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Inverted velocity profiles in rarefied cylindrical Couette gas flow
and the impact of the accommodation coefficient

Sun Yuhong, Robert W. Barber, and David R. Emersona!

Centre for Microfluidics and Microsystems Modelling, CCLRC Daresbury Laboratory,
Warrington WA4 4AD, United Kingdom

sReceived 14 June 2004; accepted 18 January 2005; published online 10 March 2005d

Cylindrical Couette gas flow in the noncontinuum regime has been investigated using the boundary
treatment derived from Maxwell’s slip-flow model. It is shown that the tangential momentum
accommodation coefficient plays an important role in determining the predicted velocity profile. The
present analysis is in close agreement with previous analytical studies and shows good qualitative
agreement with available direct simulation Monte Carlo data. The results predict the presence of an
inverted velocity profile for the case where the inner cylinder rotates and the outer cylinder is
stationary. However, our analysis further shows that the phenomenon of velocity inversion is only
dependent on the accommodation coefficient of the outer cylinder. From the analysis, we derive
specific criteria for the accommodation coefficient of the outer cylinder under whichsid no velocity
inversion will take place,sii d a partially inverted velocity profile will be observed, andsiii d a fully
inverted velocity profile will be present. In contrast, when the outer cylinder rotates and the inner
cylinder is stationary, it is shown that velocity inversion does not occur. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1868034g
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I. INTRODUCTION

Couette flow between two concentric rotating cylind
is a classical fluid dynamics problem discussed in many
books. However, recent analytical and numerical stu
have demonstrated that under certain conditions of rar
tion, the flow between concentric cylinders can exhibit c
pletely nonintuitive behavior. For example, in the case
stationary outer cylinder and a rotating inner cylinder,
velocity profile can become “inverted” with the velocityin-
creasingfrom the inner rotating wall to the outer station
wall. The phenomenon of velocity inversion was first p
dicted by Einzel, Panzer, and LiusEPLd1 who developed
generalized slip-boundary condition for incompressible
over curved or rough surfaces. EPL did not specifically c
sider a rarefied gas, and instead, analyzed the flow by in
ing the concept of aslip length. Applying their generalize
slip-boundary condition to cylindrical Couette flow, EPL p
dicted that the velocity profile would become inverted
large values of slip length.

Tibbset al.2 subsequently recast the EPL formulation
that it was directly applicable to a rarefied gas. This
achieved by defining the slip length,z0=as2/s−1dl where
l is the mean-free path of the gas molecules,a<1.15 ands
is the tangential momentum accommodation coeffic
sTMACd which can vary from zerosfor specular reflectiond
up to unity sfor complete or diffuse accommodationd. Tibbs
et al. considered argon under STP conditionssl=6.25
310−8 md for a stationary outer cylinder and an inner cy
der rotating at an angular velocityv of 5.173108 rad/sscor-
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responding to a Mach number of 0.3d. They presented velo
ity profiles for a range of accommodation coefficients
found that the velocity inversion process only occurre
small values of TMAC. The results from their direct simu
tion Monte CarlosDSMCd approach showed that the veloc
profiles predicted by the EPL formulation were generall
good agreement with their DSMC data. Moreover,
DSMC simulations showed that there was less than a
variation in density throughout the flow domain, sugges
that compressibility effects may not be important for
particular problem.

Cylindrical Couette flow has also been studied by A
et al.3 using several alternative approaches: a system
asymptotic analytical solution at small Knudsen numbe
direct simulation Monte Carlo method, and a direct num
cal solution of the Boltzmann equation using a finite dif
ence method based on the Bhatnagar–Gross–KrooksBGKd
approximation. The results again confirmed the existen
an inverted velocity profile for small values of accommo
tion coefficient and also showed that the occurrence o
locity inversion could be related to a critical accommoda
coefficient. It is well known that the near-continuum M
well slip velocity becomes infinitely large when the acco
modation coefficient approaches zero. However, for Co
flow, Aoki et al. developed a rigorous asymptotic analysi
the Boltzmann equation to obtain the flow properties at s
Knudsen numbersKnd and small accommodation coefficie
sof the order of Knd. They proved that Maxwell’s diffuse
specular treatment was valid for smalls and that the fluid
dynamic system obtained was equivalent to the compres
Navier–Stokes equations. Moreover, Aokiet al. showed tha
if the rotation speed was smallsbut much greater than Knd,
the system obtained was equivalent to the incompres

