but are not accurate over length scales 

comparable to the separation between atoms [17

)(0 rη

].  

 

It follows from eq (3.2) that  is non-zero wherever the fluid density is non-zero. Thus if N  

is sufficiently large, 0η  is a non-zero function of r over macroscopic length scales. Hence eqs 

(3.1)-(3.3) imply the presence of macroscopic single particle quantum behavior; for example 

superfluid flow, quantized vortices and interference fringes between overlapping condensates 

(see section 7). 

 

4. Finite Temperature 

At zero temperature only the ground state is occupied and the system has the unique wave 

function ),(0 srΨ . In contrast, if the number of atoms is large, a vast number of different N  

particle states can be occupied at finite T .  As is well known, measurable physical properties are 
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obtained by performing a thermal average over these occupied states. For example the total 

energy at temperature T  is  

 ∑=
i

ii ETBTU )()(         (4.1) 

where )(TBi  is the Boltzmann probability that state i  is occupied and 

 NNiNii dddHE rrrrrrrrr ...)...,(ˆ)...,( 212121
*∫ ΨΨ=     (4.2) 

is the energy of state i , where Ĥ  is the N particle Hamiltonian operator and iΨ  is the wave 

function of state i . 

 

As the temperature is changed different N  particle states will be populated and the properties of 

the wave functions iΨ  of these states will therefore change, as is implicit in eqs (4.1) and (4.2). 

In particular the localisation properties must change with temperature.  It was shown in [6] that at 

0=T  the wave function must be delocalized in the presence of BEC. It was also shown in [6] 

that if the wave function is delocalized, MSPQB must occur, in the precise sense that eqs (3.1)-

(3.3) are satisfied over macroscopic length scales.  Extensive experimental data and the existing 

theory of BEC both demonstrate that MSPQB does not occur for CTT ≥ . Hence wave functions  

of occupied states cannot be delocalized at CTT = . It follows that wave functions of occupied 

states must change from delocalized to localized functions as the temperature is raised from zero 

to CT .  

 

5. Basic Postulate  

In the rest of the paper we consider one of the states  i  which can be occupied at a given T . All 

the results obtained can be trivially generalized to measurable properties, by summing over 

occupied states as in (4.1). To simplify notation the subscript  i  is dropped and the wave function 

of this "typical" state is denoted as ),( srΨ [18

 

].   
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The basic postulate of this paper is that the necessary change in Ψ  from delocalization to 

localization as T  is raised in the presence of BEC occurs in the following way. In the presence of 

BEC at temperature T , the wave function ),( rsΨ of a typical occupied state has the form [19

),()(),()(),( rsrsrs LD TT Ψ+Ψ=Ψ βα

] 

     (5.1) 

where, 

(1) ),( rsDΨ  is a delocalized function of all coordinates, ),( rsLΨ  is a localized function. 

(2) ),( rsΨ , ),( rsDΨ  and ),( rsLΨ  are all normalized and Bose symmetric under interchange 

of particle coordinates. 

(3)  As the temperature is raised, )(Tα decreases from unity at 0=T  to zero at  CTT = . 

A subsidiary postulate is that the delocalized component is identical to the ground state wave 

function. 

 ),(),( 0 rsrs Ψ=ΨD        (5.2) 

 

For a wave function of the form in eq (5.1), it follows straightforwardly that the CWF can be split 

into a component )(rSDψ  which is delocalized in r  and a component )(rSLψ which is localized.  

 )()()()()( rrr SSSSS LD TbTa ψψψ +=      (5.3) 

)(rSDψ  and )(rSLψ are defined in terms of ),( rsDΨ  and ),( rsLΨ  in an analogous way to eqs 

(2.2) and (2.3). Eq (5.2) implies that )(rSDψ  is identical to the CWF of the ground state. 

