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Abstract. Rapid progress in Micro-Electro-Mechanical Systems (MEMS) technology has led to the development of an
increasing number of miniaturised flow devices which involve the manipulation of gases. However, an emerging research
issue is the realisation that non-continuum and surface phenomena become increasingly important as devices are reduced
in scale. This study investigates the important problem of low Reynolds number rarefied gas flow past a confined
microsphere within a circular pipe and focuses on the estimation of the hydrodynamic drag forces on a stationary sphere.
K nudsen numbers covering the continuum and slip-flow regimes (0 < Kn < 10Y) are studied whilst the Reynolds number
is varied between 102 < Re < 1. In addition, blockage effects are investigated by varying the ratio between the diameter
of the pipe, H, and the diameter of the sphere, D. The results indicate that blockage effects are extremely important in the
continuum regime and cause an amplification in the hydrodynamic drag. However, blockage phenomena are shown to be
less important as the Knudsen number is increased. At the upper limit of the slip-flow regime (Kn = 10, blockage
amplification effects are found to be reduced by almost 50% for a pipe-sphere geometry of H/D = 2.

INTRODUCTION

The development of precision fabrication techniques for constructing Micro-Electro-Mechanical-Systems
(MEMS) has emerged as one of the most exciting and revolutionary new areas of technology. Miniaturisation of
conventiona fluidic systems offers a wide range of benefits to the chemical and bio-chemical industries by enabling
faster mixing times, improved heat transfer rates, increased chemical yields and faster throughputs for chemical
assays [1]. In addition, the small length scales employed in microfluidic systems offer the prospect of developing
pressure and chemical sensors having frequency responses in the MHz range.

A variety of advanced microfluidic components are currently being developed including miniaturised heat-
exchangers to cool integrated circuits, micro-reactors to generate small quantities of dangerous or expensive
chemicals, ‘lab-on-a-chip’ bio-chemical sensors which perform complex biological assays on sub-nanolitre samples
and hand-held gas chromatography systems for the detection of trace concentrations of air-borne pollutants.
However, one of the emerging research issues is the realisation that the fluid mechanics in such small scale devices
is not the same as that experienced in the macroscopic world.

Early investigations of non-continuum flows in pipes and channels were conducted by researchers in the rarefied
gas community who were primarily interested in low-density applications [2,3,4]. However, recent advances in
micro-machining technology have enabled flow channels to be constructed with depths of the order of 1 micron
leading to a new area of research where rarefied gas behaviour is relevant. For example, experiments conducted by
Pfahler et al. [5], Harley et al. [6] and Arkilic et al. [7,8,9] on low Reynolds number gas flows in silicon micro-
machined channels have shown that conventional (continuum) analyses are unable to predict the observed flow rates
with any degree of accuracy. Consequently, microfluidic systems which are designed simply by scaling-down
conventional macro-scale devices may not function as intended.

It has long been established that the continuum assumption in the Navier-Stokes equations is only valid when the
mean free path of the molecules is smaller than the characteristic dimension of the flow domain. If this condition is
violated, the fluid will no longer be in thermodynamic equilibrium and the linear relationship between the shear
stress and rate of shear strain (Newton's law of viscosity) cannot be applied. Velocity profiles, boundary wall shear
stresses, mass flow rates and hydrodynamic drag forces will then be influenced by non-continuum effects.
Moreover, the conventional no-slip boundary condition imposed at a solid-gas interface begins to break down even
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before the linear stress-strain relationship becomesinvalid (Gad-el-Hak [10]).
For an ideal gas modelled as rigid spheres, the mean free path of the molecules, £, can be related to the
temperature, T, and pressure, p, via

=T (1)
2rpor

where k is Boltzmann's constant and o is the collision diameter of the molecules. The ratio between the mean free
path, £, and the characteristic dimension of the flow geometry, L, is commonly referred to as the Knudsen number:
L
Kn - 2