Navier–Stokes equations and could be used to derive an ana-

© 2005 American Institute of Physics2-1
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lytical solution. The compressible solution obtained by A
et al.3 was in good agreement with their DSMC data up
Kn=0.1. Furthermore, they found no appreciable differe
between their compressible and incompressible solution
to a Mach number of 0.5, adding further support to the fi
ings of Tibbset al.2

The present investigation provides an independent
sessment of the velocity inversion process in cylindr
Couette flows. Instead of implementing the EPL slip-len
approach, the current analysis uses Maxwell’s4 slip-boundary
condition to define the velocity discontinuity between the
and the solid walls. Two fundamental cylindrical Coue
flow cases are considered: a stationary outer cylinder a
rotating inner cylinderscase Id; and, second, a stationary
ner cylinder and a rotating outer cylinderscase IId. Previous
analytical studies1,2,5,6 have generally assumed that the
commodation coefficients at the inner and outer cylin
walls are identical. In contrast, the present study cons
the influence of both the inner and outer accommoda
coefficients. The paper then defines limiting analytical c
ria that can be used to predict whether an inverted, par
inverted or normal velocity profile will occur.

II. PROBLEM FORMULATION

The present investigation considers isothermal, rar
Couette flow between two concentric rotating cylinders.
inner and outer cylinders have radiiR1 andR2 and rotate a
angular velocitiesv1 and v2, respectively. In a cylindrica
polar coordinatesr ,ud reference frame, the circumferent
momentum expression of the incompressible Navier–St
equations can be written for rotating Couette flow
sSchlichting7d

d2uu

dr2 +
d

dr
Suu

r
D = 0, s1d

whereuu is the tangential velocity component andr is the
radius. For low Knudsen numbers and moderate Mach n
bers, the assumption that the flow is incompressibl
reasonable.2,3 Moreover, at Kn=0.5, the DSMC results
Tibbs et al.2 showed that temperature variations for
problem were less than 3% over the entire domain, fu
suggesting that the isothermal assumption is also reaso

Under rarefied conditions, a slip-velocity boundary c
dition has to be applied at the inner and outer rotating w
In the absence of thermal slip, Maxwell’s viscous s
velocity boundary condition can be written8,9 as

uslip = ugas− uwall = ± a
s2 − sd

s

l

m
utuwall, s2d

where m is the viscosity andt is the shear stress. If th
mean-free path is defined asl=sm /PdÎpRT/2, as in Max-
well’s original analysis, the value ofa is unity. However
more rigorous kinetic analyses of the Boltzmann equatio
planar flows10–12 have subsequently shown that the valu
a for fully diffusive reflection, based on Maxwell’s definitio
of the mean-free path, is very close to 1.01632/Îp<1.15.
The “exact” leading coefficient of 1.016 191 was obtai

10
numerically by Loyalkaet al. using a BGK model of the
p

-

a

s

s

-

r
le.

.

Boltzmann equation whereas Wakabayashiet al.11 solved the
linearized Boltzmann equation and obtained a value
0.98737. In practice,a has been shown to depend upon
accommodation coefficient10–12but for ease of analysis in t
present study,a is assumed to be unity in common w
many experimental and numerical hydrodyna
approaches.13–15

For rotating Couette flow, Eq.s2d can be written in
cylindrical-polar form as

uusgasd − uuswalld = U ±
s2 − sd

s
lSduu

dr
−

uu

r
DU

wall
. s3d

The termuu / r on the right hand side of Eq.s3d arises from
the fact that the slip velocity is directly proportional to
wall shear stress. Unfortunately, this term is oftensalthough
not always3,8,9d neglected when analyzing slip flows on n
planar surfaces. Application of Eq.s3d to the inner and oute
cylinder walls leads to

uuuur=R1
= Uv1R1 +

s2 − s1d
s1

lSduu

dr
−

uu

r
DU

r=R1

s4d

and

uuuur=R2
= Uv2R2 −

s2 − s2d
s2

lSduu

dr
−

uu

r
DU

r=R2

. s5d

Following the notation adopted by Einzelet al.,1 the
general solution for the velocity profile can be written a

uusrd = ar +
b

r
, s6d

where

a =
Av1 − Bv2

A − B
, b =

v1 − v2

B − A
. s7d

The parametersA andB can be derived as

A =
1

R2
2S1 −

s2 − s2d
s2

2l

R2
D, B =

1

R1
2S1 +

s2 − s1d
s1

2l

R1
D .