 )()( 0 rr SS ψψ =D        (5.4) 

 

Equations (5.3) and (5.4) are similar to the postulate adopted in previous work [20,21

)(rSLψ

]. The only 

difference is that  is here assumed to be localized whereas previously the function 

)(rSLψ  was assumed to be delocalized in r , but with phase correlations only over distances 

3/1)/(~ NV .  It is now clear that the latter assumption cannot be correct. The basic condition 
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that must be satisfied for MSPQB to occur (eq 6.4 of ref  [6])  is that the integral of  
2)(rSψ over 

a volume containing ΩN  atoms, is the same for all s  that occur [15] to within terms ΩN/1~ .  

Clearly the phase of )(rSψ  has no bearing upon whether or not this condition is satisfied. It was 

shown in [6] that all that is required in any liquid or gas, is that )(rSψ is a delocalized function of 

r . If )(rSLψ is delocalized and phase incoherent, eq (5.3) implies that MSPQB will still occur at 

CTT = .  

 

Since existing theory and a wide range of experimental data show that MSPQB does not occur at 

CTT = , )(rSLψ  must be a localized function of r . In fact this follows from more general 

arguments. If )(rSLψ  is delocalized for any s  that occurs [15], it is easily shown that the 

requirement that ),( srΨ is single valued implies quantization of angular momentum over 

macroscopic length scales - that is MSPQB. Hence )(rSLψ  must be a localized function of r for 

all s  that occur. It will be shown in the following section that all the results obtained in [20,21] are 

equally valid if  )(rSLψ  is localized, rather than delocalized and phase incoherent.  

 

6. Physical consequences of the basic Postulates. 

6a. Two fluid behavior 

It follows from standard results of quantum mechanics and the definition of )(rSψ  in eqs (2.2)-

(2.3), that the particle density )(rρ  is [6] 

 ∫= ssrr S dPN )()()( 2ψρ        (6.1) 

The macroscopic particle density )(rρ  is defined as a "coarse grained average" [6] of )(rρ  

over a region )(rΩ , centered at r , of volume Ω  and containing 1>>ΩN  particles.

 ∫∫∫ ΩΩ
′′

Ω
=′′

Ω
=

)(

2

)(
)(1)()(1)(

r Sr
rrssrrr ddPNd ψρρ    (6.2) 
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It follows from eq. (5.3) that 

CTdbdad L +′′+′′=′′ ∫∫∫ ΩΩΩ )(

22

)(

2
0

2

)(

2 )()()(
r SSr SSr S rrrrrr ψψψ   (6.3) 

where the "cross-terms" have the form  

 CCdbaCT L +′′′= ∫Ω )(

*
0

* )()(
r SSSS rrr ψψ      (6.4) 

The functions )(0 rSψ  and )(rSLψ  have very different amplitudes, as illustrated schematically in 

Figure 2a. This must be the case, since both are normalized functions of r , but while )(0 rSψ is 

non-zero over a volume NV ∝~ ,  )(rSLψ  is non zero only within a volume NV /~ . Hence 

 V/1~)(0 rSψ         (6.5) 

whereas 

 VNL /~)(rSψ         (6.6) 

 

 

 

(a) r space 

(b) p space 

VN /~ −

VD ~)(~ pSψ
~V ~-V 

NVL /~)(pSψ

Vp /1~∆

VD /1~)(rSψ

VN /~

VNL /~)(rSψ

NVr /~∆
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Figure 2 shows schematically the relationship between the amplitudes of localized and delocalized components of Sψ  in 

position ( r ) space and momentum ( p ) space.  Dψ  and Lψ are  normalized in both  r  and p  whereas the 

integrated product LD ψψ  is N/1~  in both r  and p space. 

 

In the calculation of the terms in eq (6.3) there are two possibilities;  

(i) )(rSLψ  is localized within the integration volume )(rΩ . It then follows from eqs (6.5) and 

(6.6) that the cross-terms (6.4) are N/1~  compared with the contribution of the second term 

on the right in eq (6.3).  

(ii) )(rSLψ  is localized outside the volume Ω . In this case only the first term on the right in eq 

(6.3) is non-zero.  

In either case the contribution of the cross-terms in (6.3) is at most N/1~ compared to the 

sum of the other terms. This is intuitively obvious from consideration of Fig 2a.  

