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2: Description of.:be FOLMP model 
Abstract 

A three dimensional shallow sea model is briefiy 
described in which the three dimensional jlow field in a 
S;'wllow sea region is represented using afinite difference 
gric' iii the horizontal and a spectral expansion in the 
verti :.A. A horizontal domain decomposition is employed, 
In which each processor works on a patch of sea and 
come utnicates boundary values with neighbouring 
processors as required. Performance characteristics of 
this code are presented using computers with a range of 
parallel architectures, including shared memory vector- 
parallel, distributed memory message passing, and data 
parallel. Whereas good parallel eficiency is readily 
obtained. the performance on most highly parallel 
computers is limited by the performunee of the individual 
processors. 

1: Introduction 

With the significant rise in computing power over the last 
ten years, there has been increased activity in the 
development of three dimensional sea models, aimed at 
simulating current patterns in shallow sea regions, The 
ability to accurately predict these currents is particularly 
important in a wide range of pollution problems. 

It is becoming increasingly clear that parallel processing 
is the best way of satisfying the future demands of these 
and other applications. However, to date parallel systems 
have not proved very attractive for large scale 
environmental modelling projects in the UK. This paper 
describes one of a number of activities which aims to 
develop parallel algorithms and evaluate codes on a range 
of parallel architectures. 
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The Proudman Occanographic Laboratory 
Multiprocessing Program (POLMp) is a three- 
dimensional hydrodynamic shallow sea model which has 
been formulated to run efficiently on a range of modern 
parallel computers. The code was developed using a set 
of portable programming conventions based upon 
standard Fortran 77. The hydrodynamic partml differential 
equations are solved using a mixed explicit/iiplicit 
forward time integration scheme. The explicit component 
corresponds to a horizontal finite difference scheme 
(figure 1) and the implicit to an expansion in terms of 
functions in the vertical yielding a continuous current 
profile from sea surface to sea bed [2,3]. 

The model computes the wind induced flow in a closed 
rectangular basin. The facility exists for the inclusion of 
a number of arbih-ary land areas, though none of the 
results presented here contain land. Recently more 
physical 
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Flgure 1. The staggered grid flnlte dlfference 
scheme. < Is the ftea surface elevetion, U and v 
the x- and ycomp~nentr: 0:: ueloclty taspectlvely, 
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processes have been incorporated within this type of 
model giving rise to a larger computational task at each 
grid point, a trend favouring the solution on more highly 
parallel computers. 

We will briefly describe the solution of the linear (for 
clarity) hydrodynamic equations. The working equations 
in sigma co-ordinates o=z/h are given by 

av a( 1 a 
at ay h2 aa ('2) - + yu= -g - + - - 

In these equations, t denotes time, x, y and z are 
Cartesian co-ordinates and U, v are the x- and 
y-components of velocity respectively. The acceleration 
due to gravity, g, and the geostrophic coefficient y are 
taken as constant, with p the vertical eddy viscosity, the 
free surface elevation and h the mean water depth. 

The functions used in the vertical are arbitrary, although 
the computational advantages of using eigenfunctions 
(modes) of the eddy viscosity profile have been 
demonstrated [2,5]. Recently Davies [3] has shown that 
by using a mixed basis set in which the modal expansion 
is enhanced by an additional function (an "enhanced" 
spectral approach) an improved rate of convergence over 
the "classical" approach can be obtained with associated 
saving in computer time and memory. 

3: Requirements for computation and 
communication 

Each timestep in the forward time integration of the 
model, involves successive updates to the three fields, the 

field, the U field and the v field. New field values 
computed in each update are used in the subsequent 
calculations. The new L values depend on ci. U,, ui.,. vi, 
and vc,, as can be seen in figure 1. Similarly, the new ui 
values are obtained from ui, C, t;l-l, vi, vi+,, vi-wl, and 
the new vi values from vi, L, cm, U,, U,+ U,, u~+,-~, where 
n is the number of grid points in the x-direction.. The 

calculations require 7 , l l  and 11 floating point operations 
respectively, making a total of 29 flops per grid point per 
time step, of which 18 are add or subtract operations and 
11 are multiplies. Thus, if a processor relies on 
overlapping adds with multiplies to obtain peak 
performance, as most do, we can only expect to reach 
81% of peak, simply due to the imbalance in the 
operation count. The actual flop count used to calculate 
Megaflop rates in POLMP is slightly less than this 
because it takes into account bounday effects. Each inner 
loop vectorizes, using unit stride vectors over the full 
range of the domain, ensuring that vector lengths are long 
and high efficiency is therefore obtained on vector 
processors. 

