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Inverted velocity profiles in rarefied cylindrical Couette gas flow
and the impact of the accommodation coefficient
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Cylindrical Couette gas flow in the noncontinuum regime has been investigated using the boundary
treatment derived from Maxwell’'s slip-flow model. It is shown that the tangential momentum
accommodation coefficient plays an important role in determining the predicted velocity profile. The
present analysis is in close agreement with previous analytical studies and shows good qualitative
agreement with available direct simulation Monte Carlo data. The results predict the presence of an
inverted velocity profile for the case where the inner cylinder rotates and the outer cylinder is
stationary. However, our analysis further shows that the phenomenon of velocity inversion is only
dependent on the accommodation coefficient of the outer cylinder. From the analysis, we derive
specific criteria for the accommodation coefficient of the outer cylinder under vihiol velocity
inversion will take place(ii) a partially inverted velocity profile will be observed, afiii) a fully
inverted velocity profile will be present. In contrast, when the outer cylinder rotates and the inner
cylinder is stationary, it is shown that velocity inversion does not occu20@ American Institute

of Physics[DOI: 10.1063/1.1868034

I. INTRODUCTION responding to a Mach number of Q.3 hey presented veloc-
ity profiles for a range of accommodation coefficients and
Couette flow between two concentric rotating cylindersfound that the velocity inversion process only occurred at
is a classical fluid dynamics problem discussed in many textsmall values of TMAC. The results from their direct simula-
books. However, recent analytical and numerical studiesion Monte Carlo(DSMC) approach showed that the velocity
have demonstrated that under certain conditions of rarefagrofiles predicted by the EPL formulation were generally in
tion, the flow between concentric cylinders can exhibit com-good agreement with their DSMC data. Moreover, the
pletely nonintuitive behavior. For example, in the case of aDSMC simulations showed that there was less than a 1%
stationary outer cylinder and a rotating inner cylinder, thevariation in density throughout the flow domain, suggesting
velocity profile can become “inverted” with the velocity-  that compressibility effects may not be important for this
creasingfrom the inner rotating wall to the outer stationary particular problem.
wall. The phenomenon of velocity inversion was first pre-  Cylindrical Couette flow has also been studied by Aoki
dicted by Einzel, Panzer, and LiEPL)* who developed a et al® using several alternative approaches: a systematic
generalized slip-boundary condition for incompressible flowasymptotic analytical solution at small Knudsen numbers, a
over curved or rough surfaces. EPL did not specifically condirect simulation Monte Carlo method, and a direct numeri-
sider a rarefied gas, and instead, analyzed the flow by invoksal solution of the Boltzmann equation using a finite differ-
ing the concept of alip length Applying their generalized ence method based on the Bhatnagar—Gross—K(B@&K)
slip-boundary condition to cylindrical Couette flow, EPL pre- approximation. The results again confirmed the existence of
dicted that the velocity profile would become inverted foran inverted velocity profile for small values of accommoda-
large values of slip length. tion coefficient and also showed that the occurrence of ve-
Tibbs et al? subsequently recast the EPL formulation solocity inversion could be related to a critical accommodation
that it was direcﬂy app|icab|e to a rarefied gas. This Wag:oefﬁCient. It is well known that the near-continuum Max-
achieved by defining the slip lengtty=a(2/0-1)x where ~ Well slip velocity becomes infinitely large when the accom-
\ is the mean-free path of the gas molecutes: 1.15 ando modation coefficient approaches zero. However, for Couette
is the tangential momentum accommodation coefficienflow, Aoki et al. developed a rigorous asymptotic analysis of
(TMAC) which can vary from zerdfor specular reflection the Boltzmann equation to obtain the flow prqperties at ;mall
up to unity (for complete or diffuse accommodatiorTibbs Knudsen numbe(kn) and small accommodation coe_\fﬂment
et al. considered argon under STP conditiofs=6.25 (of the order of Kn. They proved that Maxwell's d|ffu_se-
X 1078 m) for a stationary outer cylinder and an inner cylin- specular treatment was valid for smalland that the fluid-