 

Hence to within terms N/1~ , 

 )()()( 0 rrr Lρρρ +=         (6.7) 

where 

 ∫∫ Ω
′′

Ω
=

)(

2
0

2
0 )(1)()(

r SS rrssr dadP ψρ      (6.8) 

with a similar expression for )(rLρ .  

 

Similar arguments can be applied to the fluid flow. This can be expressed in the form [6] 

  ∫ ∇= srrsrF SS d
m

P )()()()( 2 θψ      (6.9) 

where Sθ  is the phase of Sψ . It follows from almost identical arguments to those used in the 

derivation of eq (6.7) that, to within terms N/1~ ,  )(rF  also separates into two components.   
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  )()()( 0 rFrFrF L+=        (6.10) 

Furthermore, by the arguments given in [6] and summarized in section 3, the flow 0F  of the 

delocalized component must exhibit MSPQB. There is no such requirement for the flow LF  of the 

localized component.  

 

It is clear that the delocalized component can be identified with the superfluid in the two-fluid 

model and the localized component with the normal fluid. Evidently the superfluid fraction is  

 
2)()( TTwD α=         (6.11) 

and the normal fluid fraction is 

 
2)()( TTwL β=         (6.12) 

where )(Tα and )(Tβ  are the amplitudes in eq (5.1).  

6b. Thermodynamic Properties 

The consequences of eq (5.1) are in fact much wider than two-fluid behavior. The very different 

amplitudes and regions of coordinate space occupied by DΨ  and LΨ , imply that all overlap 

integrals between DΨ  and LΨ , in the calculation of any physical quantity, are at most N/1~  

compared to other terms.  Hence the delocalized (superfluid) and localized (normal fluid) 

components of the wave function contribute independently to all physical properties, in the limit 

∞→N  .  For example the energy density at r  can be expressed as [6] 

 ∫= srsr S dEPNE )()()(        (6.13) 

where the conditional energy density is 

 )()()( rrr SSS νκ +=E        (6.14)  

The conditional kinetic energy density is [6] 

  ∫Ω ′
′∂
′∂−′

Ω
=

)( 2

22
* )(

2
)(1)(

r
S

SS r
r

r
rr d

m
ψ

ψκ 
     (6.15) 

and the conditional potential energy density is 
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 ∫Ω ′′′
Ω

=
)(

2)()(1)(
r SSS rrrr dV ψν       (6.16) 

where )(rS ′V  is the potential energy of interaction of a particle at r′  with the other 1−N  

particles at s . 

 

It follows from similar arguments to those used in the derivation of eq. (6.7) that to within terms 

N/1~ , )(rSκ and )(rSν  and hence )(rSE  divide into independent contributions from the 

localized and delocalized components of )(rSψ . Hence  

 )()()( 0 rrr SSSSS LEbEaE +=        (6.17) 

It follows from (6.13) and (6.17) that to within terms N/1~ the two components contribute 

separately to the total energy density of the fluid.  

 )()()( 0 rrr LLD EWEwE +=        (6.18) 

Eq (6.18) implies [20,21] that all thermodynamic properties are the sum of two independent 

contributions from the superfluid and the normal fluid.  

 

Eq (6.18) provides a simple physical explanation of the anomalous thermal expansion of 

superfluid 4He upon cooling [10]. Eq (6.18) implies that the pressure exerted by the fluid is the 

sum of separate contributions from the two components. The superfluid exerts more pressure 

than the normal fluid. Hence as the liquid cools and the superfluid fraction increases, the liquid 

expands. It was shown in refs [20,21] that this reasoning gives quantitative agreement with 

measurements on superfluid 4He. 

  

6c. The momentum distribution. 

