
Performance of 2 Three Dimensional Hydrodynamic lv!odel
on a Range of Parallel Computers

Dr Mike Ashworth' and Dr Alan M. Davies2

'NERC Computer Services, Bidston Observatory, Birkenhead LA3 7RA, UK
'Proudman Oceanographic Laboratory, Bidston Observatory, Birkenhead LA3 7 M , UK

2: Description of.:be FOLMP model
Abstract

A three dimensional shallow sea model is briefiy
described in which the three dimensional jlow field in a
S;'wllow sea region is represented using afinite difference
gric' iii the horizontal and a spectral expansion in the
verti :.A. A horizontal domain decomposition is employed,
In which each processor works on a patch of sea and
come utnicates boundary values with neighbouring
processors as required. Performance characteristics of
this code are presented using computers with a range of
parallel architectures, including shared memory vector-
parallel, distributed memory message passing, and data
parallel. Whereas good parallel eficiency is readily
obtained. the performance on most highly parallel
computers is limited by the performunee of the individual
processors.

1: Introduction

With the significant rise in computing power over the last
ten years, there has been increased activity in the
development of three dimensional sea models, aimed at
simulating current patterns in shallow sea regions, The
ability to accurately predict these currents is particularly
important in a wide range of pollution problems.

It is becoming increasingly clear that parallel processing
is the best way of satisfying the future demands of these
and other applications. However, to date parallel systems
have not proved very attractive for large scale
environmental modelling projects in the UK. This paper
describes one of a number of activities which aims to
develop parallel algorithms and evaluate codes on a range
of parallel architectures.

1066-619W92 $3.00 0 1992 IEEE
383

The Proudman Occanographic Laboratory
Multiprocessing Program (POLMp) is a three-
dimensional hydrodynamic shallow sea model which has
been formulated to run efficiently on a range of modern
parallel computers. The code was developed using a set
of portable programming conventions based upon
standard Fortran 77. The hydrodynamic partml differential
equations are solved using a mixed explicit/iiplicit
forward time integration scheme. The explicit component
corresponds to a horizontal finite difference scheme
(figure 1) and the implicit to an expansion in terms of
functions in the vertical yielding a continuous current
profile from sea surface to sea bed [2,3].

The model computes the wind induced flow in a closed
rectangular basin. The facility exists for the inclusion of
a number of arbih-ary land areas, though none of the
results presented here contain land. Recently more
physical

L " . I U,-" I c , n U,." <,."*I U,-,+,

VI+"-, VI." Vlm*l

Flgure 1. The staggered grid flnlte dlfference
scheme. < Is the ftea surface elevetion, U and v
the x- and ycomp~nentr: 0:: ueloclty taspectlvely,

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

processes have been incorporated within this type of
model giving rise to a larger computational task at each
grid point, a trend favouring the solution on more highly
parallel computers.

We will briefly describe the solution of the linear (for
clarity) hydrodynamic equations. The working equations
in sigma co-ordinates o=z/h are given by

av a(1 a
at ay h2 aa ('2) - + yu= -g - + - -

In these equations, t denotes time, x, y and z are
Cartesian co-ordinates and U, v are the x- and
y-components of velocity respectively. The acceleration
due to gravity, g, and the geostrophic coefficient y are
taken as constant, with p the vertical eddy viscosity, the
free surface elevation and h the mean water depth.

The functions used in the vertical are arbitrary, although
the computational advantages of using eigenfunctions
(modes) of the eddy viscosity profile have been
demonstrated [2,5]. Recently Davies [3] has shown that
by using a mixed basis set in which the modal expansion
is enhanced by an additional function (an "enhanced"
spectral approach) an improved rate of convergence over
the "classical" approach can be obtained with associated
saving in computer time and memory.