der rotating at an angular velocigyof 5.17x 1® rad/s(cor- dynamic system obtained was equivalent to the compressible
Navier—Stokes equations. Moreover, Aa@lial. showed that

dauthor to whom correspondence should be addressed. Telephahe: if the rotation spged was Smab.Ut much greatgr than &n .
(001925 603221. Fax: +44 (01925 603634. Electronic mail: th€ system obtained was equivalent to the incompressible
d.remerson@dl.ac.uk Navier—Stokes equations and could be used to derive an ana-
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lytical solution. The compressible solution obtained by AokiBoltzmann equation whereas Wakabayaﬂhil.11 solved the

et al® was in good agreement with their DSMC data up tolinearized Boltzmann equation and obtained a value of

Kn=0.1. Furthermore, they found no appreciable difference.98737. In practiceq has been shown to depend upon the

between their compressible and incompressible solutions uaccommodation coefficie 2hut for ease of analysis in the

to a Mach number of 0.5, adding further support to the find-present studyqx is assumed to be unity in common with

ings of Tibbset al? many experimental and numerical hydrodynamic
The present investigation provides an independent reasypproache$™°

sessment of the velocity inversion process in cylindrical  For rotating Couette flow, Eq(2) can be written in

Couette flows. Instead of implementing the EPL slip-lengthcylindrical-polar form as

approach, the current analysis uses Maxw‘éﬁliap-boundary

condition to define the velocity discontinuity between the gas (2-0) [duy uy

and the solid walls. Two fundamental cylindrical Couette ~ UYo(gas ~ Yowan =+ h(?“?)

flow cases are considered: a stationary outer cylinder and a

rotating inner cylindelcase ); and, second, a stationary in- The termu,/r on the right hand side of E¢3) arises from
ner cylinder and a rotating outer cylinderase 1). Previous  the fact that the slip velocity is directly proportional to the
analytical StUdleJSZ’ " have generally assumed that the ac-wall shear stress. Unfortunately, this term is oftatthough
commodation coefficients at the inner and outer cylindemot alwayé®9 neglected when analyzing slip flows on non-

walls are identical. In contrast, the present study considergjanar surfaces. Application of E() to the inner and outer
the influence of both the inner and outer accommodatiortyjinder walls leads to

coefficients. The paper then defines limiting analytical crite-

3

g

wall

ria that can be used to predict whether an inverted, partially (2-0y) (du, u,
inverted or normal velocity profile will occur. u0|r:R1 = oRy+ A dar (4)

o1 r r r:Rl
Il. PROBLEM FORMULATION

and
The present investigation considers isothermal, rarefied
Couette flow between two concentric rotating cylinders. The on = @Ry— (2 —02))\ du, Uy 5)
inner and outer cylinders have ra®j andR, and rotate at Uelr=r, = @2I%2 oy dr r/| s’
-2

angular velocitiesv; and w,, respectively. In a cylindrical-
polar coordinate(r, 6) reference frame, the circumferential Following the notation adopted by Einzet al.! the
momentum expression of the incompressible Navier—Stokegeneral solution for the velocity profile can be written as
equations can be written for rotating Couette flow as

(Schllzchtlnd) u,(r) = ar + ? ©)
where

whereu, is the tangential velocity component ands the

radius. For low Knudsen numbers and moderate Mach num- Aw; - Bw, w1~ Wy

bers, the assumption that the flow is incompressible is a= A-B ' b= B-A (7)

reasonablé> Moreover, at Kn=0.5, the DSMC results of
Tibbs et al? showed that temperature variations for this The parameterd andB can be derived as
problem were less than 3% over the entire domain, further
suggesting that the isothermal assumption is also reasonable. 1 (2-05) 2\ 1 (2 -0y) 2\
Under rarefied conditions, a slip-velocity boundary con- = g( - —_> B= E(l + —_)
dition has to be applied at the inner and outer rotating walls. 2 1
In the absence of thermal slip, Maxwell's viscous slip- )
velocity boundary condition can be writtthas

o Ry o1 Ry

As previously discussed, two cylindrical Couette flow
2-0)\ problems are considered in the present study. For case I, with
; Thwall, ) a stationary outer cylinddlw,=0) and a rotating inner cyl-

inder, Eq.(6) can be written in nondimensional form as
where w is the viscosity andr is the shear stress. If the