The momentum distribution )(pn of the atoms can be expressed in the form [6] 

 ∫= spsp S dnPn )()()(         (6.19) 

where 
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2

3 )(~1)( pp Sψ


=Sn         (6.20) 

and 

 ∫= rrprp SS di )/.exp()()(~ 3ψψ       (6.21) 

Substituting eq. (5.3) and (5.4) gives  

 )(~)(~)(~
0 ppp SSSSS Lba ψψψ +=       (6.22) 

where )(~
0 pSψ  and )(~ pSLψ  are defined in a similar way to eq. (6.21) .  Hence 

  pSSSSS ppp CTban L ++= 222
0

2 )(~)(~)( ψψ      (6.23) 

where the "cross-terms"  are 

 )(~)(~)(~)(~ *
0

**
0

* pppp SSSSSSSSp LL babaCT ψψψψ +=     (6.24) 

It follows from Parseval's theorem for Fourier transforms that if the cross-terms CT  in eq (6.3) 

are N/1~ , the cross-terms pCT in eq (6.23) must also be N/1~ . Hence to within terms 

N/1~ , 

  
222

0
2 )(~)(~)( ppp SSSSS LLD aan ψψ +=      (6.25) 

It follows from eqs (6.25) and (6.19) that the two components contribute separately to the 

measured momentum distribution. This is also intuitively obvious from consideration of Figure 2, 

which demonstrates that the integral of LDψψ is N/1~  compared with the integrals of 

2
Dψ and 

2
Lψ  in both r and p  space. 

 

6d The condensate fraction and the superfluid fraction 

In the presence of BEC at 0=T , a fraction 1~0f , of the weight of the distribution )(pn  is in 

the 0=p  state.  Since momentum states have volume in p  space of V/~ 3 this implies that   

 2/13
0 )/(~)0(~ VSψ         (6.26) 
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In contrast since )(rSLψ  is localized within a region of volume NV /~ , it follows from standard 

Fourier transform theory that )(~ pSLψ  must occupy a volume VN /~ 3  in p  space. Hence 

since )(~ pSLψ  is normalized in p  space (see Figure 2a), 

 [ ] 2/13/(~)0(~ NVLSψ        (6.27) 

Comparing eqs (6.26) and (6.27)  )0(~
SLψ  is a factor N/1~  smaller than )0(~

0Sψ . Thus to 

within terms N/1~ , only the delocalized component contributes to the zero momentum state. 

Again this is intuitively obvious from consideration of Figure 2b. 

 

The assumption (5.2) that the delocalized component is identical to the ground state, further 

implies that the condensate fraction )(Tf  at finite temperature T , is proportional to the 

superfluid fraction, with a proportionality constant equal to the condensate fraction at 0=T    

[19,20] 

 00 )()( fTwTf =         (6.28) 

It has been shown previously (see Fig 3 of ref [21]) that eq (6.28) is accurately obeyed by state of 

the art data on the condensate fraction [22

The contribution of a state with wave function 

] in superfluid 4He. 

 

6f. Static Structure factor 

Ψ to the static structure factor )(qS  is [23,24

N
mn

mnN dddi
N

S rrrrrqrrrq ...)].(exp[1)...,()( 21
,

2
21∫ ∑ −Ψ=

].  

    (6.29) 

It follows by similar arguments to those used in section 6a that, to within terms N/1~ , )(qS  

is the sum of independent contributions from the delocalized and delocalized components of Ψ . 

Eq (5.2) implies that the structure factor of the delocalized component is identical to the ground 

state structure factor )(0 qS . Hence  
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 )()()( 0 qqq LLD SwSwS +=        (6.30) 

where )(qLS  is  the structure factor of the localized component. 

 

Eq (6.30) provides a simple physical explanation of the uniquely anomalous increase in spatial 

correlations, observed as T is raised in superfluid 4He. More spaces between atoms are required 

for the wave function to delocalize, as illustrated in Figure 1. More spaces imply reduced pair 

correlations between atomic positions. Hence the delocalized (superfluid) component has 

reduced pair correlations compared with the localized (normal fluid) component. It follows that as 

T  is lowered and the superfluid fraction increases, pair correlations will decrease. It was shown 

in refs [23,24] that this reasoning is in quantitative agreement with measurements of the static 

structure factor and the atomic size and the packing density in superfluid 4He. It would be a 

remarkable coincidence if this agreement was accidental, since only a ~10% change in the 

atomic diameter is necessary to remove this agreement [24]. 