3: Requirements for computation and
communication

Each timestep in the forward time integration of the
model, involves successive updates to the three fields, the

field, the U field and the v field. New field values
computed in each update are used in the subsequent
calculations. The new L values depend on ci. U,, ui.,. vi,
and vc,, as can be seen in figure 1. Similarly, the new ui
values are obtained from ui, C, t;l-l, vi, vi+,, vi-wl, and
the new vi values from vi, L, cm, U,, U,+ U,, u~+,-~, where
n is the number of grid points in the x-direction.. The

calculations require 7 , l l and 11 floating point operations
respectively, making a total of 29 flops per grid point per
time step, of which 18 are add or subtract operations and
11 are multiplies. Thus, if a processor relies on
overlapping adds with multiplies to obtain peak
performance, as most do, we can only expect to reach
81% of peak, simply due to the imbalance in the
operation count. The actual flop count used to calculate
Megaflop rates in POLMP is slightly less than this
because it takes into account bounday effects. Each inner
loop vectorizes, using unit stride vectors over the full
range of the domain, ensuring that vector lengths are long
and high efficiency is therefore obtained on vector
processors.

We can imagine that the data are mapped onto a
processor array such that each grid point resides on a
different processor, but with the fields aligned so that L,
4 and vi are on the same processor. In this case
processori requires data points v,, from the north, and
U, from the south, ukl from the west, L+l and vki from
the east, vi.wl from the north-east and u,*-~ from the
south-west. This is a total of eight words from six
directions per grid point per time step. Clearly this
communication rate is a maximum, and larger data arrays
or smaller processor arrays which result in processors
working on a patch of sea rather than on a single point,
will reduce inter-processor communications.

The serial implementation of the model described above
contains the following computational kemel, represented
in pseudo-code.

do for all timesteps
do j for all modes

do i for all gridpoints
update c(i) from u(ij), v(ij),

u(i-14). v(i-nj)
enddo

enddo
do j for all modes

do i for all gridpoints
update u(ij) from c(i), c(i+l), v(ij),

v(i+l 4). v(i-n,j), v(i-n+lj)
enddo

enddo
do j for all modes

do i for all gridpoints
update v(ij) from W, C(i+n), u(ij),

u(i-Lj), u(i+nj), u(i+n-lj)
enddo

enddo
enddo

384

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Horizontal decomposition of the domain
into sub-domains (solid) wlth guard bands
(dashed). Arrows show the data transfers from
the central sub-domain and to Its guard band.

4: Partitioning the Problem

The most natural partitioning scheme for finite difference
problems is to partition the horizontal domain between
the processors, for example [6,8]. For the five-point finite
difference operator used here, this results in the
decomposition shown in figure 2. Each processor works
on a sub-domain and maintains in a guard band around
its own data a copy of the neighbouring values from
adjacent sub-domains. After each update within each
timestep, certain data values are exchanged to keep the
data in the guard band up-to-date. By the time the
timestep is complete, exchanges of data in six directions
will have taken place. Clearly, as the size of the sub-
domain is increased the communications overhead will
become relatively less important.

5: Shared memory parallel implementation

The horizontal partitioning method has been implemented
in the following way for shared memory parallel
machines. In computational terms, this is a m e grain
(macrotasking) approach, as opposed to the use of a fine
grain approach using microtasking directives [5] to

achieve parallelism over the vertical modes. The master
process executes a control loop over the number of sub
domains, nsub, which initiates nsub-1 processes, each
pointing to its own sub-domain, with the final subdomain
being left for the master. The structure for the kemel
within the time stepping loop of each process is as
follows.

updater
send r values to N and W
receive (values from E and S
update U
send U values to N, E and NE
receive U values from S, W an SW
update v
send v values to S, W and SW
receive v values from N, E and NE

In order for such an approach to be implemented, the
explicit time integration method used here is required
[2,3]. The application of a semi-implicit method using a
sweep approach [l l] would be more involved and in
some cases impossible to implement efficiently.

