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Optimal multilateral well placement

Chris L. Farmer1, Jaroslav M. Fowkes1 and Nicholas I. M. Gould1,2,3

ABSTRACT

One is often faced with the problem of finding the optimal location and trajectory for an

oil well. Increasingly this includes the additional complication of optimising the design of

a multilateral well. We present a new approach based on the theory of expensive function

optimisation.

The key idea is to replace the underlying expensive function (i.e. the simulator response) by

a cheap approximation (i.e. an emulator). This enables one to apply existing optimisation

techniques to the emulator. Our approach uses a radial basis function interpolant to the

simulator response as the emulator. Note that the case of a Gaussian radial basis function

is equivalent to the geostatistical method of Kriging and radial basis functions can be

interpreted as a single-layer neural network. We use a stochastic model of the simulator

response to adaptively refine the emulator and optimise it using a branch and bound global

optimisation algorithm.

To illustrate our approach we apply it numerically to finding the optimal location and

trajectory of a single multilateral well in a reservoir simulation model using the industry

standard ECLIPSE simulator. We compare our results to existing approaches and show

that our technique is comparable, if not superior, in performance to these approaches.
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1 Introduction

The extraction of oil from the subsurface is a challenging and increasingly important prob-

lem as we begin to exhaust existing easily recoverable reserves. With the oil price recently

subject to great variation there is increasing emphasis on efficient oil extraction and reser-

voir development. Deciding when and where to drill new injection and production wells

is an important factor in an optimal reservoir development strategy. Unfortunately, such

an optimal strategy may be far from obvious as often the reservoir under consideration

is a highly complex system. It is natural to formulate this decision problem as a global

optimisation problem on a suitable reservoir simulation model. However, in order to eval-

uate a single strategy one has to run the numerical simulation model which can take a

considerable amount of time. We are therefore faced with a global optimisation problem

where the underlying objective function is expensive to evaluate.

For the purposes of this paper we are interested in finding the optimal locations and

trajectories of new injection and production wells in an existing oil reservoir. To this end,

we construct a simulation model of the oil reservoir and optimise over it to determine

the best well locations and trajectories. This is not a new approach and has been tried

by Yeten, Durlofsky and Aziz (2002), Badru and Kabir (2003), Emerick, Silva, Messer,

Almeida, Szwarcman, Pacheco and Vellasco (2009) and Bukhamsin, Aziz and Farshi (2010)

amongst others. A frequently encountered problem with these approaches is that typically

very many simulator runs are required to achieve a good optimum and often only a local

optimum is found. Our approach seeks to remedy these shortcomings by developing a

method which tries to use as few simulator runs as possible while at the same time aiming

to find the global optimum. It may seem that this is a very ambitious goal since any

global optimisation problem is NP-hard in the general case, however we believe that our

approach is the best that one can do given the limited amount of information and time

(i.e. simulator runs) available.

Before proceeding further, let us define some terminology. Let the term simulator

response denote a real-valued function with a suitable measure of simulated reservoir per-

formance as the output and optimisation parameters governing well placement as input.

For example, the output could be the total oil production of the reservoir over some pre-

scribed time period or the net present value of the project and may include uncertainty

in the reservoir geology by way of multiple realisations of the reservoir. As the simulation

model is computationally expensive to evaluate one often approximates the simulator re-

sponse by a surrogate model (often called an emulator or proxy). We use an extension of

the geostatistical technique of Kriging (Busby, Farmer and Iske, 2007) but other surrogate

models have also been used in the literature, including neural networks and splines see

Zubarev, 2009 and Yeten, Castellini, Guyaguler and Chen, 2005 for a comparison. Our ba-

sic approach is as follows: Construct a surrogate approximation to the simulator response

using an initial set of simulator runs (often termed initial designs, see Yeten et al., 2005),

optimise a suitable loss function associated with the surrogate and run the simulator at

the optimal parameter configuration. Then construct a new surrogate incorporating the
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new simulator run and repeat the process until some prescribed number of iterations or

time limit is reached. The following sections deal with constructing the surrogate, our

global optimisation algorithm and the well placement problem itself. We conclude with

some numerical results of our method on a simple test case.

2 Surrogate Approximation

The main idea behind our method is to use an inexpensive surrogate function to approxi-

mate the underlying computationally expensive simulator response. The surrogate function

enables us to capture the dominant features of the simulator response surface with rela-

tively few simulator runs. In addition, we iteratively refine our surrogate approximation as

the optimisation progresses so as better to capture the behaviour of the simulator response

near the optimum and in relatively unexplored regions.