We can imagine that the data are mapped onto a 
processor array such that each grid point resides on a 
different processor, but with the fields aligned so that L, 
4 and vi are on the same processor. In this case 
processori requires data points v,, from the north, and 
U, from the south, ukl from the west, L+l and vki from 
the east, vi.wl from the north-east and u,*-~ from the 
south-west. This is a total of eight words from six 
directions per grid point per time step. Clearly this 
communication rate is a maximum, and larger data arrays 
or smaller processor arrays which result in processors 
working on a patch of sea rather than on a single point, 
will reduce inter-processor communications. 

The serial implementation of the model described above 
contains the following computational kemel, represented 
in pseudo-code. 

do for all timesteps 
do j for all modes 

do i for all gridpoints 
update c(i) from u(ij), v(ij), 

u(i-14). v(i-nj) 
enddo 

enddo 
do j for all modes 

do i for all gridpoints 
update u(ij) from c(i), c(i+l), v(ij), 

v(i+l 4). v(i-n,j), v(i-n+lj) 
enddo 

enddo 
do j for all modes 

do i for all gridpoints 
update v(ij) from W, C(i+n), u(ij), 

u(i-Lj), u(i+nj), u(i+n-lj) 
enddo 

enddo 
enddo 
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Figure 2. Horizontal decomposition of the domain 
into sub-domains (solid) wlth guard bands 
(dashed). Arrows show the data transfers from 
the central sub-domain and to Its guard band. 

4: Partitioning the Problem 

The most natural partitioning scheme for finite difference 
problems is to partition the horizontal domain between 
the processors, for example [6,8]. For the five-point finite 
difference operator used here, this results in the 
decomposition shown in figure 2. Each processor works 
on a sub-domain and maintains in a guard band around 
its own data a copy of the neighbouring values from 
adjacent sub-domains. After each update within each 
timestep, certain data values are exchanged to keep the 
data in the guard band up-to-date. By the time the 
timestep is complete, exchanges of data in six directions 
will have taken place. Clearly, as the size of the sub- 
domain is increased the communications overhead will 
become relatively less important. 

5: Shared memory parallel implementation 

The horizontal partitioning method has been implemented 
in the following way for shared memory parallel 
machines. In computational terms, this is a m e  grain 
(macrotasking) approach, as opposed to the use of a fine 
grain approach using microtasking directives [5] to 

achieve parallelism over the vertical modes. The master 
process executes a control loop over the number of sub 
domains, nsub, which initiates nsub-1 processes, each 
pointing to its own sub-domain, with the final subdomain 
being left for the master. The structure for the kemel 
within the time stepping loop of each process is as 
follows. 

updater 
send r values to N and W 
receive ( values from E and S 
update U 
send U values to N, E and NE 
receive U values from S, W an SW 
update v 
send v values to S, W and SW 
receive v values from N, E and NE 

In order for such an approach to be implemented, the 
explicit time integration method used here is required 
[2,3]. The application of a semi-implicit method using a 
sweep approach [ l l ]  would be more involved and in 
some cases impossible to implement efficiently. 

On a shared memory multiprocessor, the sending of data 
is achieved by one process writing to the data array 
containing the other’s sub-domain. During this phase of 
data exchange, each data location in the guard band of 
each subdomain is written to by one, and only one, 
process. Therefore, the processes can write in parallel. 
The only safeguard which is required is that there is a 
synchronization point before and after the data exchange 
phase to ensure that it does not overlap with a 
computation phase. This is achieved by setting up a 
barrier at which each process waits until all processes 
have reached the barrier. Barriers are available on most 
shared memory multiprocessors. 

The data arrays for each sub-domain are allocated in such 
a way that all data for a particular subdomain are located 
sequentially in memory. This allows the inner loop for 
each update to be vectorized over the entire subdomain 
with unit stride memory accesses, maintaining maximum 
efficiency on vector processors. Masking was used for 
land and boundary points, as this has been shown to be 
most generally effective [5 ] ,  but altemative code using 
the strip-mining method was also included for use on 
scalar processors and for models where a significant 
fmction of the domain is land. 
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6: Distributed memory parallel 
implementation 

The program structure required for distributed memory 
machines is very similar to that shown in the previous 
section for shared memory machines. A copy of the 
program runs on each processor, so that the control loop 
now only invokes a single process. The sending and 
receiving of data is now implemented by calls to a 
proprietary message passing library. 