On a shared memory multiprocessor, the sending of data
is achieved by one process writing to the data array
containing the other’s sub-domain. During this phase of
data exchange, each data location in the guard band of
each subdomain is written to by one, and only one,
process. Therefore, the processes can write in parallel.
The only safeguard which is required is that there is a
synchronization point before and after the data exchange
phase to ensure that it does not overlap with a
computation phase. This is achieved by setting up a
barrier at which each process waits until all processes
have reached the barrier. Barriers are available on most
shared memory multiprocessors.

The data arrays for each sub-domain are allocated in such
a way that all data for a particular subdomain are located
sequentially in memory. This allows the inner loop for
each update to be vectorized over the entire subdomain
with unit stride memory accesses, maintaining maximum
efficiency on vector processors. Masking was used for
land and boundary points, as this has been shown to be
most generally effective [5] , but altemative code using
the strip-mining method was also included for use on
scalar processors and for models where a significant
fmction of the domain is land.

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

6: Distributed memory parallel
implementation

The program structure required for distributed memory
machines is very similar to that shown in the previous
section for shared memory machines. A copy of the
program runs on each processor, so that the control loop
now only invokes a single process. The sending and
receiving of data is now implemented by calls to a
proprietary message passing library.

If the message passing interface allows explicit access to
asynchronous communications, then computation may be
overlapped with communications in the following way.
For example for the c update:

update at the sub-domain boundaries
send [values to N and W
initiate receives for [values from E and S
update c in the sub-domain interior
check receives have completed

The new boundary values are computed first, the new
data sent and receives posted. Computation of the interior
points then follows and by the time the receives are
issued, communications should be complete. Clearly, the
greater the size of the subdomain, the greater the ratio of
work between the interior and the boundary, and the
greater the possibility for overlap in this way.

7: Data parallel implementation

When programming data parallel or SIMD processors, the
data arrays must be mapped onto the array of processors.
This mapping is communicated to the compiler by the use
of compiler directives. For the POLMP code the
horizontal dimensions were mapped across the processor
array, with each gridpoint’s spectral data being held
within the processor memory. The compiler thus performs
horizontal partitioning implicitly. If the number of
gridpoints equals the number of processors, then clearly
each processor is allocated one gridpoint. For larger grids
each processor works on a patch of sea just as if the
domain had been explicitly partitioned. The computational
kemel was rewritten using Fortran 90 array syntax, which
forms the interface between the programmer and the
processor array on these computers.

8: Transarchitectural portability

In order to combine the ability to transport the code
between machines of different architectures with the ease
of maintenance that goes with having a single copy of the
code, the preceding coding structures were combined in
a single hybrid implementation. Details of the structure of
the composite coding are given by Ashworth and Davies
[13.

Standard Fortran 77 was used wherever possible. In
certain areas, such as process spawning and message
passing, machine dependent constructs must be used.
Machine dependent sections of code are enabled and
disabled using the ANSI standard C ppmxssor to form
the source file for a particular machine h m the master
copy. This preprocessor is available on most Unix
systems, thus further enhancing the portability of the
Code.

9: Performance on the Cray vector
multiprocessors

In this and subsequent sections, performance results are
presented for a number of parallel machines. The problem
size is govemed by four parameters: nr and ny, the
number of grid points in the horizontal finite difference
scheme: m, the number of vertical modes in the spectral
expansion: and nts, the number of time steps. The speed
in Mflops is calculated f” the number of floating point
operations which are known to be required in the kemel
of the program and is a simple function of the problem
size.

A subset of the domain was printed out at the end of
each run in order to check the correctness of the results.
In production modelling runs all field arrays would need
to be written out after every 100-1OOO timesteps. Efficient
implementation of this i/o requirement is an important
issue which demands careful consideration and which, on
most parallel machines, involves machine dependent
coding.

For the Cray Y - W and Cray Y-h4P C90 shared memory
vector multiprocessors, performance was measured using
a grid of size 224 x 416 x 16 run for 3200 timesteps. The
eight processor Cray Y-h4P/8 gave 1495 m o p s which is
56% of the peak performance of 2667 Mflops. On a
sixteen processor Cray Y -hP/16 C90, which with a clock
speed of 4 IIS has a peak performance of 16ooo Mflops,
the code achieved 7308 Mops ar 46% of peak.

