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Abstract

It has long been recognised that the no-slip-boundary condition employed in the Navier—Stokes equations can only
be applied when the Knudsen number, Kn<107>. If the Knudsen number is increased beyond this value, rarefaction
effects start to influence the flow and the molecular collision frequency per unit area becomes too small to maintain the
no-slip-boundary condition. Unfortunately, Maxwell’s famous slip equation describing the velocity discontinuity at the
wall is often misapplied when analysing flows over curved or rotating boundaries. In the present study, a generalised
version of Maxwell’s slip equation is used to investigate low Knudsen number isothermal flow over walls with
substantial curvature. The generalised slip equation is written in terms of the tangential shear stress to overcome the
limitations of the conventional slip-boundary treatment. The study considers a number of fundamental, but
challenging, rarefied flow problems and demonstrates that Maxwell’s conventional slip equation is unable to capture
important flow phenomena over curved or rotating surfaces.
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1. Introduction

Non-continuum or rarefied gas flows are en-
countered in both low-pressure/vacuum applica-
tions [1-3], as well as in micron-sized devices which
operate at standard atmospheric conditions [4,5].
Historically, many of the pioneering investigations
of non-continuum flows were conducted by
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researchers in the rarefied gas community who
were primarily interested in low-pressure applica-
tions [6-9]. However, the emergence of micro-
electro-mechanical-systems (MEMS) and the asso-
ciated advances in micro-machining technology
have enabled fluidic devices to be constructed with
feature sizes down to 1 pum, leading to a range of
new applications where rarefaction effects need to
be considered. As an example, recent experiments
on silicon micro-fluidic channels have confirmed
that conventional (continuum) flow analyses are
unable to predict the observed mass flow rates
through micron-sized devices with any degree of
accuracy [10-16]. This has resulted in the growing
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realisation that the fluid mechanics at micron and
sub-micron scales is significantly different from the
macroscopic world and has many similarities with
vacuum gas dynamics.

The continuum assumption in the Navier—
Stokes equations is only valid when the mean free
path of the gas molecules is smaller than the
characteristic dimension of the flow domain. If this
condition is violated, the fluid will no longer be in
local thermodynamic equilibrium and a variety of
rarefaction effects will be exhibited, including the
presence of slip between the gas and the substrate.
Velocity profiles, boundary wall shear stresses and
mass flow rates will then be influenced by the non-
continuum flow regime. In addition, there is
significant experimental evidence to suggest
that the gas—surface interactions at the wall are
affected by incomplete momentum accommoda-
tion [14-18].

The fundamental difficulty in predicting gas
transport within conventional vacuum environ-
ments and micro-fluidic devices can be attributed
to the breakdown of the continuum assumption in
the Navier—Stokes equations. The degree of
rarefaction of a gas (and the applicability of the
Navier—Stokes equations) is determined by the
Knudsen number, Kn, which is defined as the
ratio of the mean free path of the gas molecules,
A, to the characteristic dimension of the flow
geometry, L

A

Kn = T (1)
The most appropriate method of flow analysis
depends crucially on the degree of rarefaction
within the gas. Schaaf and Chambre [19] proposed
the following classification system based upon the
magnitude of the local Knudsen number. For
Kn<1072, the continuum hypothesis is appropri-
ate and the flow can be described by the Navier—
Stokes equations using conventional no-slip-
boundary conditions, although Gad-el-Hak [20]
has suggested that the breakdown in the con-
tinuum assumption is discernible at Knudsen
numbers as low as Kn=10">. For Kn> 10, the
continuum approach breaks down completely and
the regime can then be described as being a free
molecular flow. Under such conditions, the mean