Ugjip = Ugas™ Uwal = * @ Ju

mean-free path is defined as(u/P)V7RT/2, as in Max- . Uy A r 1
) P : i : u,= = —+
well's 9r|g|nal a_naly5|s, the value ok is unity. Howevgr, " wR, (A-B)R, (B-ARyr
more rigorous kinetic analyses of the Boltzmann equation for
planar flowd® 2 have subsequently shown that the value of _ 1 ( _ }) 9)
« for fully diffusive reflection, based on Maxwell's definition (A-B)R; r)’

of the mean-free path, is very close to 1.048/y7~1.15.
The “exact” leading coefficient of 1.016 191 was obtainedwhereas for case Il, with a stationary inner cylinder;
numerically by Loyalkaet all® using a BGK model of the =0) and a rotating outer cylinder, E¢6) becomes
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. u, _ B r, 1 107 . . .
0~ T (B—AR. _ © DSMC datac=1.0
R B-A)R A-B)R,r
o ( IR ( R 2 e DSMCdatac=07
1 <B 1) (10 8 08¢t © DSMCdatac =04 1
= r——1. o ¢ DSMC data o =0.1
(B-AR, r = —— Analytical solution & = 1.0
$ i — - Analytical solution ¢ = 0.7 ]
In the case of continuum flow, the coefficiedtsandB in Eq. g 0.6 Lo — -+ Analytical solution o = 0.4
(8) simplify to A=1/R5 andB=1/R2. The velocity profile for = — - Analytical solution & = 0.1
continuum flow can then be expressed in terms of the ratio of & 04
. . w -
the cylinder radii,y=R;/R,: é A
2 2 -5 3 R et
X Rl o S 0.2
case |, uUyr)=—F——wr+ >, (11 z v e L
x*-1 1=-x)r o
1 R w, 0 35 20 45 5.0
case I, u,(r)= (1- XZ) wal + (X2 -1 T (12 (a) Non-dimensional radial distance (r/A)

1.0 . . .
Although Egs.(11) and (12) are similar in form, it is well I
known that for continuum cylindrical Couette flow, the ve-
locity profile varies strongly with the rati®;/R, for case |
while the velocity profile is almost independent of the ratio
for case I1(Schlichting).

DSMC data o = 1.0

DSMC data 6 = 0.7

DSMC data ¢ = 0.4 b
DSMC data o = 0.1

— Analytical solution s = 1.0

— = Analytical solutionc =0.7

— -~ Analytical solution o = 0.4

0.8

* O 00

0.6

Non-dimensional tangential velocity

_\O.\ — — Analytical solution o = 0.1
re O
I1l. THE PHENOMENON OF VELOCITY INVERSION 04~ .o
Fo o
To illustrate the phenomenon of velocity inversion, we - °
consider case (inner cylinder rotatingy Following Tibbset 02 Lo .
al.,? the radii of the inner and outer cylinders are chosen to L T T = L B
be 3\ and 5\, respectively, and the accommodation coeffi- I ©
cients are assumed to be equal at the inner and outer cylin- 0.0 : ) s
ders. Figure (a) presents a comparison between the analyti- 3.0 85 40 45 5.0
cal solution and the DSMC data obtained by Titgtsal? ®) Non-dimensional radial distance (/)

Exact quantitative agreement between the DSMC results aq—qG. 1. Nondimensional velocity vs radial distance égr=o0,=0. (a) Cor-

the analytical model is npt expected_, since the separatiopct solution using the shear stress boundary treatment defined (8)Edp)
distance between the cylinder walls is only two molecularincorrect solution obtained by neglecting thg'r term in Eq.(3).