The surrogate is constructed as follows. Let {πk}Mk=1 be a polynomial basis of degree d

on Rn, so that M = (d+n)!
n!d!

and let D ⊂ Rn be a compact subregion of interest. Suppose

that the simulator response f : D → R is a realisation of a stochastic process F : D×Ω→ R
of the form

F (x) =
M∑
k=1

µkπk(x) + Z(x)

where the first term specifies the mean structure and Z denotes a Gaussian stochastic

process with zero mean and covariance

cov(Z(x), Z(y)) = σ2R(x, y)

between Z(x) and Z(y). Here σ2 denotes the process variance and

R(x, y) = ϕ(‖x− y‖)

is the correlation between Z(x) and Z(y). We take the correlation function ϕ(·) to be a

radial basis function where ‖·‖ = ‖W ·‖2 is the weighted `2-norm with weight matrix W

(which is usually taken to be diagonal). Examples of radial basis functions include

Surface Spline: ϕ(r) =

{
rk if k is odd

rk log r if k is even,

Multiquadric: ϕ(r) = (r2 + γ2)β β > 0, β /∈ N, and

Gaussian: ϕ(r) = exp(−γ2r2),

where γ is a nonzero constant referred to as the shape parameter (see Wendland, 2005).

Assume there are N samples y = (y1, . . . , yN)T of f at the corresponding sample points

x1, . . . , xN . The surrogate is taken to be the posterior mean s(x) of the stochastic process

F given the response function samples y. It can be shown (see Busby et al., 2007) that

the posterior mean s(x) of F given y is

s(x) := E[F (x)|y] =
M∑
k=1

µkπk(x) +
N∑
j=1

λjϕ(‖x− xj‖)
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where µk, λj are coefficients. The coefficients are determined by solving the linear interpo-

lation system

yi =
M∑
k=1

µkπk(xi) +
N∑
j=1

λjϕ(‖xi − xj‖), i = 1, . . . , N

along with the additional conditions

N∑
j=1

λjπk(xj) = 0, k = 1, . . . ,M

which complete the system and ensure that polynomials of degree less than or equal to d are

interpolated exactly. In matrix form this gives the non-singular (provided d is sufficiently

large and {xi}Ni=1 is a unisolvent set, see Wendland, 2005) saddle-point system(
R P

P T 0

)(
λ

µ

)
=

(
y

0

)
where R = (R(xi, xj)) and P = (πj(xi)). The posterior variance e2(x) of the stochastic

process F given the response function samples y can be used as a measure of error in

the surrogate approximation. One can show (see Sacks, Welch, Mitchell and Wynn, 1989;

Schonlau, 1997) that the posterior variance e2(x) of F given y is

e2(x) := V [F (x)|y] = σ2

[
ϕ(0)−

(
r(x)

p(x)

)T (
R P

P T 0

)−1(
r(x)

p(x)

)]

where r(x) = (ϕ(‖x − xj‖)) and p(x) = (πj(x)). The process variance σ2 is determined

using maximum likelihood estimation (see Busby et al., 2007) and given by

σ2 =
1

N
(y − Pµ)TR−1(y − Pµ).

Note that the geostatistical method of Kriging is simply the above approach with a Gaus-

sian radial basis function and diagonally weighted `2-norm. There are two main approaches

one can use to find the weights in the weight matrix W , which we will now assume to be

diagonal. The first approach consists of choosing W to maximise the likelihood of the ob-

served data x1, . . . , xN and leads one to choose W to be the maximiser of the log-likelihood

function (see Busby et al., 2007)

`(W ) = −1

2
(N log σ2 + log det(R))

which we optimise using a general purpose global optimisation algorithm (DIRECT, Jones,

Perttunen and Stuckman, 1993). The second approach is to use leave-one-out cross-

validation (see Rippa, 1999) and leads one to choose W to minimise the `2-norm of the
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cross-validation error ε(W ) ∈ RN . The k-th element of the cross-validation error ε(W ) is

the error at the validation point xk, given by

εk(W ) =
λk

A−1k,k

where A−1k,k is the k-th diagonal element of the inverse of the interpolation matrix A =(
R P
PT 0

)
.

We will use the decision theoretic expected improvement approach for updating the

surrogate approximation as outlined in Jones, Schonlau and Welch (1998). Define the im-

provement I(x) a new response function evaluation at x achieves over the current smallest

response function value ymin := min1≤i≤N yi by

I(x) = max{0, ymin − F (x)}.