free path of the molecules is far greater than the
characteristic length scale and consequently mole-
cules reflected from a solid surface travel, on
average, many lengths scales before colliding with
other molecules. However, for Knudsen numbers
between Kn=10"2 and 10, the fluid can neither be
considered an absolutely continuous medium nor a
free molecular flow. In the range, 10 ><Kn<10""
(commonly referred to as the slip-flow regime), the
Navier—Stokes equations are considered to offer a
reasonable description of the flow provided
tangential slip-velocity boundary conditions are
implemented between the gas and the substrate.
On the other hand, for 107'<Kn<10 (transition
flow), the Navier-Stokes constitutive equations
and first-order slip-boundary conditions begin to
break down and alternative methods of analysis
must be considered. The application of conti-
nuum-based flow models for the transition regime
is an active research area and has resulted in the
Burnett [21], Bhatnagar-Gross-Krook (BGK)-
Burnett [22], Grad’s [23] and Woods’ [24] equa-
tions. These higher-order continuum models re-
quire correspondingly higher-order slip-boundary
conditions. Alternatively, proper theoretical treat-
ment of the entire Knudsen flow regime
(0<Kn< o) can be achieved by solving the
Boltzmann transport equation [25], but the
method is fraught with difficulties in calculating
the collision integral terms. A practical alterna-
tive to solving the Boltzmann equation is the
direct simulation Monte Carlo (DSMC) approach
proposed by Bird [26]. While the use of particle-
based techniques is eminently suitable for transi-
tion and free molecular studies, the DSMC
approach requires large numbers of particles
for accurate simulation in the slip-flow regime,
making the technique prohibitively expensive
in terms of computational time and memory
requirements. As pointed out by Agarwal et al.
[27], the computing requirements of many
DSMC simulations in two- and three-dimen-
sions for Kn~O(l), are still beyond the limits
of available computing power. It is there-
fore apparent that continuum-based models re-
present the most appropriate method of
analysis for the near-continuum and slip-flow
regimes.
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Several studies have attempted to increase the
accuracy of slip-flow predictions by proposing
higher-order boundary conditions [28—-34]. The use
of higher-order slip conditions with the Navier—
Stokes constitutive equations can be justified
because rarefied flows are dominated by gas—
surface interactions at the wall, and therefore
adopting a more accurate model at the boundary
will have a significant effect on the overall
accuracy of the predictions. Unfortunately, many
slip-flow models overlook the fact that the con-
ventional form of Maxwell’s first-order boundary
treatment is only applicable to planar surfaces.
For simulations involving curved or moving
surfaces, this means that important physics of
the gas—surface interactions can be lost.

The present investigation considers low Knud-
sen number isothermal flows over curved surfaces
and demonstrates that the conventional form of
Maxwell’s slip equation suffers considerable loss in
accuracy when applied to non-planar boundaries.
A particularly important aspect of the present
study is the proper formulation of the first-order
slip-velocity boundary condition so that it can be
applied to a generalised curved surface. This is
accomplished by recasting Maxwell’s slip equation
as a function of the local wall shear stress. The
resulting generalised boundary condition is shown
to provide an improved description of curved slip
flow and, more importantly, does not suffer from
some of the limitations of the conventional slip-
boundary treatment. It is envisaged that a similar
technique could also be used to provide a general-
ised higher-order slip-boundary condition. This
could be achieved by replacing the shear stress
defined in the Navier—Stokes equations by a
higher-order stress tensor from, for example, the
Burnett equations. Unlike existing second-order
boundary conditions which are only applicable to
planar walls, the resulting boundary condition
would be directly applicable to three-dimensional
flows over curved and rotating surfaces.

2. Governing hydrodynamic equations

The Navier—Stokes equations governing the
flow of a continuous (infinitely divisible) fluid

can be written in tensor notation as follows:

o apm) _

continuity : 2 oy 2)
and
momentum M —6(pukui) = - 6_p Otk
ot OXx ox; Oxi
3)

where u is the velocity, p is the pressure, p is the
fluid density and 7, is the second-order stress
tensor. For a Newtonian, isotropic fluid, the stress
tensor is given by

B ou;  Ouy Ou;
ik = Wy (an + 8x,-> + My (axj> 51/0 (4)

where pu; and p, are the first and second
coefficients of viscosity, respectively, and o is
the unit second-order tensor (Kronecker delta).
The second coefficient of viscosity can be elimi-
nated from the Navier—Stokes equations by means
of Stokes’ continuum hypothesis:

o +3u =0 ®)

although the validity of the above assumption has
occasionally been questioned for fluids other than
dilute monatomic gases [35].

2.1. Slip-flow-boundary conditions

In traditional (continuum) flow analyses, a no-
slip velocity constraint is enforced along all solid
walls. In practice, the no-slip condition is found to
be appropriate when the Knudsen number,
Kn<107>. If the Knudsen number is increased
beyond this value, rarefaction effects start to
influence the flow and the molecular collision
frequency per unit area becomes too small to
ensure local thermodynamic equilibrium and the
no-slip-boundary condition begins to break down.
Under these conditions, a discontinuity will occur
in the velocity at the wall and the gas will
effectively slide over the solid surface. The
discontinuity in the velocity can be described using
Maxwell’s famous slip-velocity equation [36]

2—-0), 0u
Rl Ay i B
o oy =0

(6)

Uglip =
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where ug;;, is the tangential slip-velocity at the wall
(y=0), u is the tangential velocity component, y is
the distance normal to the wall, 1 is the mean free
path of the gas and o is the Tangential Momentum
Accommodation Coefficient (TMAC). The
TMAC accounts for the average streamwise (or
tangential) momentum exchange between the
molecules and the solid surface and can vary from
zero (for specular reflection) up to unity (for
complete or diffuse accommodation).