mean-free paths, implying a Knudsen number, KR,
-R;) of 0.5. At this Knudsen number, the Navier—Stokes

equations are beyond the limit of their theoretical applicabil- PR
ity. Nevertheless, the results show that the DSMC data and = /22 (13)
the analytical formulation follow the same basic trends and Ri+Ry

predict an inverted velocity profile for an accommodation For the problem under consideration, the location is given by
coefficient of 0.1. r/x=419 and the nondimensional velocity has the value

In contrast, Fig. (b) presents a comparison between theq 558 |t is evident that the DSMC data also show the same
DSMC da’Fa and an incorrect boundary tregtment where thﬁhenomenon although the location and value is slightly dif-
u,/r term in Eq.(3) has been neglected. Failure to accountiarant.

for this component leads to important differences in the pre-

dicted velocity profiles, with essential information being lost.

It can pe seen that Fhe_incorr_ect analytical solution is uqablw VELOCITY INVERSION CRITERIA

to predict the velocity inversion phenomenon, clearly high-

lighting the importance of including the,/r term. In the following sections, we identify the limiting ana-
It is interesting to note that, for the specific case of thelytical criteria that will predict whether a normal or an in-

accommodation coefficients of the inner and outer cylinderserted velocity profile will occur. We will also introduce the

having the same value, the family of velocity profiles in Fig. concept of a “partially inverted” velocity profile that, for case

1(a) all pass through a common point thatimslependent of |, means the velocity will initially decrease away from the

the value of the accommodation coefficiefite location of inner cylinder and then increase towards the outer cylinder.

the point can be derived analytically using E§) and is  The impact of the TMAC at the inner and outer walls will

given by also be considered.
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A. Investigation of case | 1.4 . . T
Equation(9) shows that the velocity is inversely propor-
tional to (A—B), with the definition ofA andB given by Eq. £
(8). The velocity gradient can now be used as a criterion to §
judge whether the function is increasing or decreasing with s
radial distancer. For clarity, the superscript * denoting a @
nondimensional velocity is omitted from the subsequent g
analysis. The gradient is therefore given by E
dug 1 ( 1) 5
- = [aA+=]. 14 £
dr (A-B)R;\" r? (19 2 T =008
S 06| 6,=10 —— g,=0.12 T
From Eq.(8), we can obtain the following expression for — 0, =018
(A-B): 04 . . .
3.0 3.5 4.0 4.5 5.0
1 2 - 2\ (a) Non-dimensional radial distance (r/A)
A-B=-— 2[<R§—R'i‘) R =2 20
Rle () Rz 1.0 T T T
2 2\
+ R§( ‘Tl)—] (15) -
op Ry 5 08 — 6,=0.06 T
. . . 2 o, =01 —— 6,=0.12
SinceR; <R,, the term(A-B) is always negative. For case |, = s 5,=0.18
a noninverted velocity profile means that the velocity will é’ 0.6 -
decrease monotonically from the inner to the outer cylinder. 8
This implies du,/dr<0 for the whole rangeR;<r=R,. E
Conversely, ifdu,/dr> 0 throughout the range; <r<R,, a 2 04r 7
fully inverted velocity profile will exist. From Eq(14), this é
requirement can only be satisfied wharr=2<0. We know - S
that A+Ry2 < A+r2<A+R;? and therefore iA+R;?<0 is o2 ————m T ]
true, thenA+r=2<0 will always be satisfied. This require- T
ment yields
0.0 . . .
) 3.0 35 4.0 45 5.0
1 1 (2 -0, 2\R] (b) Non-dimensional radial distance (r/)
A+Q:R2R2[ + R - o R <0, (16)
1 1'2 2 2

FIG. 2. Nondimensional velocity profiles when the accommodation coeffi-
cient at the stationary outer cylinder is less than 9/47.