s8d

As previously discussed, two cylindrical Couette fl
problems are considered in the present study. For case I
a stationary outer cylindersv2=0d and a rotating inner cy
inder, Eq.s6d can be written in nondimensional form as

uu
* =

uu

v1R1
=

A

sA − Bd
r

R1
+

1

sB − AdR1r

=
1

sA − BdR1
SAr −

1

r
D , s9d

whereas for case II, with a stationary inner cylindersv1
=0d and a rotating outer cylinder, Eq.s6d becomes
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uu
* =

uu

v2R2
=

B

sB − Ad
r

R2
+

1

sA − BdR2r

=
1

sB − AdR2
SBr −

1

r
D . s10d

In the case of continuum flow, the coefficientsA andB in Eq.
s8d simplify to A=1/R2

2 andB=1/R1
2. The velocity profile fo

continuum flow can then be expressed in terms of the rat
the cylinder radii,x=R1/R2:

case I, uusrd =
x2

sx2 − 1d
v1r +

R1
2

s1 − x2d
v1

r
, s11d

case II, uusrd =
1

s1 − x2d
v2r +

x2R2
2

sx2 − 1d
v2

r
. s12d

Although Eqs.s11d and s12d are similar in form, it is wel
known that for continuum cylindrical Couette flow, the
locity profile varies strongly with the ratioR1/R2 for case
while the velocity profile is almost independent of the r
for case IIsSchlichting7d.

III. THE PHENOMENON OF VELOCITY INVERSION

To illustrate the phenomenon of velocity inversion,
consider case Isinner cylinder rotatingd. Following Tibbset
al.,2 the radii of the inner and outer cylinders are chose
be 3l and 5l, respectively, and the accommodation coe
cients are assumed to be equal at the inner and outer
ders. Figure 1sad presents a comparison between the ana
cal solution and the DSMC data obtained by Tibbset al.2

Exact quantitative agreement between the DSMC result
the analytical model is not expected, since the separ
distance between the cylinder walls is only two molec
mean-free paths, implying a Knudsen number, Kn=l / sR2

−R1d of 0.5. At this Knudsen number, the Navier–Sto
equations are beyond the limit of their theoretical applica
ity. Nevertheless, the results show that the DSMC data
the analytical formulation follow the same basic trends
predict an inverted velocity profile for an accommoda
coefficient of 0.1.

In contrast, Fig. 1sbd presents a comparison between
DSMC data and an incorrect boundary treatment where
uu / r term in Eq.s3d has been neglected. Failure to acco
for this component leads to important differences in the
dicted velocity profiles, with essential information being l
It can be seen that the incorrect analytical solution is un
to predict the velocity inversion phenomenon, clearly h
lighting the importance of including theuu / r term.

It is interesting to note that, for the specific case of
accommodation coefficients of the inner and outer cylin
having the same value, the family of velocity profiles in F
1sad all pass through a common point that isindependent o
the value of the accommodation coefficient. The location o
the point can be derived analytically using Eq.s9d and is

given by
f

-

d
n

d

e

r =ÎR1
3 + R2

3

R1 + R2
. s13d

For the problem under consideration, the location is give
r /l=Î19 and the nondimensional velocity has the v
0.258. It is evident that the DSMC data also show the s
phenomenon although the location and value is slightly
ferent.

IV. VELOCITY INVERSION CRITERIA

In the following sections, we identify the limiting an
lytical criteria that will predict whether a normal or an
verted velocity profile will occur. We will also introduce t
concept of a “partially inverted” velocity profile that, for ca
I, means the velocity will initially decrease away from
inner cylinder and then increase towards the outer cylin
The impact of the TMAC at the inner and outer walls w

FIG. 1. Nondimensional velocity vs radial distance fors1=s2=s. sad Cor-
rect solution using the shear stress boundary treatment defined in Eq.s3d. sbd
Incorrect solution obtained by neglecting theuu / r term in Eq.s3d.
also be considered.
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A. Investigation of case I