Eq. (6) is normally remembered as Maxwell’s
slip-velocity boundary condition but closer scru-
tiny of the derivation indicates that the equation
should only be applied to planar surfaces. As a
consequence, Maxwell’s boundary condition is
commonly misapplied in practical situations in-
volving surface curvature. Maxwell [36] initially
derived the slip-boundary condition in terms of the
viscous shear stress (Eq. (66), p. 253) but then
simplified the resulting expression, presumably
believing that the variation in wall-normal velocity
could be neglected. Maxwell’s use of a one-
dimensional expression for the shear stress (appro-
priate for the problem being analysed) made his
result only valid for planar, non-rotating walls.
However, if the viscous shear stress is retained in
the derivation then the generalised version of
Maxwell’s slip-velocity boundary condition can be
written as
2—0) A
Q ; Tt|y:0! (7)
where 1,|,_( is the tangential shear stress at the
wall. In the case of a two-dimensional surface,
Eq. (7) can be rewritten as

- (2-0) ou Ov
Hslip = 4 8y+8x

Uglip =

®)

9
y=0

where ug;,, is the tangential slip-velocity at the wall
(y=0) and (u,v) are the velocity components of the
gas, tangential and normal to the wall, respec-
tively. The additional velocity derivative in Eq. (8)
compared with Eq.(6) can have a significant
influence on the overall slip-flow behaviour. For
example, in flow problems that include surface
curvature, the application of Eq.(6) is totally
inappropriate since the boundary condition fails to
account for the fact that the velocity normal to the

wall can vary in the streamwise direction. Simula-
tions involving Eq. (6) are therefore likely to lose
important physics of the gas—surface interactions
at curved walls, leading to incorrect slip-flow
behaviour.

Although the misapplication of Maxwell’s con-
ventional slip-velocity boundary condition,
Eq. (6), is widespread, there are several instances
where curved boundaries have been treated
correctly [37-40]. For example, as carly as 1888,
Basset [37] analysed creeping flow past a sphere
and correctly accounted for surface curvature in
his slip equation. Other researchers recognising the
importance of accounting for the curved wall
include Wang [38] who analysed Stokes’ slip flow
through a regular grid of circular cylinders and
Aoki et al. [39] who investigated rarefied Couette
flow between two co-axial cylinders. In addition,
Einzel et al. [40] have developed a similar
boundary condition to Eq.(7) based upon the
concept of slip length.

Unfortunately, there are numerous studies that
implement the conventional form of Maxwell’s slip
condition over curved or moving surfaces. To
illustrate the importance of implementing the
generalised slip equation, we present two examples
that demonstrate the limitations of the conven-
tional boundary treatment.

3. Low Knudsen number Couette flow between two
co-axial cylinders

Cylindrical Couette flow in the continuum
regime is a classical problem that can be found
in many fluid dynamics textbooks. However,
recent analytical and DSMC studies [39—41] have
suggested that under certain conditions of rarefac-
tion (in particular, when the accommodation
coefficient is small), the velocity profile between
the cylinders reverses direction so that the gas
moves faster near the stationary outer cylinder.
This anomalous behaviour has been described as
an ‘inverted velocity profile’ because the velocity of
the gas increases with distance from the rotating
inner cylinder. The effect is completely non-
intuitive and contrary to the normal velocity
profile expected within a cylindrical Couette flow.
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The present investigation considers an inner
cylinder of radius, R;, rotating at a constant
angular velocity, w, and a stationary outer cylinder
of radius, R,. Both cylinders are maintained at the
same temperature and therefore the flow is
considered to be isothermal. The Navier—Stokes
equations can be solved analytically by integrating
the tangential momentum conservation equation
across the annular ring and imposing the appro-
priate slip-boundary conditions at the inner and
outer radii. For a polar co-ordinate (r,0) reference
frame, the generalised form of Maxwell’s slip-
boundary equation at the inner rotating cylinder
can be written as

2-o0) Oug uy
ugl,—g,= OR1 + p y T

©)

}‘:R]

while the generalised slip-boundary condition at
the stationary outer cylinder can be written as

2—0), (Oup uy
ugl,—g,= — — A

or r (10)

r:Rz

Following the notation adopted by Einzel et al.
[40], the tangential velocity profile can be shown to
be defined by

up(r) = %(m-%), (11)

where

1 o 1 {o
A=—(1-22); B=—(1+22 12
R%( Rz)’ R%< + Ry 12

and the slip length, {,, is given by

2-9
o

Lo = 2. (13)