which holds if
2 -1
02<2(1+(R1+—R%)R2> . (17
2Ry 1 1] @-o)2n
If Eq. (17) is satisfied, a fully inverted velocity profile A+ R_§ - Eg 2= o Ry =0 (18)
will always be observed and this phenomenoimdependent
of the value of the accommodation coefficient at the inner
cylinder. For the specific case when the inner and outer cylThe condition for Eq(18) to hold is
inder radii are ® and 5\, respectively, Eq(17) provides an
upper bound for a fully inverted velocity profile, given by
0,<<9/47~=0.1915. This is illustrated in Fig. 2, which also R, |
shows that the accommodation coefficients at the inner and 02> 2<1 + T) . (19
outer cylinders have an opposite effect on the magnitude of
the inverted velocity, i.e., as, is increasedi, decreases, but For the current case, the limiting value given by ELp)
as oy is increasedl, increases. is o,>1/3. Figure 3 shows that if the accommodation coef-

If the condition duy,/dr<0 holds throughoutR;=<r ficient at the outer wall is greater than 1/3, the velocity pro-
<R,, the velocity will be a decreasing function ofand no file always decreases monotonically, even for very small val-
inverted velocity profile is observed. This is obtained whenues of the inner wall accommodation coefficient. It is also
A+r~2>0. Again, using the fact thaA+R52sA+r‘2sA observed that increasing the accommodation coefficient at
+R;?, then if A+R,?>0 is valid, A+r=2>0 will always be the inner wall causes the velocity to increase.
satisfied. We therefore need to satisfy the following expres- The final condition that needs to be considered is the
sion for no inverted velocity profile to occur: casedu,/dr=0. When this situation occurs, it implies
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0.20 T T T 08— ! T T
> Z
‘S _ o R
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$ 015t _ i g 0.7 F — — 4
> _ ——0,=06 =
= G, =0.1 ©
= ——0,=08 =
5 5
o ——-0,=1.0 o))
c C
g = 06k ]
Z o010 . = ——
c c
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2 \ 2 — 5,=050
E :\\ ~—— = 0‘2=0.25 —— o =0.75
ko) L \\\\\ and —— 5 L i
2 005 ~— —— 2 05 — - 5,=1.00
S — T~ — [}
= T z S
OOO 1 1 1 0.4 1 1 1
3.0 3.5 4.0 4.5 5.0 3.0 3.5 4.0 4.5 5.0
(b) Non-dimensional radial distance (r/A) (b) Non-dimensional radial distance (r/A)

FIG. 3. Nondimensional velocity profiles when the accommodation coeffi-FIG. 4. Nondimensional velocity profiles when the accommodation coeffi-

cient at the stationary outer cylinder is greater than 1/3. cient at the stationary outer cylinder lies between 9/47 and 1/3.
d’u, 2
1 2 = 3 (23)
A+==0. (20) dr (B-ARyr

r
From the previous discussion, we know thiatA>0 and

Substituting forA from Eq. (8) into Eq. (20) gives the fol-  therefore Eq(23) is always greater than zero, which implies

lowing solution: that the velocity at=r" is a minimum. Considering the pre-
vious two situations where the velocity is simply increasing
or decreasing, it is evident thatpartially invertedvelocity

(21) profile will occur when the accommodation coefficient at the
outer cylinder lies within the range

o Ry
(RE+RIR,\ ™ Ro|™
For Eqg.(21) to have a real root, the denominator must be 2 1+W <op<2\1+7) . (24)
greater than zero. However, to ensufec R, the denomina- .
tor must be greater than unity. We therefore require that Figure 4 illustrates partially inverted velocity profiles for
different combinations of accommodation coefficient. Figure
Ro\™* 4(a) shows the case fow, fixed at 1.0 ando, varying be-
T2 < 2<1 +T) ' (22) tween the previously defined limits of 9/47 and 1/3. It can

be seen that the velocity minimum moves towards the outer
The second derivative of velocity at the poiritindicates cylinder aso, increases. In contrast, Fig(} shows that the
whether the velocity has a maximum or minimum value.occurrence of a partially inverted velocity profile does not
Using Eq.(14), the second derivative is depend on the accommodation coefficient at the inner wall.
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For the specific case whan,=0.25, the location of the ve-
locity minimum can be obtained from E{21) and is given

by r"/x=5y5/3. If the value ofo, is fixed, the location of
the velocity minimum is independent of,.

