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The conventional Navier-Stokes-Fourier equations with no-slip boundary conditions are unable to capture
the phenomenon of gas thermal transpiration. While kinetic approaches such as the direct simulation Monte
Carlo method and direct solution of the Boltzmann equation can predict thermal transpiration, these methods
are often beyond the reach of current computer technology, especially for complex three-dimensional flows.
We present a computationally efficient nonequilibrium thermal lattice Boltzmann model for simulating
temperature-gradient-induced flows. The good agreement between our model and kinetic approaches demon-
strates the capabilities of the proposed lattice Boltzmann method.
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I. INTRODUCTION

In 1879, Reynolds discovered that a gas will move along
a solid surface due to inequalities of temperature and called
the phenomenon thermal transpiration �1�. In the same year,
Maxwell �2� independently developed a theory to explain
this effect. The phenomenon of thermal transpiration �or
thermal creep �3�� has recently been used to develop a
MEMS-based multistage Knudsen compressor �4,5� where
the gas moves from a cold chamber to a hot chamber and
builds up a pressure difference across the compressor ele-
ment. Thermal creep occurs in the opposite direction to the
tangential heat flux; i.e., the flow is in the direction of in-
creasing temperature.

The physical explanation of thermal creep has been pre-
sented by Sone �6�. It is assumed that equal numbers of
molecules arrive at the wall from the hot and cold regions.
Molecules arriving from the hot region will have, on aver-
age, a higher velocity than those arriving from the cold re-
gion. Since the molecules are reflected diffusively at the
wall, the resultant force on the wall due to the molecular
collisions acts towards the cold region. An equal and oppo-
site force is felt by the gas molecules, giving rise to a flow
towards the hot region. Once the fluid starts to creep along
the wall, the moving fluid layer interacts with the stagnant
fluid layers adjacent to it, inducing a boundary layer.

Unfortunately, the flow within a Knudsen compressor is
very complex, involving internal recirculation, vortices at the
capillary exit, and reverse thermal creep flow, leading to
lower than expected pressure ratios across the compressor.
Although kinetic approaches such as the direct simulation
Monte Carlo �DSMC� method and direct solution of the
Boltzmann equation can predict thermal transpiration, these

methods are only able to simulate a section of the device and
cannot be used to optimize the geometry of the entire com-
pressor �5�. Moreover, kinetic methods are still beyond the
reach of current computer technology for large-scale three-
dimensional simulations. In contrast, continuum-based meth-
ods such as the Navier-Stokes-Fourier �NSF� equations are
computationally efficient, but are unable to accurately cap-
ture thermal transpiration phenomena beyond the slip-flow
regime. Here, we report a nonequilibrium thermal lattice
Boltzmann �LB� model which can satisfy the twin demands
of computational efficiency and numerical accuracy for
simulating rarefied gas flows in complex, industrially rel-
evant geometries. General information on the LB method can
be found in the literature—e.g., �7,8�.

II. NONEQUILIBRIUM THERMAL LATTICE
BOLTZMANN MODEL

Conventional LB models are unable to capture nonlinear
constitutive behavior close to a solid surface since they only
retain velocity terms up to second order in the Hermite ex-
pansion of the equilibrium distribution function, as reported
by Shan et al. �9�. However, this is not sufficient even for
isothermal flows and it is usually necessary to retain terms
up to fourth order in the Hermite expansion. Moreover, to
describe nonequilibrium physics beyond the level of the NSF
equations, it is necessary to consider terms up to fifth order
in the Hermite expansion. Inevitably, this leads to a large
number of discrete velocities, which increases the computa-
tional cost and may give rise to numerical stability problems.

To overcome these difficulties, we make use of the differ-
ent relaxation rates for momentum and energy, and propose a
different energy density distribution function g to describe
the evolution of the temperature field, as suggested by He et
al. �10� for no-velocity-slip and no-temperature-jump hydro-
dynamics. Using this approach, it is only necessary to retain
up to the third-order moments of the energy density distribu-
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tion function in order to describe heat fluxes beyond the NSF
level. As a consequence, our previously reported nonequilib-
rium isothermal lattice Boltzmann model �11� should be suf-
ficiently accurate to describe the evolution of the velocity
field. In the present approach, as well as solving the evolu-
tion equation for the particle number density, we solve an
additional equation for the energy density. The model relates
the energy density distribution function to the number den-
sity distribution function via a flexible Prandtl number.