If the analysis is repeated using the conventional
(incorrect) slip-boundary condition presented in
Eq. (6), the gas velocities at the inner and outer
radii are given by

2—0) . ou
u()|V:R1: a)Rl +( - ) \.a_: (14)
)‘:R]
and
2—o0), 0u
gl = k5 - (15)
r=Ry

It can be shown that the tangential velocity
profile then becomes

o w R1 1
ug(r) = A—B<R1 — C()) <AV — ;), (16)

where

_i RZ_C() _L R1+CO
R <R2+Co) and B_R% <R1 —Co>. {17

As an aside, in the limiting condition of A—0,
Egs. (11) and (16) both tend to the continuum
solution for cylindrical Couette flow:

oRIR: (1 1

For compatibility with DSMC data presented
by Tibbs et al. [41], the inner and outer cylinders
are chosen to have radii of 34 and 54, respectively,
and the tangential momentum accommodation
coefficient, ¢, is chosen to be 0.1. Fig. 1 shows a
comparison of the velocity profiles (non-dimensio-
nalised by the tangential velocity of the inner
cylinder) predicted using the standard no-slip-
boundary condition, the conventional slip condi-
tion, the generalised slip condition and DSMC
(direct simulation Monte Carlo) simulations [41].
The DSMC results can be regarded as an
independent numerical test in the absence of

o
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Non-dimensional tangential velocity

—— Maxwell's generalised slip \
01 ___ . ) - . 4
Maxwell's conventional slip \
—-— No-slip condition .
= DSMC data \
0.0 1 1 1
0.0 0.5 1.0 15 2.0

Non-dimensional radial distance from inner cylinder, r/A

Fig. 1. Non-dimensionalised velocity profiles for a cylindrical
Couette flow. Comparison of no-slip condition, Maxwell’s
conventional slip condition (Eq. (6)), Maxwell’s generalised slip
condition (Eq. (7)) and DSMC data [41].
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definitive experimental data. The fact that DSMC
simulations predict an inverted velocity profile
(with the gas travelling faster near the stationary
outer wall) is strong evidence to suggest the
phenomenon exists. The flow has also been studied
by Aoki et al. [39] using two alternative formula-
tions: a systematic asymptotic analytical solution
for small Knudsen numbers, and a direct numer-
ical solution of the Boltzmann equation using the
BGK approximation [42]. The results again con-
firm the existence of an inverted velocity profile for
small values of accommodation coefficient.

Inspection of Fig. 1 shows that the analytical
solution using the conventional slip-boundary
condition cannot predict the velocity inversion
and instead yields a velocity profile which
decreases with distance from the rotating inner
cylinder. On the other hand, the generalised slip-
boundary condition is able to capture the im-
portant physics of the velocity inversion process.
The quantitative agreement between the DSMC
data and the analytical predictions is not particu-
larly close but this is to be expected since the
separation distance between the cylinder walls is
only two mean free paths, implying a Knudsen
number (based upon the annular clearance) of 0.5.
At such a high Knudsen number, continuum-
based flow models are likely to be at the limit of
their applicability. Nevertheless, the results clearly
highlight a potential problem with the conven-
tional slip-velocity boundary condition.

4. Low Knudsen number isothermal flow past an
unconfined sphere

Unconfined creeping flow past a sphere is
another canonical fluid dynamics problem. The
analysis was first performed for the continuum
regime by Stokes [43] who demonstrated that in
the absence of inertial forces, the total drag force,
D, on an unconfined sphere of radius a, in a flow
stream of velocity U, can be written as

Dt = 6nuUa. (19)
The extension of Stokes” analysis to slip flow past

a sphere was first proposed by Basset [37]. Most
notably, the effects of slip were incorporated into

the analysis using a velocity boundary condition
that accounted correctly for the surface curvature.
Basset’s analysis did not specifically consider a
rarefied gas, and instead employed an arbitrary
slip coefficient, 5, which related the tangential slip
velocity at the wall to the local shear stress

Twall = ﬂuslily (20)
However, defining the slip coefficient as
U
=—— 21
B (Q:z)i> @2y

allows Basset’s analytical result to be applied to
rarefied gas flows. It should be noted that
substituting Eq. (21) into (20) re-establishes the
generalised slip-velocity condition presented ear-
lier in Eq. (7).