The Knudsen number, Kn, determines the degree of rarefaction of the gas and the validity of the continuum
hypothesis. Schaaf and Chambre [11] proposed the following classification system based upon the magnitude of the
local Knudsen number. For Kn < 107, the continuum hypothesis is appropriate and the flow can be analysed using
the Navier-Stokes equations with conventional no-slip boundary conditions although Gad-el-Hak [10] has suggested
that the breakdown in the continuum assumption is discernible at Knudsen numbers as low as Kn = 10°. When
Kn > 10, the continuum approach breaks down completely and the regime can then be described as being a free
molecular flow. Under such conditions, the mean free path of the molecules is far greater than the characteristic
length scale and consequently molecules reflected from a solid surface travel, on average, many lengths scales
before colliding with other molecules. It is thus valid to neglect the effect of the reflected particles on the incident
flow stream, and treat the incident and reflected molecular flows separately. However, for Knudsen numbers
between Kn = 102 and Kn = 10, the fluid can neither be considered an absolutely continuous medium nor a free
molecular flow. A further sub-classification is therefore necessary to distinguish between the appropriate method of
analysis. For 10%< Kn < 10 (commonly referred to as the slip-flow regime), the Navier-Stokes equations can still be
used provided tangential dip-velocity boundary conditions are implemented along the solid walls of the flow
domain. On the other hand, for 10™ < Kn < 10 (transition flow), the continuum assumption begins to break down and
aternative methods of analysis using the Burnett equations or particle based DSMC (Direct Simulation Monte
Carlo) approaches must be employed [12].

In the present work, numerical simulations are used to study the effects of rarefaction on axisymmetric flow past
a confined microsphere within a circular pipe. The investigation of rarefied gases by measuring the viscous damping
on a rotating sphere dates back to Maxwell and nowadays forms the basis of conventional spinning-rotor vacuum
gauges [13,14]. Essentially the rate of damping of an electro-magnetically suspended rotating sphere can be used to
measure a number of important properties of a rarefied gas including pressure, viscosity or molecular weight.
Similar principles have been envisaged for measuring the flow rates, pressures or viscosities in micro-channels.

GOVERNING EQUATIONS

The governing hydrodynamic equations for a continuous (infinitely divisible) fluid can be written in tensor
notation as follows:

continuity:
o, 0(pu) _, -
ot 0%
momentum:
o(pu) , A(puu) __dp 01, @
ot 0%, ox  0x,

where u is the velocity, p is the pressure, p is the fluid density and Tj, is the second-order stress tensor. For a
Newtonian, isotropic fluid, the stress tensor is given by

ou  ou O _ou O
T =UD—'+—kD+7\ﬁTJ 3 (5)
“ % 0% Xjﬁ “
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where p and A are the first and second coefficients of viscosity and &y is the unit second-order tensor. Implementing
Stokes' continuum hypothesis allows the first and second coefficients of viscosity to be related via

2
A+=p=0 6
3H (6)

although the validity of the above equation has occasionally been questioned for fluids other than dilute monatomic
gases (Gad-el-Hak [15]).

Slip-Veocity Boundary Conditions

To account for non-continuum effects in the slip-flow regime (Kn < 10, the Navier-Stokes equations are solved
in conjunction with the tangential dlip-vel ocity boundary condition first proposed by Basset [16]:

T =By ()

where u, is the tangential slip-velocity at the wall, T, is the shear stress at the wall and f3 isthe dlip coefficient. Schaaf
and Chambre [11] have shown that the dlip coefficient can be related to the mean free path as follows:

- u
b= =er ®)
He H
where g is the tangential momentum accommodation coefficient (TMAC) and £ is the mean free path. The TMAC
isintroduced to account for gas-surface interactions at the wall. For a perfectly elastic smooth surface, the angles of
incidence and reflection of molecules colliding with the wall are identical and therefore the gas cannot exert any
stress in the tangentia direction. Thisis referred to as specular reflection and results in perfect dip at the boundary
(o0 - 0). Conversely, in the case of an extremely rough surface, the gas molecules are reflected at totally random
angles and lose, on average, their entire tangential momentum: a situation referred to as diffusive reflection (o = 1).
Experiments indicate that the accommodation coefficient is a function of the molecular weight of the gas, the
energy of the incoming molecules, the wall material, the temperature and the condition of the surface. One of the
most important parameters affecting the accommodation coefficient is the surface roughness. Porodnov et al. [4]
conducted experiments on the flow rates of gases through rectangular glass channels with different surface
roughness. The experiments for light gases (He, Ne, Ar) indicated a change in the accommodation coefficient from
0.80 to 0.88 when the root-mean sguare surface roughness was increased from 0.05 pum to 1.5 um. More recently,
Arkilic et al. [7,8,9] have measured flow rates in silicon micro-machined channels and extracted accommodation
coefficients ranging from 0.8 to 1.0.
Equations (7) and (8) can be combined and rearranged to give
u = 2-0L T, . C)
o H