If the message passing interface allows explicit access to 
asynchronous communications, then computation may be 
overlapped with communications in the following way. 
For example for the c update: 

update at the sub-domain boundaries 
send [ values to N and W 
initiate receives for [ values from E and S 
update c in the sub-domain interior 
check receives have completed 

The new boundary values are computed first, the new 
data sent and receives posted. Computation of the interior 
points then follows and by the time the receives are 
issued, communications should be complete. Clearly, the 
greater the size of the subdomain, the greater the ratio of 
work between the interior and the boundary, and the 
greater the possibility for overlap in this way. 

7: Data parallel implementation 

When programming data parallel or SIMD processors, the 
data arrays must be mapped onto the array of processors. 
This mapping is communicated to the compiler by the use 
of compiler directives. For the POLMP code the 
horizontal dimensions were mapped across the processor 
array, with each gridpoint’s spectral data being held 
within the processor memory. The compiler thus performs 
horizontal partitioning implicitly. If the number of 
gridpoints equals the number of processors, then clearly 
each processor is allocated one gridpoint. For larger grids 
each processor works on a patch of sea just as if the 
domain had been explicitly partitioned. The computational 
kemel was rewritten using Fortran 90 array syntax, which 
forms the interface between the programmer and the 
processor array on these computers. 

8: Transarchitectural portability 

In order to combine the ability to transport the code 
between machines of different architectures with the ease 
of maintenance that goes with having a single copy of the 
code, the preceding coding structures were combined in 
a single hybrid implementation. Details of the structure of 
the composite coding are given by Ashworth and Davies 
[13. 

Standard Fortran 77 was used wherever possible. In 
certain areas, such as process spawning and message 
passing, machine dependent constructs must be used. 
Machine dependent sections of code are enabled and 
disabled using the ANSI standard C ppmxssor  to form 
the source file for a particular machine h m  the master 
copy. This preprocessor is available on most Unix 
systems, thus further enhancing the portability of the 
Code. 

9: Performance on the Cray vector 
multiprocessors 

In this and subsequent sections, performance results are 
presented for a number of parallel machines. The problem 
size is govemed by four parameters: nr and ny, the 
number of grid points in the horizontal finite difference 
scheme: m, the number of vertical modes in the spectral 
expansion: and nts, the number of time steps. The speed 
in Mflops is calculated f” the number of floating point 
operations which are known to be required in the kemel 
of the program and is a simple function of the problem 
size. 

A subset of the domain was printed out at the end of 
each run in order to check the correctness of the results. 
In production modelling runs all field arrays would need 
to be written out after every 100-1OOO timesteps. Efficient 
implementation of this i/o requirement is an important 
issue which demands careful consideration and which, on 
most parallel machines, involves machine dependent 
coding. 

For the Cray Y - W  and Cray Y-h4P C90 shared memory 
vector multiprocessors, performance was measured using 
a grid of size 224 x 416 x 16 run for 3200 timesteps. The 
eight processor Cray Y-h4P/8 gave 1495 m o p s  which is 
56% of the peak performance of 2667 Mflops. On a 
sixteen processor Cray Y -hP/16 C90, which with a clock 
speed of 4 IIS has a peak performance of 16ooo Mflops, 
the code achieved 7308 Mops ar 46% of peak. 
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10: Performance on the Intel iPSC/860 

The Intel iPSC/s60 is a distributed memory MlMD 
message-passing machine, using i860 processors rated at 
80 peak Mops each in single, 32-bit, precision. 
Horizontal partitioning was implemented using the native 
message passing library available on the machine. One 
instance of the code, the one running on node zero, was 
deemed to be the master process and handled the input of 
steering data, the division of the problem into sub- 
domains, the sending of steering data to the other, slave, 
processes and the collection of results at the end of the 
calculation. This last function, that of writing results, 
should in a full production model be distributed across 
the processing nodes using the concurrent file system 
which is available on the iPSC machines. 