The evolution equation for the velocity field has previ-
ously been described by Zhang et al. �12�:

fk�x + ek�t,t + �t� − fk�x,t�

= −
1

�
�fk�x,t� − fk

eq�x,t�� + �t
�eki − ui�Fi

cs
2�

fk
eq�x,t� , �1�

where fk is the distribution function for the number density at
position x and time t, fk

eq is the corresponding distribution
function at equilibrium, eki is the lattice velocity, ui is the
macroscopic velocity, cs is the sound speed of the lattice
fluid, � is the density, � is the nondimensional relaxation time
for the number density distribution function, and �t is the
time step. The kinematic viscosity is calculated from �= ��
−0.5�cs

2�t. Following He et al. �10�, the energy density evo-
lution equation is given by

gk�x + ek�t,t + �t� − gk�x,t� = −
1

�t
�gk�x,t� − gk

eq�x,t�� ,

�2�

where gk is the distribution function for the energy density at
position x and time t, gk

eq is the corresponding distribution
function at equilibrium, and �t is the nondimensional relax-
ation time for the energy density distribution function. The
thermal diffusivity is given by �= ��t−0.5�cs

2�t, and the
Prandtl number is determined from Pr= ��−0.5� / ��t−0.5�
�12,13�. Viscous heating effects have been neglected in the
present model since they are usually insignificant in low-
speed gas flows in micro- and nanodevices.

Following the spirit of rational number approximation
�14�, we have developed an isothermal lattice Boltzmann
model beyond the level of the Navier-Stokes equations �11�.
For a two-dimensional, 13-velocity lattice model �D2Q13�
�11�, the lattice velocities are given by
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where c=	2RT and R is the gas constant. The equilibrium
distribution function can be expressed as
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The sound speed of the lattice fluid is given by cs
2=c2 /2. The

same D2Q13 lattice model is used to solve the evolution
equation for the energy density distribution function. At
equilibrium, the energy density is given by gk

eq=	fk
eq, where

	=DRT /2 and D is the number of physical dimensions �12�.
As discussed in our previous work �15�, gas-surface inter-

actions have a significant impact on the mean free path of the
gas in the near wall region and these interactions need to be
taken into account to capture the flow characteristics in the
Knudsen layer. Following previous work which accounts for
the effect of the wall �15–17� and considering how tempera-
ture relates to viscosity and density, the local relaxation time
in the thermal LB model can be determined as follows:

� =




0

�0

�
� T

T0
��−0.5	�

8

c

cs
Kn0NL +

1

2
, �5�

where NL=L /�y is the number of lattices over the character-
istic length L, �y is the lattice spacing, �0 is the density at the
reference temperature T0, and Kn0 is the Knudsen number
based on the mean free path 
0 evaluated from 
0
= ��0 / p0�	�RT0 /2, where p0 is the pressure and �0 is the
dynamic viscosity. The coefficient � depends on the molecu-
lar interaction model, with �=0.5 for hard-sphere interac-
tions and �=1 for Maxwellian interactions. The local mean
free path ratio 
 /
0 can be solved separately depending on
the specific geometric conditions �15–17�. The thermal relax-
ation time is determined from �t= ��−0.5� /Pr+0.5.