The next sample point is then chosen to maximise the expected improvement with respect

to the posterior distribution F |y. It can be shown (see Jones et al., 1998) that the expected

improvement is given by

E[I(x)] = e(x) [z(x)Φ(z(x)) + φ(z(x))]

where Φ and φ are the cumulative distribution function and probability density function

respectively of the standard normal distribution and

z(x) =
ymin − s(x)

e(x)
.

In order to maximise the expected improvement using our preferred optimisation algorithm

we require bounds on the posterior mean s(x) and posterior variance e2(x). We will

discuss how these bounds are obtained in the next section along with our choice of global

optimisation algorithm.

3 Global Optimisation

As part of the solution to the general problem it is necessary to solve the ancillary global

optimisation problem

min
x∈D

l(x)

where l : D ⊂ Rn → R is a specially constructed objective function (referred to in the

decision theory literature as a loss function, see Berger, 1985) and D is a n-dimensional

rectangle (or box). We present the canonical branch and bound algorithm (Horst, 1986)

with bounds from Jones et al. (1998) and Gutmann (2001). Before describing the algorithm

in detail we first need some notation. Let B ⊂ D denote an n-dimensional box and let

xB be the centre of B unless B has been locally searched, in which case it is the feasible

point found by a constrained local search procedure (see step 11e in the algorithm below).
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Define α(B), β(B) to be lower and upper bounds respectively on the global minimum of

l(x), i.e. α(B), β(B) satisfy

α(B) ≤ min
x∈B

l(x) ≤ β(B).

Suitable choices for these bounds will be discussed below. We then follow the branch and

bound algorithmic framework set out in Balakrishnan, Boyd and Balemi (1991):

Branch and Bound Algorithm

0. Initialisation:

0a. Set k = 0 and s = 0.

0b. Let L0 be the initial list of boxes and set L0 = {D}.
0c. Let L0 = α(D) be the initial lower bound for minx∈D l(x).

0d. Let U0 = β(D) be the initial upper bound for minx∈D l(x).

1. While Uk − Lk > ε, repeat the following procedure:

1a. Remove from Lk boxes B ∈ Lk such that α(B) > Uk.

1b. Choose B ∈ Lk such that α(B) = Lk.

1c. Bisect B along its longest edge into BI and BII . Set Lk+1 := Lk ∪{BI ,BII} and

remove B from Lk+1.

1d. If any boxes have been discarded set s = 0, otherwise set s = s+ 1.

1e. If s > 2 run an approximate constrained local search algorithm on all previously

unsearched boxes B in Lk+1, update xB to be the minimiser found by the local

search and set s = 0.

1f. Set Lk+1 := minB∈Lk+1
α(B).

1g. Set Uk+1 := minB∈Lk+1
β(B).

1h. Set k = k + 1.

The idea behind the algorithm is to recursively partition the domain D into sub-boxes

until a box of sufficiently small size containing the global minimum of l(x) over D is found.

Since it is possible to obtain bounds on the minimum of l(x) over any box in D, they can

be used to discard boxes which cannot contain the global minimum, i.e. boxes whose lower

bound is greater than the smallest upper bound. The algorithm is accelerated by running

constrained local searches on suitable boxes to obtain more accurate upper bounds. This

is achieved through the use of a heuristic from Pedamallu, Özdamar, Csendes and Vinkó

(2008) which suggests running local searches on all previously unsearched boxes if no boxes

are discarded after two successive iterations of the algorithm. We use a conjugate gradient

based active set method by Hager and Zhang (2006) for the local searches but in principle

one can use any constrained local search algorithm.

For our particular example we let l(x) be the negative expected improvement

l(x) = −e(x) [z(x)Φ(z(x)) + φ(z(x))]



6 C. L. Farmer, J. M. Fowkes & N. I. M. Gould

but note that many other choices of loss function are possible (see Jones, 2001; Sasena,

2002). Define the upper bound β(B) to be l evaluated at xB i.e.

β(B) = l(xB).