386

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

10: Performance on the Intel iPSC/860

The Intel iPSC/s60 is a distributed memory MlMD
message-passing machine, using i860 processors rated at
80 peak Mops each in single, 32-bit, precision.
Horizontal partitioning was implemented using the native
message passing library available on the machine. One
instance of the code, the one running on node zero, was
deemed to be the master process and handled the input of
steering data, the division of the problem into sub-
domains, the sending of steering data to the other, slave,
processes and the collection of results at the end of the
calculation. This last function, that of writing results,
should in a full production model be distributed across
the processing nodes using the concurrent file system
which is available on the iPSC machines.

Despite the kernels of the code being highly vectorizable,
the single node performance was initially poor, only
achieving a rate of 2.7 Mflops using the Portland Group
compiler (if77). By selecting the -Knoieee compiler
switch, which runs the i860 in native floating point mode

Mflops
250

/
/

/
/ 1

/

/ I

0 4 0 12 16

Number of processors

Figure 3. Scaled performance In Wlops of the
POLMP model on the Intel iPSC/860 as a function
of the number of processors used. The dashed
llne shows the Ideal performance obtained by
scaling the single node performance. Each
processor works on a sea area of 128 x 64 with
16 vertical modes and the model was run for 200
t imesteps.

rather than according to the IEEE standard, an
improvement to 14.7 Mflops was realised. The change of
floating point format is not significant to the results
produced from this code. This performance is still well
short of the 80 Mflops peak. The shortfall is believed to
be mainly due to the inadequacy of the off-chip memory
bandwidth. Techniques for attaining higher performance
from the i860 by programming in assembler have been
described [9], but we do not consider this to be an
amt ive route for a modern environmental modelling
project.

Using 16 nodes of the Intel iPSCB60 the code ran at 161
Mflops for a problem size of 256 x 256 x 16 run for 200
timesteps. A larger problem of 512 x 512 x 16 achieved
215 Mflops. With a peak performance of 1280 Mflops
these figures correspond to 13% and 17% of peak
respectively.

In addition to running large problems on 16 nodes, the
parallel performance of the code was tested using a
scaled performance test. The difficulty with using a single
problem size for a wide range of numbers of processors
is well-known. A large problem will not fit within the
memory of a single node, and a small problem will not
demonstrate the full performance available from a large
number of nodes. It is therefore sensible to fix the grid
size on each node so that, as the number of processors is
increased, a larger and larger problem size is being
solved. This corresponds to the likely usage of the
machine, as scientists will always want to run the largest
problem that will fit onto a given size of machine.

Figure 3 shows the performance using a subdomain size
of 128 x 64 on each processor node with 16 vertical
modes run for 200 timesteps. The program ran for about
60 seconds independent of the number of nodes, and
covered domains up to 512 x 256 in size. The results
show a good speed-up with increasing number of nodes,
but with the efficiency falling off to about 80% at 16
nodes.

11: Performance on the MasPar MP-1104

The M a s h MP-1104 is an SIMD, data parallel computer
with 4096 RISC-like floating point processors. By
experimentation it was found that best performance was
obtained when communications was effected using array
sections rather than the Fortran 90 explicit functions
CSHIIT or EOSHET. Code with faed, statically
allocated arrays performed better than using automatic

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

a m y allocation, but has the disadvantage that a program
must be compiled for a particular problem sue.

A well-known feature of data parallel computers is the
wide variation in performance depending upon how the
data arrays map onto the processor array. Figure 4 shows
the performance of the F'OLMP kernel in Mflops plotted
against the size of the side of a square domain. The graph
is a sawtooth with performance rising steeply to a
maximum at 64 x 64, when the data arrays fit perfectly
onto the processor array (i.e. there is one grid point per
processor). For larger data sizes, the speed drops off and
rises to a peak at 128 x 128 and then to another near 192
x 192. However, the height of the peaks appears to be
diminishing, with no problem size performing better than
the 64 x 64. Sawtooth behaviour is also seen on vector
processors as performance varies with vector length, but
in that case the overall performance asymptotically
approaches the peak speed.