Maxwell*® predicted that when the accommodation co-
efficients at both walls approached zdtotal specular re-
flection), the gas would rotate as a solid body, which implies
upcr. To demonstrate this phenomenon, E®). can be re-
written in the following format:

Non-dimensional tangential velocity

2-0)2n R; 2-0,) 2\
u0=w1r<1_< 2)___22> (1_( 2>_>
(03] R2 r (03] R2
R 2-a) 2\ |
——§<1+u—)} : (25)
Rl o1 Rl 0.0 | | |
When o; and o, approach zero at the same rate, i@, 3.0 " 25 , |4~°d, . 4.5 / 5.0
=a,—0, u, has the limit (a) on-dimensional radial distance (r/A)
1.0 . . .
R3 -1
lim ugzwlr(1+—2 . (26) — 0,=10
o1=0p,—0 Ri > ——0,=07
. . _ S ogf =10 o4 _
The current model is therefore in full agreement with Max- 2 T %= e
well’'s original prediction. However, Aoket al> have further - == 6, =01 P
shown that when the accommodation coefficients approach  § 4. ]
zero such that the ratigy=o,/ o4 remains constant, the lim- g -
iting value for the velocityu, will depend upon the ratig 5
as follows: S 04 ]
[%2]
R\ Ry -
lim Ug= w1r<l +XAE§> . (27) = e T
02=Xp01—0 1 Zg 02K /////// i
B. Investigation of case Il
0.0 1 1 1
In case I, the inner cylinder is at rest while the outer 3.0 35 40 45 5.0
cylinder rotates at angular speeg. The velocity gradient (b) Non-dimensional radial distance (/)
can be derived from EC[lO) as FIG. 5. Nondimensional velocity profiles for case Il: inner cylinder at rest,
du, 1 ( 1 ) outer cylinder rotating.
—=—-|B+5]. 28
dr (B-AR, r2 (28)

From Eq.(8) we know thatB>0 and from Eq.(15), (B in density and temperature, the discrepancy between the ana-
—-A)>0, and therefore Eq28) will always be positive. This  Iytical model and the DSMC solution can be attributed to the
implies the velocity is an increasing function of radius andrelatively high Knudsen number and the neglect of any
this feature is independent of both inner and outer accommadknudsen layer effects in the Navier—Stokes formulation. It
dation coefficients. Hence, for case I, no inverted velocityhas been shown that when the inner cylinder rotates and the
profile will be observed. Figure(&) shows the case when,  outer cylinder is at rest, the phenomenon of velocity inver-
is fixed at 1.0 whiler, is varied whereas Fig.(b) shows the  sjon depends solely on the accommodation coefficient of the
opposite case whed, is fixed at 1.0 andr, is varied. It can  stationary outer cylinder. The present analysis has identified
be observed thatr, has a greater impact on the velocity the criteria that determine whether the velocity profile be-

profile thano;. haves normally or undergoes full or partial inversion. When
the accommodation coefficient of the inner and outer cylin-
V. CONCLUSIONS ders have the same value, all velocity profiles pass through a

. ) common point whose location is independent of the value of
~ The paper has presented an analytical evaluation of raghe accommodation coefficient. For the case where the inner
efied Couette flow between two concentric rotating cylin-cylinder is at rest and the outer cylinder rotates, it has been

ders. The Navier-Stokes equations, with boundary condighown that an inverted velocity profile will never occur.
tions derived from Maxwell’s slip-flow model, were adapted

to take into account the impact of a curved surface. TheACKNOWLEDGMENTS
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