At this stage it is convenient to recast the mean free path in equation (9) in terms of the non-dimensionalised
Knudsen number, Kn, which can be defined as the ratio of the mean free path, £, to the diameter of the sphere, D:

L
Kn==. 10
5 (10)
Consequently, equation (9) can be recast as
u, -2-0knD T . (11)
o H
The velocity boundary conditions along the walls of the confining pipe can thus be written as
UZEKHDTt and v=0 on _H (12
o 11 2

where u and v are the velocity components in the longitudinal (x) and radial (r) directions, respectively, and H is the
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diameter of the confining pipe. Similarly, the boundary conditions implemented on the surface of the microsphere
can be expressed as
_2-0KnD

t =a’ (13)
o

and u,=0 on X' +r

T

where u; is the tangential velocity component, u, is the normal velocity component and a is the radius of the sphere.
The localised velocity vector (u,u,) has to be transformed into the globa velocity vector (u,v) using the unit
tangential base vector of the surface.

The governing hydrodynamic equations were solved using THOR-2D — atwo-dimensional finite-volume Navier-
Stokes solver developed by the Computational Engineering Group at CLRC Daresbury Laboratory (Gu and Emerson
[17]). Since the flows investigated in the study had relatively low Mach numbers, compressibility effects were
ignored and the gas was assumed to be incompressible.

I nflow/Outflow Boundary Conditions

At the inflow boundary, a fully-developed slip-velocity profile was prescribed parallel to the longitudinal axis of
the pipe. The velocity profile for incompressible laminar flow can readily be obtained from the axial-direction
momentum equation, as detailed by Barber and Emerson [18]. The inflow boundary conditions can thus be written:

U 4% 2-0 KnU 2-0 Kn [0 H
=2ud-—+4 O d =0 a =+ ,0<sr<s— (14
u(r) uD g 5 H/D ﬁus 5 H/DE and v(r) X r > (14

where U is the mean velocity in the pipe and | is the longitudinal distance between the inflow boundary and the
centre of the sphere. Asan aside, in the limit of Kn - 0 (i.e. continuum flow conditions), equation (14) revertsto the
familiar no-dip (NS) velocity profile given by Hagen-Poiseuille pipe theory:

2]

u (r)=2UEL—4LD (15)
NS 0 H20O°

At the outlet, the axial gradients of the velocity components were assumed to be zero, i.e.

%:0 and ﬂ:0 a x =l ,Osrsi. (16)
ox 0X 2

RESULTSAND DISCUSSION

The numerica model was used to assess the drag experienced by a confined microsphere exposed to low
Reynolds number rarefied gas flows. For compatibility with previous simulations [19], the Reynolds number, Re,
was defined using the mean velocity in the pipe, T, and the radius of the sphere, a, asthe velocity and length scales:

Re="—% 17)

whilst the Knudsen number was defined using the diameter of the sphere as the characteristic length scale.
Following Liu et al. [19], the simulations considered extremely low Reynolds numbers corresponding to the
creeping flow conditions originally analysed by Stokes. The Knudsen number was varied from Kn = 0 (continuum
flow) to Kn = 10? (a frequently adopted upper bound for the slip-flow regime). In the absence of additional
information, the tangential momentum accommodation coefficient, o, was assumed to have a value of unity.
Blockage effects were studied by varying the ratio between the diameter of the confining pipe, H, and the
diameter of the sphere, D. The simulations involved arange of blockage ratios from H/D = 2 up to H/D = 40.