To obtain a lower bound on l(x) it suffices to obtain a lower bound on s(x) and an upper

bound on e(x). For the surrogate

s(x) =
M∑
k=1

µkπk(x) +
N∑
j=1

λjϕ(‖x− xj‖)

we find a lower bound p(B) for the minimum of the polynomial term over a box B us-

ing interval arithmetic (Neumaier, 2004) or polynomial optimisation (Lasserre, 2001) and

bound each radial basis function term over B using quadratic functions (as in Jones et al.,

1998)

aj + bj‖x− xj‖2 ≤ ϕ(‖x− xj‖) ≤ Aj +Bj‖x− xj‖2

for which details are given in Gutmann (2001). Now we can define the lower bound αs(B)

for the global minimum of s(x) over a box B as

αs(B) = p(B) + min
x∈B


N∑
j=1
λj>0

λj(aj + bj‖x− xj‖2) +
N∑
j=1
λj<0

λj(Aj +Bj‖x− xj‖2)

 .

Note that the minimum above is easy to obtain as the sum can be rewritten in terms of

one dimensional quadratic functions and thus minimised componentwise. We now turn

our attention to e(x) which is defined as

e2(x) = σ2 [ϕ(0)− L(ξ(x))]

where

L(ξ) = ξTA−1ξ, A =

(
R P

P T 0

)
, ξ(x) = ( r(x) p(x) )T .

The key idea here is to underestimate L(ξ) by a convex relaxation C(ξ). Following Jones

et al. (1998) and Gutmann (2001), define an upper bound βe(B) for e(x) over B as

βe(B) = max
ξ∈[l,u]

σ [ϕ(0)− C(ξ)]1/2

where

C(ξ) := L(ξ)− λmin(ξ − l)T (ξ − u)

is the convex relaxation of L(ξ). Here λmin denotes the smallest eigenvalue of A−1 and

lj =

ϕ
(√

rlj(B)
)

for j = 1, . . . , N

plj(B) for j = N + 1, . . . , N +M

uj =

ϕ
(√

ruj (B)
)

for j = 1, . . . , N

puj (B) for j = N + 1, . . . , N +M
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where plj(B), puj (B) are lower and upper bounds on the minimum of the polynomial ba-

sis terms πj−n over B found using interval arithmetic or polynomial optimisation and

rlj(B), ruj (B) are exact lower and upper bounds for the minimum of ‖x − xj‖2 over B as

in Gutmann (2001). Note that C(ξ) is convex as its Hessian, given by 2(A−1 − λminI), is

positive semidefinite and it clearly underestimates L(ξ). Thus we have relaxed the prob-

lem to a convex quadratic programming problem which can be solved efficiently; we use

an implementation of the algorithm by Goldfarb and Idnani (1983). Combining the lower

bound αs(B) and upper bound βe(B) gives the lower bound α(B) as

α(B) = βe(B) [ζ(B)Φ(ζ(B)) + φ(ζ(B))]

where

ζ(B) =
ymin − αs(B)

βe(B)
.

4 Well Placement

For the purposes of this paper we consider arbitrary multilateral wells with up to n laterals

on a Cartesian simulation grid. The aim is to find optimal completion locations and

trajectories for these wells. For simplicity, we assume the main wellbore is completed

along a single continuous section of the well and any laterals are completed along their

entire length. We parameterise the wells similarly to Yeten et al. (2002) in continuous grid

coordinates, i.e. if a point has coordinates (1.5, 2.5, 3.5) it is in the centre of the (1, 2, 3)

grid block. Let h0 denote the grid coordinates of the mainbore completion heel and t0
of the mainbore completion toe. Also, let li ∈ [0, 1] denote the relative position of the

i-th lateral heel on the mainbore and ti denote the grid coordinates of the i-th lateral toe.

The coordinates of the i-th lateral heel can then be calculated as hi = h0 + li(t0 − h0).

This parameterisation is illustrated in Figure 4.1 below. Denote the input parameters by

j k

i

h0

t0

l1
t1

Figure 4.1: Parameterisation of a multilateral well with a single lateral off the mainbore

in continuous grid coordinates i, j, k.

x = (h0, t0, l1, t1, . . . , ln, tn) and let f be the simulator response to these parameters. The

optimisation problem then becomes

min
x∈D

f(x)

i.e. minimise the simulator response over a suitably defined rectangular coordinate range

D. As the simulator response is an expensive function we approximate it using a surrogate
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function s(x) and associated error e(x) as described in the previous section on Surro-

gate Approximation. We iteratively improve the surrogate approximation by adding the

optimiser of the associated loss function as described in the previous section on Global

Optimisation. Our complete framework is as follows:

Well Placement Optimisation Framework

0. Initialisation:

0a. Set t = 0 and let T be a prescribed number of total iterations.