Equations9d shows that the velocity is inversely prop
tional to sA−Bd, with the definition ofA andB given by Eq
s8d. The velocity gradient can now be used as a criterio
judge whether the function is increasing or decreasing
radial distancer. For clarity, the superscript * denoting
nondimensional velocity is omitted from the subsequ
analysis. The gradient is therefore given by

duu

dr
=

1

sA − BdR1
SA +

1

r2D . s14d

From Eq. s8d, we can obtain the following expression
sA−Bd:

A − B = −
1

R1
2R2

2FsR2
2 − R1

2d + R1
2s2 − s2d

s2

2l

R2

+ R2
2s2 − s1d

s1

2l

R1
G . s15d

SinceR1,R2, the termsA−Bd is always negative. For case
a noninverted velocity profile means that the velocity
decrease monotonically from the inner to the outer cylin
This implies duu /dr,0 for the whole range,R1ø r øR2.
Conversely, ifduu /dr.0 throughout the rangeR1ø r øR2, a
fully inverted velocity profile will exist. From Eq.s14d, this
requirement can only be satisfied whenA+r−2,0. We know
that A+R2

−2øA+r−2øA+R1
−2, and therefore ifA+R1

−2,0 is
true, thenA+r−2,0 will always be satisfied. This requir
ment yields

A +
1

R1
2 =

1

R1
2R2

2FR1
2 + R2

2 −
s2 − s2d

s2

2lR1
2

R2
G , 0, s16d

which holds if

s2 , 2S1 +
sR1

2 + R2
2dR2

2lR1
2 D−1

. s17d

If Eq. s17d is satisfied, a fully inverted velocity profi
will always be observed and this phenomenon isindependen
of the value of the accommodation coefficient at the in
cylinder. For the specific case when the inner and outer
inder radii are 3l and 5l, respectively, Eq.s17d provides an
upper bound for a fully inverted velocity profile, given
s2,9/47<0.1915. This is illustrated in Fig. 2, which al
shows that the accommodation coefficients at the inner
outer cylinders have an opposite effect on the magnitud
the inverted velocity, i.e., ass2 is increaseduu decreases, b
ass1 is increaseduu increases.

If the condition duu /dr,0 holds throughoutR1ø r
øR2, the velocity will be a decreasing function ofr and no
inverted velocity profile is observed. This is obtained w
A+r−2.0. Again, using the fact thatA+R2

−2øA+r−2øA
+R1

−2, then if A+R2
−2.0 is valid, A+r−2.0 will always be

satisfied. We therefore need to satisfy the following exp

sion for no inverted velocity profile to occur:
.

-

d
f

-

A +
1

R2
2 =

1

R2
2F2 −

s2 − s2d
s2

2l

R2
G . 0. s18d

The condition for Eq.s18d to hold is

s2 . 2S1 +
R2

l
D−1

. s19d

For the current case, the limiting value given by Eq.s19d
is s2.1/3. Figure 3 shows that if the accommodation c
ficient at the outer wall is greater than 1/3, the velocity
file always decreases monotonically, even for very small
ues of the inner wall accommodation coefficient. It is a
observed that increasing the accommodation coefficie
the inner wall causes the velocity to increase.

The final condition that needs to be considered is

FIG. 2. Nondimensional velocity profiles when the accommodation c
cient at the stationary outer cylinder is less than 9/47.
caseduu /dr=0. When this situation occurs, it implies
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A +
1

r2 = 0. s20d

Substituting forA from Eq. s8d into Eq. s20d gives the fol-
lowing solution:

r* =Î R2
2

s2 − s2d
s2

2l

R2
− 1

. s21d

For Eq. s21d to have a real root, the denominator must
greater than zero. However, to ensurer* ,R2 the denomina
tor must be greater than unity. We therefore require tha

s2 , 2S1 +
R2

l
D−1

. s22d

The second derivative of velocity at the pointr* indicates
whether the velocity has a maximum or minimum va

FIG. 3. Nondimensional velocity profiles when the accommodation co
cient at the stationary outer cylinder is greater than 1/3.
Using Eq.s14d, the second derivative is
d2uu

dr2 =
2

sB − AdR1r
3 . s23d

From the previous discussion, we know thatB−A.0 and
therefore Eq.s23d is always greater than zero, which impl
that the velocity atr =r* is a minimum. Considering the pr
vious two situations where the velocity is simply increas
or decreasing, it is evident that apartially invertedvelocity
profile will occur when the accommodation coefficient at
outer cylinder lies within the range