Continuum Flow Regime

The numerical model was validated in the continuum regime by comparing the computed drag on the sphere
against the numerical results presented by Liu et al. [19] and the analytical solution developed by Haberman and
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Sayre [20]. Unconfined creeping flow past a sphere was first analysed by Stokes who demonstrated that in the
absence of inertial forces, the total drag due to the flow of an unbounded incompressible Newtonian fluid could be
written as

Total drag =6TTpU a (18)

where U denotes the uniform velocity distribution infinitely far from the sphere. Non-dimensionalising the drag by
the dynamic pressure and the cross-sectional area of the sphere allows the drag coefficient, Cp, to be written as
_ Total drag _ 6TuU a _ 12p :E
° 1pU’ma’® ipu’m® Pa RE

(19)

where the Reynolds number, Re, is defined using the velocity of the unbounded fluid. The drag coefficient for an
unconfined sphere can thus be rearranged to give:
C, Re
12

In a similar manner, the drag coefficient for a confined sphere can be determined using an analogous equation to
that shown in (19), except that the dynamic pressure is defined in terms of the mean velocity in the pipe, U :

=1. (20)

Totd drag
Cho=———— . 21
° ipu®ma’ (21)

The drag coefficient can then be normalised using the procedure adopted by Liu et al. [19] to give

SR rhip) (22)

where F(H /D) denotes a function of blockage ratio. The above equation has obvious similarities with the
unconfined solution developed in equation (20), with the exception that the product of the drag coefficient and the
Reynolds number no longer collapses to a single value but instead depends upon the blockage ratio. Moreover, it is
important to note that the Reynolds number must be defined in terms of the average velocity in the pipe rather than
the unbounded velocity used in Stokes' unconfined solution.

Figure 1 presents the normalised drag predictions for a range of blockage ratios from H/D = 2 to H/D = 40 for a
Reynolds number, Re = 0.125 (as adopted by Liu et al. [19]). The results show that the sphere experiences
significant blockage effects for H/D < 10 with a very large increase in the drag coefficient being observed for
H/D < 5. The computed drag results presented by Liu et al. [19] for H/D < 5 are superimposed on Figure 1 for
comparison purposes. In the limit of H/D — oo, the normalised drag should converge asymptotically to the value
predicted by Stokes' unconfined solution. As the blockage ratio is increased, the average velocity striking the sphere
and contributing to the drag will approach the maximum (centreline) velocity in the pipe, 2U. The normalised drag
coefficient will therefore tend to avalue of 2 for large blockage ratios, i.e.

GRS s H/ID-w. (23)
12
Figure 1 clearly shows that the computed normalised drag coefficients tend to the theoretical asymptote presented in

equation (23).

A further validation of the numerical scheme was achieved using the analytical drag formula presented by
Haberman and Sayre [20] who investigated axisymmetric flow past a confined sphere using an algebraic stream
function approach. Normalising the equation presented by Haberman and Sayre yields

2 6
O
Czse =2 %5— -0. 20217—5 Dl 2. 1050— +2. 0865 —1 7068— +0. 72603% (24)
O

The excellent agreement between the numerical predictions and the analytical solution over the entire range of
blockage ratios indicates that the computational scheme provides an accurate representation of the flow past a
confined sphere and demonstrates the accuracy of the numerical drag computations.
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FIGURE 1. Variation of normalised total drag coefficient on a confined sphere as a function of blockage ratio in the continuum
flow regime (Kn=0).

Slip-Flow Regime

The second part of the study investigated the drag experienced by the sphere in the slip-flow regime. Simulations
were conducted using Reynolds numbers in the range, 10 < Re < 1 whilst the Knudsen number was varied up to
Kn = 10" (the upper limit of the slip-flow regime). A fully-developed slip-velocity profile (equation 14) was
prescribed at the inflow boundary to simulate an infinitely long pipe upstream of the computational domain and the
fluid was again assumed to be incompressible on account of the low Mach numbers found in most microfluidic
devices. Additional numerical simulations accounting for compressibility showed very little difference in the
predicted drag on the sphere, justifying the low Mach number simplification.