Despite the kernels of the code being highly vectorizable, 
the single node performance was initially poor, only 
achieving a rate of 2.7 Mflops using the Portland Group 
compiler (if77). By selecting the -Knoieee compiler 
switch, which runs the i860 in native floating point mode 
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Figure 3. Scaled performance In Wlops of the 
POLMP model on the Intel iPSC/860 as a function 
of the number of processors used. The dashed 
llne shows the Ideal performance obtained by 
scaling the single node performance. Each 
processor works on a sea area of 128 x 64 with 
16 vertical modes and the model was run for 200 
t imesteps. 

rather than according to the IEEE standard, an 
improvement to 14.7 Mflops was realised. The change of 
floating point format is not significant to the results 
produced from this code. This performance is still well 
short of the 80 Mflops peak. The shortfall is believed to 
be mainly due to the inadequacy of the off-chip memory 
bandwidth. Techniques for attaining higher performance 
from the i860 by programming in assembler have been 
described [9], but we do not consider this to be an 
amt ive  route for a modern environmental modelling 
project. 

Using 16 nodes of the Intel iPSCB60 the code ran at 161 
Mflops for a problem size of 256 x 256 x 16 run for 200 
timesteps. A larger problem of 512 x 512 x 16 achieved 
215 Mflops. With a peak performance of 1280 Mflops 
these figures correspond to 13% and 17% of peak 
respectively. 

In addition to running large problems on 16 nodes, the 
parallel performance of the code was tested using a 
scaled performance test. The difficulty with using a single 
problem size for a wide range of numbers of processors 
is well-known. A large problem will not fit within the 
memory of a single node, and a small problem will not 
demonstrate the full performance available from a large 
number of nodes. It is therefore sensible to fix the grid 
size on each node so that, as the number of processors is 
increased, a larger and larger problem size is being 
solved. This corresponds to the likely usage of the 
machine, as scientists will always want to run the largest 
problem that will fit onto a given size of machine. 

Figure 3 shows the performance using a subdomain size 
of 128 x 64 on each processor node with 16 vertical 
modes run for 200 timesteps. The program ran for about 
60 seconds independent of the number of nodes, and 
covered domains up to 512 x 256 in size. The results 
show a good speed-up with increasing number of nodes, 
but with the efficiency falling off to about 80% at 16 
nodes. 

11: Performance on the MasPar MP-1104 

The M a s h  MP-1104 is an SIMD, data parallel computer 
with 4096 RISC-like floating point processors. By 
experimentation it was found that best performance was 
obtained when communications was effected using array 
sections rather than the Fortran 90 explicit functions 
CSHIIT or EOSHET. Code with faed, statically 
allocated arrays performed better than using automatic 
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a m y  allocation, but has the disadvantage that a program 
must be compiled for a particular problem sue. 

A well-known feature of data parallel computers is the 
wide variation in performance depending upon how the 
data arrays map onto the processor array. Figure 4 shows 
the performance of the F'OLMP kernel in Mflops plotted 
against the size of the side of a square domain. The graph 
is a sawtooth with performance rising steeply to a 
maximum at 64 x 64, when the data arrays fit perfectly 
onto the processor array (i.e. there is one grid point per 
processor). For larger data sizes, the speed drops off and 
rises to a peak at 128 x 128 and then to another near 192 
x 192. However, the height of the peaks appears to be 
diminishing, with no problem size performing better than 
the 64 x 64. Sawtooth behaviour is also seen on vector 
processors as performance varies with vector length, but 
in that case the overall performance asymptotically 
approaches the peak speed. 

The full POLMP code was built into two versions, one 
with a fixed, statically allocated array size of 64 x 64 x 
16 and the other 128 x 128 x 16. As on the Intel, output 
of results was disabled. Passing the amys back to the 
front-end was prohibitively expensive, and it was felt that 
a proper implementation of the application would use 
parallel input/output direct from the array processor to 
disk. 

The data arrays are of size (nx+2) x (ny+2), due to the 
addition of a boundary strip in each direction, so the best 
performance is attained by setting the problem size to 62 
x 62 and 126 x 126. The maximum performance achieved 
for the smaller problem was 155 Mflops, when running 
with 16 modes for 2oooO timesteps. The larger problem 
only reaches 122 Mflops under the same conditions. With 
an advertised peak performance of 300 Mflops these 
results represent 52% and 41% of peak respectively. 