 

6g. Dynamic Structure factor 

The contribution of a state with wave function Ψ  to the dynamic structure factor ),( ωqS  is  

 )(),(
2

EEAS f
f

f −+= ∑ ωδω q       (6.31) 

where  

 ∫ ∑ ΨΨ=
n

NNfnNf dddiA rrrrrrrqrrrq ...)...,().exp()...,()( 212121
*   (6.32)  

The sum in (6.31) is over all final states of energy fE , E  is the energy of the state with wave 

function Ψ , ω  is the energy transfer and q  is the wave vector transfer. Due to the Bose 

symmetry of the wave function, every n makes the same contribution to fA  which can therefore 

be written in the form [25

∫ ΨΨ= srsrrqsrq ddiNA ff ),().exp(),()( *

] 

      (6.33) 
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It follows from eq (5.1) that there are two contributions to fA ,  that from the localized component 

of the wave function 

 ∫ ΨΨ= srsrrqsrq ddiNA fLLf ),().exp(),()( *      (6.34) 

and that from the delocalized component, )(qDfA , defined in an analogous way to eq (6.34).  

Furthermore since ),( srLΨ  is a localized function of r , non zero only within a region of 

dimension 3/1)/(~ NVa , it follows from eq (6.33) and elementary Fourier transform theory that 

the contribution to )(qLfA  must have width in q  of at least aq /1~∆ . In contrast the 

delocalized component )(qDfA  can contain peaks with width in q ,  3/1/1~ Vq∆ . Thus any 

peaks in ),( ωqS  with widths aq /1<<∆ must be contributed only by the delocalized 

component. Eq (5.2) then implies that the intensity of such peaks must be proportional to the 

weight of the delocalized component - that is to the superfluid fraction. This prediction agrees 

(within the experimental error of ~2%) with neutron scattering measurements [11,13] of the 

intensity of such peaks.   

 

7. Interference between Condensates 

We consider two clouds of Bose-Einstein condensed gas which are initially confined in a potential 

which allows a very small overlap between the clouds (See Figure 3). At time 0=t , the potential 

is switched off and the clouds are allowed to expand and overlap.   
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Figure 3 . Illustrates two clouds of Bose-Einstein condensed atoms confined by an external potential such that there is a 

small overlap between clouds. The left hand cloud  has the density distribution )(rAρ and the right hand cloud the 

distribution )(rBρ .  

 

7a Zero Temperature 

In the ground state, the presence of BEC implies that the macroscopic behavior of the two clouds 

is determined by eqs (3.1)-(3.3). The initial density distribution has the form (see Figure 3)  

 )()()0,( rrr BA ρρρ +=        (7.1) 

It is assumed that the potential is such that the overlap region (that is the region where both 

)(rAρ  and )(rBρ are non-zero) contains N<<ε atoms. ε  can in principle be vanishingly 

small, provided enough time is allowed for atoms in the two clouds to reach thermal equilibrium 

before the potential is switched off.  

 

It then follows from eq. (7.1) that the function )0,(0 rη , defined in eq (3.2) has the form 

 )()()0,(0 rrr BA ηηη +=        (7.2) 

where to within terms ε~ , 

ε<<NA+NB atoms 
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 )(

2

)( BABA ρη =         (7.3) 

It follows from eq. (3.1) that the phase of η  is N/0Φ=φ  where 0Φ  is the phase of 0Ψ . 0Φ  

has a constant value in the ground state of any Bose system [26 Aη]. Hence the phases of  and 

Bη  in eq. (7.2) have the same constant (that is independent of r )  value  

 
NBA

0Φ
== φφ          (7.4) 

The time development of the density after the trapping potential is switched off is determined by 

the solution of equation (3.3) with 0)( =Ξ r  and the initial condition of eqs (7.2) - (7.4).  

 

The effective single particle potential ),( tVeff r  in eq (3.3) is equal to the ground state energy per 

atom at the local density ),(0 trρ  [6]. It is a well known result [27

∝)(reffV

] that with sufficiently weak 

interactions the ground state energy is proportional to the density.  Hence it follows from eq (3.2) 

that with weak interactions 
2)(rη .   Eq. (3.3) then reduces to the Gross-Pitaevski  

equation [27].   Previously published [28,29

0=T

] numerical solutions of the Gross-Pitaevski equation, 

with the initial conditions of eqs (7.2)-(7.4) predict density oscillations with detailed characteristics 

in good agreement with those observed. Hence eq (3.3) supplies a straightforward quantitative 

explanation from first principles of density oscillations in overlapping ultra-cold gases at .  