2S1 +
sR1

2 + R2
2dR2

2lR1
2 D−1

, s2 , 2S1 +
R2

l
D−1

. s24d

Figure 4 illustrates partially inverted velocity profiles
different combinations of accommodation coefficient. Fig
4sad shows the case fors1 fixed at 1.0 ands2 varying be-
tween the previously defined limits of 9/47 and 1/3. It
be seen that the velocity minimum moves towards the o
cylinder ass2 increases. In contrast, Fig. 4sbd shows that th
occurrence of a partially inverted velocity profile does

FIG. 4. Nondimensional velocity profiles when the accommodation c
cient at the stationary outer cylinder lies between 9/47 and 1/3.
depend on the accommodation coefficient at the inner wall.
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For the specific case whens2=0.25, the location of the ve
locity minimum can be obtained from Eq.s21d and is given
by r* /l=5Î5/3. If the value ofs2 is fixed, the location o
the velocity minimum is independent ofs1.

Maxwell16 predicted that when the accommodation
efficients at both walls approached zerostotal specular re
flectiond, the gas would rotate as a solid body, which imp
uu~ r. To demonstrate this phenomenon, Eq.s9d can be re
written in the following format:

uu = v1rS1 −
s2 − s2d

s2

2l

R2
−

R2
2

r2 DFS1 −
s2 − s2d

s2

2l

R2
D

−
R2

2

R1
2S1 +

s2 − s1d
s1

2l

R1
DG−1

. s25d

When s1 and s2 approach zero at the same rate, i.e.,s1

=s2→0, uu has the limit

lim
s1=s2→0

uu = v1rS1 +
R2

3

R1
3D−1

. s26d

The current model is therefore in full agreement with M
well’s original prediction. However, Aokiet al.3 have furthe
shown that when the accommodation coefficients appr
zero such that the ratioxA=s2/s1 remains constant, the lim
iting value for the velocityuu will depend upon the ratioxA

as follows:

lim
s2=xAs1→0

uu = v1rS1 + xA

R2
3

R1
3D−1

. s27d

B. Investigation of case II

In case II, the inner cylinder is at rest while the ou
cylinder rotates at angular speedv2. The velocity gradien
can be derived from Eq.s10d as

duu

dr
=

1

sB − AdR2
SB +

1

r2D . s28d

From Eq. s8d we know thatB.0 and from Eq.s15d, sB
−Ad.0, and therefore Eq.s28d will always be positive. Thi
implies the velocity is an increasing function of radius
this feature is independent of both inner and outer accom
dation coefficients. Hence, for case II, no inverted velo
profile will be observed. Figure 5sad shows the case whens2

is fixed at 1.0 whiles1 is varied whereas Fig. 5sbd shows the
opposite case whens1 is fixed at 1.0 ands2 is varied. It can
be observed thats2 has a greater impact on the veloc
profile thans1.

V. CONCLUSIONS

The paper has presented an analytical evaluation o
efied Couette flow between two concentric rotating cy
ders. The Navier–Stokes equations, with boundary co
tions derived from Maxwell’s slip-flow model, were adap
to take into account the impact of a curved surface.
results are in close agreement with previous analytical
tions and in good qualitative agreement with availa

DSMC simulations. As the DSMC data show little variation
h

-

-

-

-

in density and temperature, the discrepancy between the
lytical model and the DSMC solution can be attributed to
relatively high Knudsen number and the neglect of
Knudsen layer effects in the Navier–Stokes formulatio
has been shown that when the inner cylinder rotates an
outer cylinder is at rest, the phenomenon of velocity in
sion depends solely on the accommodation coefficient o
stationary outer cylinder. The present analysis has iden
the criteria that determine whether the velocity profile
haves normally or undergoes full or partial inversion. W
the accommodation coefficient of the inner and outer c
ders have the same value, all velocity profiles pass throu
common point whose location is independent of the valu
the accommodation coefficient. For the case where the
cylinder is at rest and the outer cylinder rotates, it has
shown that an inverted velocity profile will never occur.
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