12: Performance on the Meiko i860 
Computing Surface 

The Meiko Computing Surface is a distributed memory 
message passing MIMD computer. The machine used for 
these measurements was equipped with i860 compute 
nodes. Implementation of POLMP was effected by using 
the Intel version of the code together with a compatibility 
library which forms an interface between the Intel 
message passing library calls and Meiko's CS Tools 
environment. For a problem of 256 x 256 x 16 run for 
200 timesteps on 16 nodes of the Computing Surface the 
code ran at 226 Mflops. The larger problem of 512 x 512 

x 16 achieved 279 Mflops. With a peak rating of 1280 
Mflops these speeds correspond to 18% and 22% of peak 
performance respectively. These results indicate that the 
overhead in introducing the extra layer of software were 
small. 

13: Performance on the CM-200 Connection 
Machine 

The CM-200 Connection Machine is an SIMD, data 
padlel, computer. We used a machine with 16384 
single-bit processors, which are supported by 512 32-bit 
floating point accelerator units. Originally CSHIFT 
functions were used to generate the shifted arrays needed 
for the finite difference stencil, but these calls were 
replaced with PSHIFT calls from the CMSSL Library, 
which allow communication to take place simultaneously 
in all four directions, thus making full use of the 
communications network. Jordan [7] describes how 
higher performance may be obtained for two-dimensional 
finite difference schemes by using the CM-Stencil 
Library. Output of results from the model was, again, 
omitted from the code as this would have required 
considerable additional effort in special coding. 

Mflops 
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Figure 4. Performance In Mflops of the kernel of 
the hydrodynamic model on the MasPar MP-1104 
as a function of the problem size.  he problem 
size parameter Is the size of a square domain 
wtth 16 vertical modes run for 200 timesteps. 
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14: Conclusions 
As with the War, there was a wide variation in 
performance with the size of the data arrays. Figure 5 
shows the performance of the POLMP kernel on 8192 
processors as a function of the problem size. Nice values 
such as 128 x 128, 192 x 192 and 256 x 256 achieve 
high performance, but intermediate values are slower by 
up to a factor of 40. Whereas it is understandable that 
arrays of size 257 x 257 should perform badly, as any 
division by a power-of-two number of processors will 
leave a small remainder and create a load imbalance, it 
was, on the face of it, surprising that 255 x 255 should 
also be poor. It is clear from other work on data parallel 
machines, for example [lo], that nice problem sizes have 
been chosen for maximum performance and there is no 
reason for most applications why this restriction should 
be a disadvantage. 

As for the Maspar, the data arrays are of size (nx+2) x 
(ny+2), so the best performance is attained by setting the 
problem size to 126 x 126, 254 x 254 and 510 x 510. 
The problems were run on 16384 processors with 16 
modes and for 2oooO timesteps. Performance for the 
three problem sizes was 597, 864 aid 1249 Mflops 
corresponding to 7%, 11% and 16% respectively of the 
peak performance of 8000 Mflops. 
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Figure 5. Performance In Mflops of the kernel of 
the hydrodynamic model on 8192 processors of 
the CM.200 Connection Machine as a function of 
the problem size. The problem size parameter is 
the size of a square domain with 16 vertical 
modes run for 200 tlmesteps. 

In most cases there was no difficulty in obtaining a good 
parallel efficiency provided that a sufficiently large 
problem was used. When this is done and 
communications is overlapped with computation, the 
communications speed itself does not appear to be a 
limiting factor for most applications on most machines. 

With a few notable exceptions, the fraction of the peak 
performance obtained with this code is in the range 7- 
22% . The MasPar gave a goad hction of peak and the 
Cray supercomputers demonstrated why vector 
multiprocessors have been the mainstay of 
supercomputing for the last two decades. The 
performance in the other cases was disappointing bearing 
in mind the high parallel efficiency and results almost 
entirely from poor performance of a single processor or 
processing element. There are several reasons for this. In 
some cases it is clear that the combination of compiler 
and RISC architecture does not produce as efficient d e  
as a vector processor. It is possible that there may yet be 
improvements in this area or that parallel computer 
manufacturers may start to use vector processing nodes 
to good effect. For some machines the performance of 
computationally intensive parts of the code is limited by 
the bandwidth between the processor and its memory, the 
on-chip cache being too small to alleviate the problem. 
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