Basset’s original analysis only provided an
expression for the total drag force on the sphere:

Dt =6nuUa

x <1+2(2“)f)/<1+3(2“)5>.
o a o a

(22)

Barber and Emerson [44], however, have repeated
Basset’s analysis to predict the individual compo-
nents of the drag force. In continuum (no-slip)
flows, the normal stress must vanish along any
rigid no-slip impermeable boundary [45]. In
contrast, the tangential slip-boundary condition
associated with rarefied flows generates a normal
stress term which causes an additional force on the
sphere. The total drag force is therefore composed
of three separate components, namely skin friction
drag (Ds), normal stress drag (Dy) and pressure
(or form) drag (Dp). The analytical expressions for
the individual drag components are presented in
Table 1.

An important aspect of the present study is the
proper treatment of the slip-boundary condition
around curved surfaces. It is therefore interesting
to consider the effects of utilising the conventional
(incorrect) form of slip-boundary condition. If the
analytical derivation is repeated using Eq. (6)
instead of the correct slip velocity formulation,
Eq. (7), then the total drag force on the sphere can
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Table 1

Individual drag force components on an unconfined sphere in the slip flow regime

Drag component

Generalised slip-boundary condition, Eq. (7)

Conventional slip-boundary condition, Eq. (6)

Skin friction drag, Dg
Ds = 4nuUa

1

Normal stress drag, Dy
ey
DN = 4nuUa c ¢
(1+3%24)
a a

Pressure drag, Dp

c a

(- o)

Ds = 4nuUa >———+
2-0) )

(1 +27"§)

)
DN = 4nuUa i -
(1+2%24)
a a

(1+2224) (1+ 224
Dp =2npUa # Dp =2npUa #
G==p (eea)
Total drag, D
& (1+2222) (1+222)
Dr = 6nuUa % Dr = 6nulUa #
(1+3%2%) (1+2224)
be shown to be given by 10 . . . .
X
DT = 67‘C/J Ua 0.8 \\\\ Total drag, D; e
2—0) 4 2—0) A O U
><<1+—( ) 4 1+2( )4 . 306 T
o a o a é —— Maxwell's generalised slip
(23) E 0.4 | ——- Maxwell's conventional slip .
o
. . . =
For completeness, Table 1 presents the individual go02p
drag force components arising from the incorrect 00
boundary treatment. ‘
Comparison of Egs.(22) and (23) reveals 0.2 s s . .
0.00 0.02 0.04 0.06 0.08 0.10

that at the upper limit of the slip-flow regime,
Kn=/,/a=10"", the total drag force predicted by
the two expressions differs by less than 1%,
assuming complete momentum accommodation
(6=1). However, in the limiting case of a perfectly
smooth sphere such that all the incident molecules
are reflected specularly (¢=0), the conventional
slip-boundary condition will underestimate the
drag by 25%. It is also interesting to consider
the variation in the skin friction drag component.
In the limiting case of a perfectly smooth (spec-
ular) sphere, there is no mechanism by which the
wall can transfer tangential momentum to or from
the gas. Thus, the drag due to skin friction (Ds)

Knudsen number, Kn = Ma

Fig. 2. Variation of total drag and skin friction drag on an
unconfined sphere for ¢=0.1. Comparison of Maxwell’s
conventional slip condition (Eq. (6)) and Maxwell’s generalised
slip condition (Eq. (7)).

must be zero for specular reflection. It can be seen
that the drag predicted by the generalised bound-
ary condition does indeed produce zero skin
friction. On the other hand, the conventional slip
condition gives a finite value of negative skin
friction drag (i.e. a thrust). This non-physical pre-
diction demonstrates the importance of employing
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the generalised slip equation, as opposed to the
conventional boundary treatment. The disparity
between the analytical drag equations is illustrated
in Fig. 2 for a tangential momentum accommoda-
tion coefficient of ¢=0.1. It can be seen that the
exclusion of curvature effects in the conventional
slip equation significantly alters the drag compo-
nents on the sphere.

5. Conclusions

The present study considers a number of
fundamental, but challenging, curved flow geome-
tries and demonstrates that the conventional form
of Maxwell’s slip-boundary condition is unable to
capture important physics over curved or rotating
surfaces. For example, the conventional boundary
equation is unable to predict an inverted velocity
profile within a cylindrical Couette flow, and also
fails to predict the correct asymptotic behaviour
for specular flow (6=0) over an unconfined
sphere.

A particularly important aspect of the present
study is the proper formulation of the slip-
boundary condition so that it can be applied to a
generalised curved surface. This is accomplished
by recasting Maxwell’s slip-velocity equation as a
function of the local wall shear stress. The
resulting generalised equation does not suffer from
the limitations of the conventional slip-boundary
treatment and is shown to provide an improved
description of curved slip flows.
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