0b. Let f : D ⊂ Rn → R be the simulator response on a rectangular domain D.

0c. Let X0 ⊂ D denote an initial set of points where f has been sampled.

1. While t < T , repeat the following procedure:

1a. Construct a surrogate approximation st to the simulator response f at Xt along

with the corresponding error et.

1b. Construct the corresponding loss function lt(x) = −et(x) [zt(x)Φ(zt(x)) + φ(zt(x))],

where zt(x) = [ymin − st(x)]/et(x).

1c. Optimise lt(x) using the prescribed branch and bound algorithm to obtain a min-

imiser xt and evaluate the simulator response at xt.

1d. Set Xt+1 := Xt ∪ {xt}.
1e. Set t = t+ 1.

The algorithm stops after a prescribed number of iterations T , but it is of course possible to

use other stopping criteria (see Sasena, 2002) with perhaps the most obvious being to stop

after a certain amount of elapsed time. It is assumed that the domain D of the simulator

response is rectangular so that we can dispense with the complexity that arises when one

has to incorporate constraints into a branch and bound algorithm (see Pedamallu et al.,

2008). The initial set of points X0 is typically chosen to be space filling, see Yeten et al.

(2005) and Koehler and Owen (1996) for further details on this. As mentioned previously,

it is possible to use other loss functions (such as lt ≡ st) and we refer the interested reader

to Jones (2001) and Sasena (2002) for examples.

5 Numerical Example

We will now demonstrate the effectiveness of our well placement optimisation framework

by means of a simple numerical example. Consider the case of finding the optimal location

and trajectory of a single multilateral oil producing well in a synthetic reservoir simulation

model. We will use the Snark simulation model, pictured in Figure 5.2, which consists of

a 24 × 25 × 12 corner point simulation grid representing 12 geological layers with three

faults and an analytical aquifer at the southern end of the model. The simulation will
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be performed using the industry standard ECLIPSE simulator from Schlumberger. The

aim is to find the optimal mainbore completion along with up to three laterals. We will

compare two different methods for achieving this aim, our surrogate based optimisation

framework and a direct approach using genetic algorithms (c.f. Yeten et al., 2002). Let

the simulator response f be the negative total oil production from the simulation model

over a four year period. Note that we do not consider other reservoir performance factors

here as our primary focus is on the optimisation problem. We will start with a maximin

latin hypercube sample (see Koehler and Owen, 1996) of 20 initial well configurations and

we limit ourselves to 200 simulator runs. For our optimisation framework we will use

the cubic spline radial basis function ϕ(r) = r3 with a diagonally weighted `2-norm and

linear polynomial term, as it is numerically more stable than Kriging using the Gaussian

radial basis function (see Section 12.2 of Wendland, 2005). Note that the linear polynomial

term in the surrogate can be trivially optimised componentwise over a box, so in this case

there is no need to use interval arithmetic or polynomial optimisation. We use our own

MATLAB based implementation of the optimisation framework and the genetic algorithm

provided by MATLAB with default settings. The simulated oil production of the best well

found after a given number of simulator runs by our framework and the genetic algorithm

is shown in Figure 5.3. One can see that even for this simple example our framework

finds a multilateral well with consistently better oil production after a given number of

simulator runs than the genetic algorithm. The trajectory of the optimal well as found by

our optimisation framework is shown in Figure 5.4. This is essentially a horizontal well

which maximises contact with areas of high oil saturation and is the type of optimal well

one would expect given our choice of simulation model.

Figure 5.2: A top-down view of the Snark simulation model showing the initial oil satu-

ration ranging from 0% (purple) to 80% (red) as indicated by the colourmap in the top

left-hand corner.
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Figure 5.3: Simulated oil production of the best multilateral well found after the given

number of simulator runs by our framework and the genetic algorithm.

Figure 5.4: The optimal well trajectory as found by our optimisation framework pictured

on a vertical slice through the model. The colours depict the initial oil saturation ranging

from 0% (purple) to 80% (red) as indicated by the colourmap in the top left-hand corner.

6 Conclusions

We have presented a new approach to the multilateral well placement problem based on the

theory of expensive function optimisation. Our approach consists of a general surrogate-

based framework for the optimisation of a number of injection and production wells with
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multiple laterals along with a branch and bound global optimisation algorithm. We have

tested our method on a simple reservoir simulation model and results indicate that our

approach is comparable, if not superior, to that of genetic algorithms used in previous

studies.
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