The full POLMP code was built into two versions, one
with a fixed, statically allocated array size of 64 x 64 x
16 and the other 128 x 128 x 16. As on the Intel, output
of results was disabled. Passing the amys back to the
front-end was prohibitively expensive, and it was felt that
a proper implementation of the application would use
parallel input/output direct from the array processor to
disk.

The data arrays are of size (nx+2) x (ny+2), due to the
addition of a boundary strip in each direction, so the best
performance is attained by setting the problem size to 62
x 62 and 126 x 126. The maximum performance achieved
for the smaller problem was 155 Mflops, when running
with 16 modes for 2oooO timesteps. The larger problem
only reaches 122 Mflops under the same conditions. With
an advertised peak performance of 300 Mflops these
results represent 52% and 41% of peak respectively.

12: Performance on the Meiko i860
Computing Surface

The Meiko Computing Surface is a distributed memory
message passing MIMD computer. The machine used for
these measurements was equipped with i860 compute
nodes. Implementation of POLMP was effected by using
the Intel version of the code together with a compatibility
library which forms an interface between the Intel
message passing library calls and Meiko's CS Tools
environment. For a problem of 256 x 256 x 16 run for
200 timesteps on 16 nodes of the Computing Surface the
code ran at 226 Mflops. The larger problem of 512 x 512

x 16 achieved 279 Mflops. With a peak rating of 1280
Mflops these speeds correspond to 18% and 22% of peak
performance respectively. These results indicate that the
overhead in introducing the extra layer of software were
small.

13: Performance on the CM-200 Connection
Machine

The CM-200 Connection Machine is an SIMD, data
padlel, computer. We used a machine with 16384
single-bit processors, which are supported by 512 32-bit
floating point accelerator units. Originally CSHIFT
functions were used to generate the shifted arrays needed
for the finite difference stencil, but these calls were
replaced with PSHIFT calls from the CMSSL Library,
which allow communication to take place simultaneously
in all four directions, thus making full use of the
communications network. Jordan [7] describes how
higher performance may be obtained for two-dimensional
finite difference schemes by using the CM-Stencil
Library. Output of results from the model was, again,
omitted from the code as this would have required
considerable additional effort in special coding.

Mflops
160'

1 00 150
Problem size

200

Figure 4. Performance In Mflops of the kernel of
the hydrodynamic model on the MasPar MP-1104
as a function of the problem size. he problem
size parameter Is the size of a square domain
wtth 16 vertical modes run for 200 timesteps.

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

14: Conclusions
As with the War, there was a wide variation in
performance with the size of the data arrays. Figure 5
shows the performance of the POLMP kernel on 8192
processors as a function of the problem size. Nice values
such as 128 x 128, 192 x 192 and 256 x 256 achieve
high performance, but intermediate values are slower by
up to a factor of 40. Whereas it is understandable that
arrays of size 257 x 257 should perform badly, as any
division by a power-of-two number of processors will
leave a small remainder and create a load imbalance, it
was, on the face of it, surprising that 255 x 255 should
also be poor. It is clear from other work on data parallel
machines, for example [lo], that nice problem sizes have
been chosen for maximum performance and there is no
reason for most applications why this restriction should
be a disadvantage.

As for the Maspar, the data arrays are of size (nx+2) x
(ny+2), so the best performance is attained by setting the
problem size to 126 x 126, 254 x 254 and 510 x 510.
The problems were run on 16384 processors with 16
modes and for 2oooO timesteps. Performance for the
three problem sizes was 597, 864 aid 1249 Mflops
corresponding to 7%, 11% and 16% respectively of the
peak performance of 8000 Mflops.