 

 

7b Finite Temperature 

It follows from section 6a that the density is the sum of independent contributions from the 

delocalized and localized components of the wave function. 

 )()()()()( rrr LLDD TwTw ρρρ +=       (7.5) 

Only the delocalized component )(rDρ displays MSPQB. Hence only this component contributes 

to macroscopic density oscillations.  Eq (5.2) implies that the form of the oscillations in )(rDρ is 
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independent of temperature and identical to that at 0=T . The localized component )(rLρ does 

not display MSPQB and hence behaves “normally” with no density oscillations. It therefore follows 

from eq (7.5) that as T is raised and Dw  decreases, the visibility of oscillations will also 

decrease. The oscillations will vanish at CTT = . 

 

Note that the superfluid fraction Dw  rather than the condensate fraction f  determines the 

visibility of density oscillations. As eq (6.28) demonstrates, f  is always less than Dw . In 

principle these predictions could be tested in ultra-cold gases by measuring the superfluid fraction 

before the trapping potential is switched off and then measuring the visibility of the oscillations 

when the clouds are allowed to overlap. 

 

8. Discussion and Summary 

It was shown in section 4 that as the temperature is raised in the presence of BEC, the wave 

functions of occupied N particle states must change from delocalized functions as 0→T   to 

localized functions as CTT → .  The obvious question which arises is whether this transition 

could occur in any other way than that postulated in eq (5.1). Another possibility for example is 

that is that the range of delocalization of the wave function gradually reduces from 3/1~ V as 

0→T  to 3/1)/( NV  as CTT → . This can be ruled out as it is not consistent with experiments 

on superfluid 4He or with existing theory. These clearly show that MSPQB and hence a 

component which is delocalized over length scales 3/1~ V is always present if CTT < . Arguably 

the most convincing demonstration of this is given by experiments on persistent superfluid flow in 

liquid 4He [30 CTT <], which occurs at all temperatures .  

 

The subsidiary postulate (5.2), that the delocalized component is identical to the ground state, 

seems more uncertain. Experiment demonstrates that the entropy of the superfluid component in 
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liquid 4He is zero.  This implies that ),( srDΨ  must be the same unique function for all states i  

occupied at a given T . The obvious choice for this function is the unique ground state wave 

function ),(0 srΨ , but the possibility that DΨ  changes with temperature cannot be conclusively 

ruled out. However it was shown in refs [20,21,23,24] that available experimental data on the 

superfluid fraction, the condensate fraction, the static and dynamic structure factors and the 

thermal expansion of superfluid 4He are all consistent with eq (5.2). These measurements 

demonstrate that to within ~1% in liquid 4He the delocalized component of the wave function is 

identical to the ground state wave function. 

 

It is interesting to note that the arguments in section 6f imply that in liquid 4He the delocalized and 

localized components of the wave functions give different contributions to the static structure 

factor. This implies that configurations sr,  of the N atoms for which DΨ  has significant 

amplitude must be significantly different to those for which LΨ  has significant amplitude. It could 

be the case that ),( srLΨ  is zero for s  where ),( srDΨ  is non-zero and vice versa. This would 

imply that all the results of sections 6 and 7 are exact. Hence the results obtained in sections 6 

and 7 are accurate to at worst N/1~ .  

 

To summarize it has been shown that a wide range of uniquely anomalous experimental 

phenomena in Bose-Einstein condensed liquids and gases at finite temperature can be 

quantitatively explained by two simply stated postulates. These are; (1) that the N particle wave 

functions of occupied states can be written as the sum of components which are localized and 

delocalized in coordinate space and (2) that the delocalized component is identical to the ground 

state wave function. It has been argued that these postulates are in fact forced by basic quantum 

mechanics, existing theoretical treatments of BEC and extensive experimental data on liquid 4He. 
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