In an incompressible Newtonian fluid, it can be shown that the normal stress component must vanish along any
rigid no-dip impermeable boundary (Richardson [21]). In contrast, the tangential dlip-velocity boundary condition in
rarefied gas flows generates a non-zero normal stress component which produces an important additional drag force
on the sphere.

Normalised drag results for the least confined blockage ratio (H/D = 40) provide a useful validation of the
hydrodynamic code since the results should approach the asymptotic limit of low Reynolds number slip flow past an
unconfined sphere. Barber and Emerson [22] have previously described an extension of Stokes' analytical solution
for creeping flow past a sphere which accounts for non-continuum effects. The analysis follows the methodology
originally proposed by Basset [16] and provides expressions for the total drag and the individual drag components
experienced by an unconfined sphere in the dlip-flow regime. The total drag can be shown to be given by

2-0 -
Total drag = 6 TtpU aﬁ+4 . Knﬁ/ml +62 "Krﬁ (25)
o
whilst the individual drag components are given by
Skin-friction drag = 4 Tt pU a/ﬁl +62°0 Knﬁ , (26)
o
Normal stress drag = 41tpU a 22 knbl/H1 +62 =%k 27
orm ressrag—nuaHdonH or@ @7
and
2-0. [ 2-0
Pr&ssuredrag=2nuUaﬁ+4 . Kn Bl+6 5 Krﬁ. (28)
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FIGURE 2. Variation of normalised drag coefficients on a confined sphere in the dlip-flow regime as a function of Knudsen
number (H/D = 40).

Figure 2 illustrates the variation in normalised drag components on the sphere as a function of Knudsen number
for a blockage ratio of H/D = 40. It should be noted than in normalising the analytical drag equations (25-28), the
unconfined drag components have been multiplied by afactor of 2 to account for the parabolic velocity profile in the
pipe. Small discrepancies can be seen in the normal stress drag predictions which in turn affect the total drag. This
can be confirmed by noting that the numerical model fails to predict a zero normal stress drag component in the
continuum flow regime (Kn = 0). Previous numerical studies by Beskok and Karniadakis [23] on rarefied gas flows
past circular cylinders have confirmed the difficulty in obtaining accurate estimates of the normal stress distribution.
Nevertheless, the general agreement between the predictions and the unconfined analytical solution provides an
important validation test in the slip-flow regime.

Finally, Figure 3 illustrates the variation in normalised total drag coefficient with Knudsen number for three
separate blockage ratios. In the dip-flow regime, the total drag on the sphere decreases as the Knudsen number is
increased. More importantly, the results indicate that the drag amplification effect caused by the blockage ratio
becomes less significant as rarefaction starts to influence the flow. At the upper limit of the dlip-flow regime
(Kn = 10™), blockage amplification effects are reduced by amost 50% for a pipe-sphere geometry of H/D = 2. It
should be noted that the tangential momentum accommaodation coefficient, o, is assumed to have a value of unity in
the present simulations. However, a sub-unity accommodation coefficient would further reduce the blockage
amplification effect.

12

C,Re/12

A = T =

0.00 0.02 0.04 0.06 0.08 0.10
Kn

FIGURE 3. Variation of normalised total drag coefficient on a confined sphere in the slip-flow regime as a function of Knudsen
number.
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CONCLUSIONS

Low Reynolds number rarefied flow past a confined microsphere has been investigated using a specially adapted

two-dimensional finite-volume Navier-Stokes solver. The hydrodynamic model is applicable to the continuum and
slip-flow regimes, and is valid for Knudsen numbers in the range 0 < Kn < 10™%. At low Reynolds numbers in the
continuum regime, the results show that the product of the drag coefficient and the Reynolds number collapses to a
single value dependent upon the blockage ratio, H/D. The results also indicate that blockage effects are extremely
important for continuum flows, with very large increases in the drag being observed for H/D < 5. In the slip-flow
regime, the total drag on the sphere decreases as the Knudsen number is increased. More importantly, the results
suggest that the drag amplification effect caused by blockage ratio becomes less significant as rarefaction starts to
influence the flow. This may have important consequences for the design of microfluidic components which operate
over awide range of Knudsen numbers.
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