MIIODS

I
500 1

I
400 -

300 r

100 1
O L

1

i,
0 100 200 300 400 500 600

Problem size

Figure 5. Performance In Mflops of the kernel of
the hydrodynamic model on 8192 processors of
the CM.200 Connection Machine as a function of
the problem size. The problem size parameter is
the size of a square domain with 16 vertical
modes run for 200 tlmesteps.

In most cases there was no difficulty in obtaining a good
parallel efficiency provided that a sufficiently large
problem was used. When this is done and
communications is overlapped with computation, the
communications speed itself does not appear to be a
limiting factor for most applications on most machines.

With a few notable exceptions, the fraction of the peak
performance obtained with this code is in the range 7-
22% . The MasPar gave a goad hction of peak and the
Cray supercomputers demonstrated why vector
multiprocessors have been the mainstay of
supercomputing for the last two decades. The
performance in the other cases was disappointing bearing
in mind the high parallel efficiency and results almost
entirely from poor performance of a single processor or
processing element. There are several reasons for this. In
some cases it is clear that the combination of compiler
and RISC architecture does not produce as efficient d e
as a vector processor. It is possible that there may yet be
improvements in this area or that parallel computer
manufacturers may start to use vector processing nodes
to good effect. For some machines the performance of
computationally intensive parts of the code is limited by
the bandwidth between the processor and its memory, the
on-chip cache being too small to alleviate the problem.

15: Acknowledgements

I should like to express my thanks to staff at the SERC
Daresbury Laboratory, Edinburgh Parallel Computing
Centre and the Atlas Centre of the SERC Rutherford
Appleton Laboratory and to Mike O’Neill of Cray (UK)
Ltd, Vic Knight of W a r (UK) Ltd, and Duncan
Roweth of Meiko Ltd for help and assistance with the
benchmarks.

16: References

1. Ashworth, M. and Davies, A.M., Restructuring three-
dimensional hydrodynamic models for computers with low and
high degrees of parullelism, in Parallel Computing ’91, eds
D.J.Evans, GKJoubert and HLiddell (North Holland, 1992),
553-560.

2. Davies. A.M., Formulation of a linear three-dimensional
hydrodynamic sea model using a Galakineigenfunction
method, International Journal for Numerical Methods in Fluids,
3, (1983) 33-60.

389

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

3. Davies, A.M., Solution of the 3D linear hydrodynamic
equations using an enhanced eigenfunction approach,
Intemational Journal for Numerical Methods in Fluids, 13,

4. Davies, A.M., Gnonka R.G. and Stephens, C.V., A
microtasked numerical model of seas on the RAL Cray X-MP,
NERC Computing, No. 44, (1989) 32-36.

5. Davies, A.M., Grmnka, R.G. and Stephens, C.V., The
implementation of hydrodynamic numerical sea models on the
Cray X-MP, in Advances in Parallel Computing, Vol. 2, ed.
D.J. Evans (JAI Press. 1992)

6. Harding. T.. An oceanographic model on a transputer array,
Intemal report of the Department of Statistics and
Computational Mathematics, University of Liverpool, UK
(1992).

7. Jordan, K., Use of finite difference patterns to achieve high
performance on the CM-2, Thinking Machines Corporation
technical report TMC-194 (1992).

8. McBryan, 0.. A comparison of the Intel iPSC/860 and the
Suprenum-1 parallel computers, Supercomputer, 41, (1991) 6-
17.

9. Purvis. W., Programming the i860, Parallelogram, part 1 Nov
1990, part 2 Jan 1991, part 3 Sep 1991.

10. Smith, RD.. Dukowicz, J.K. and Malone, R.C., Parallel
ocean circulation modelling, Physica D in press (1992).

11. Wolf, J., A comparison of a semi-implicit with an explicit
scheme in a three-dimensional hydrodynamic model,
Continental Shelf Research, 2, (1983) 215-229.

(1991) 235-250.

390

Authorized licensed use limited to: Science & Technology Facilities Council (Warrington). Downloaded on August 16,2010 at 09:31:32 UTC from IEEE Xplore. Restrictions apply.