In this work, a kinetic boundary condition with a diffuse
scattering kernel is employed. The unknown reflected distri-
bution function fk on the wall can be determined from the
incident distribution function fk� as follows �18�:

fk�x,t + �t� =

�ek�−uw�·n�0

��ek� − uw� · n�fk��x,t + �t�


�ek−uw�·n
0
��ek − uw� · n�fk

eq�x,�w,uw�

�fk
eq�x,�w,uw� , �6�

where uw and �w are the velocity and density at the wall,
respectively, and n is the unit normal. The above Maxwellian
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diffuse reflection at the wall assumes that the reflected par-
ticles are in thermal equilibrium with the wall. Since the
discrete velocity amplitude in our D2Q13 model can be 2c,
computational fluid particles that are two lattice spacings
away from the wall may also hit the surface. This differs
from standard LB models where only fluid particles at the
nearest-neighboring grid points can interact with the wall.
However, reflected fluid particles will only be at the nearest
grid points to the wall and their velocity distribution is given
by Eq. �6�. The reflected energy density distribution can
therefore be related to the reflected number density distribu-
tion as follows �12�:

gk =
DR

2
Twfk, �7�

where Tw is the temperature of the wall.

III. RESULTS AND DISCUSSION

First, we apply our LB model to rarefied Fourier flow
between two parallel plates separated by a distance L. In the
simulations, the temperatures of the two plates are main-
tained at T1 and T2, respectively, with T2
T1. The mean
temperature �T1+T2� /2 is used as a reference temperature T0,
and the Prandtl number is fixed at 0.68 for consistency with
the DSMC data presented by Gallis et al. �19�. The nondi-
mensional temperature is defined as T*= �T−T1� / �T2−T1�.
Figure 1 clearly shows that the temperature jump at the wall
increases with Knudsen number. At low Kn, the temperature
profile is almost linear, but becomes increasingly nonlinear at
higher Knudsen numbers. It can be seen that the LB model is
in good agreement with the DSMC data in both the slip and
transition regimes.

The second test case considers thermal creep flow be-
tween two parallel plates separated by a distance, L. Figure 2
shows the normalized velocity profiles across the channel at
various Knudsen numbers and compares the results from our
lattice Boltzmann model against the data obtained by
Ohwada et al. �20� using a direct solution of the linearized
Boltzmann equation. It can be seen that our LB model is in
very good agreement with the solution from the linearized
Boltzmann equation for Knudsen numbers up to Kn=0.677,

FIG. 1. Nondimensional temperature profiles for rarefied Fou-
rier flow between two parallel plates. The symbols represent the
DSMC data presented by Gallis et al. �19�.

(a) (b)

(c) (d)

FIG. 2. Velocity profiles for
thermal creep flow between two
parallel plates at �a� Kn0=0.1128,
�b� Kn0=0.2257, �c� Kn0=0.677,
and �d� Kn0=1.128. The symbols
represent the solution of the lin-
earized Boltzmann equation pre-
sented by Owhada et al. �20�, and
the velocities have been normal-
ized by the reference velocity u0

=�	2RT0. �T0 is the reference
temperature and � is a nondimen-
sional temperature gradient—i.e.,
��T /T0� /��x /L�, where x is the
distance in the flow direction. The
chosen temperature gradient must
be small to ensure consistency
with the solution of the linearized
Boltzmann equation.�
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indicating that the proposed model can capture thermal tran-
spiration phenomena in the slip flow regime and part of the
transition regime. However, discrepancies between our pre-
dictions and the linearized Boltzmann solution become sig-
nificant when the Knudsen number is greater than unity. The
present work suggests that our proposed lattice Boltzmann
model is valid for Knudsen numbers up to Kn�O�1�. To the
best of the authors’ knowledge, this is the first successful
attempt at modeling thermal transpiration using a lattice
Boltzmann approach. In addition, the computational effi-
ciency of the proposed method is comparable to a Navier-
Stokes solver, making it a practical simulation tool for non-
equilibrium thermal flows in industrially-relevant
geometries.

IV. CONCLUSIONS

A thermal lattice Boltzmann model incorporating two dis-
tribution functions has been proposed for modeling thermally
induced flows in the slip and transition regimes. The model
has been shown to give good agreement with data obtained

by the direct simulation Monte Carlo method and direct so-
lution of the Boltzmann equation for Knudsen numbers up to
Kn�O�1�. The main advantages of the present LB method
include the small number of discrete velocities, its simple
algorithm, and its numerical efficiency compared to kinetic
approaches. In conclusion, the thermal lattice Boltzmann
model provides an efficient and cost-effective modeling tool
for nonequilibrium gas flows in micro- and nanofluidic de-
vices.
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