cor) -

technical memorandum Daresbury Laborator

DL/SCI/TM6IT

DL/SCI/TM61T

—_——

FORTRAN 77 PROGRAMMING OF PARALLEL COMPUTERS
by

R.Y. ALLAN, SERC Daresbury Laboratory

PSP VICL Y S TERTEY

:__--5_‘“4'

B FREY SOR SRE ¢
LS OMMA e s
© 7 APR19%0

- i—— 0

Y=

LIBRARY
NOVEMBER, 1989
89/488
i
DARESBURY LABORATORY [ABAE IW I B

Daresbury, Warrington WA4 4AD

© SCIENCE AND ENGINEERING RESEARCH COUNCIL 1989

Enquiries about copyright and reproduction should be addressed to:—
The Librarian, Daresbury Laboratory, Daresbury, Warrington,
WA4 4AD.

[SSN 0144-5677

IMPORTANT

The SERC does not accept any responsibility for loss or damage arising
from the use of information contained in any of its reports or in any
communication about its tests or investigations.

FORTRAN77 Programming of Parallel Computers
R.J.Allan 29/6/89

Advanced Research Computing Group
paresbury Laboratory

S.E.R.C.

Daresbury

Warrington, WA4 4AD

U.K.

Abstract

A review 1s given of some of the implementations of the FORTRAN
programming language on coarse and medium-grain MIMD processors,
which have come to be known as multicomputers. Some general notesa on
operating systems and algorithm strategy for scilentific computing
are included. Information is provided on using the parallel
computing facllities at Daresbury.

Most FORTRAN implementations consist of language extensions for
inter-processor or inter-task communications. These are dealt with
explicitly and example programs are shown. A new occam-2 harness for
the Meike Computing Surface is described.

Outline of Review
I Introductlion

II Operating Environments
UNIX
Trollius (Trillium, Transtech Niche etc.)
CE/RK {Cosmic Cube, Intel 1PSC etc.)
Hellos (Perihelion, Atari etc.)
Occam TDS {Inmos, Melko, Transtech, Parays etc.)
Threads and Lightwelght Processes (3L etc.)
Semaphores and Ports

I11 Parallel Programming
Algorithms, FORTRAN 8X, numerical libraries etc.
Debugging
Balancing, optimisation and performance monitoring

IV Programming Environment (FORTRAN)
Helilos
Intel iPSC/2
Meiko Computing Surface (and the Fortnet harness)
NCUBE)
Transtech NTP1000
Parsys SN100Q
3L Parallel FORTRAN

References

Appendices
Timing intrinsic FORTRAN routines
Whetstone Benchmark
Copmunications Benchmark

I Introduction

Some of +the material of this review was presented in the TCS
Division seminar series on 3rd october 1988, and is intended in part
as an introductory guide to programming the parallel computers at
Paresbury Laboratory (DL) in the FORTRAN77 language [1]. In further
part the materlal has been collected for my own personal use during
evaluation of MIMD systems and as a repository +to share with
collegues. Many statements in the text are my personal views and are
not consldered to represent ARCG policy, or policy of any of the
companies mentioned. Many of the names included in the text are
protected by registration or trade marks. #All information in the
text is public knowledge as far as I am aware, any inaccuracies or
misconceptions are entirely due to my own fault and are in now way
deliberately misleading (standard disclaimer }.

The reason for using FI7 as opposed to C or the new parallel
syntaxee (Occam [II.5.2], Ada [2], Concurrent Pascal [3], SISAL [4]
etc.) is the massive investment in code developed for scientific
applications over the last 20 years. Mathematical subroutine and
program libraries (such as those maintailned by NAG, CPC, Argonne and
others) make rapid implementation and exploitation of new methods in
physics, chemistry and engineering possible. Without that
infrastructure the basis of modern scientific computing, and much of
the impetus for developing codes on, and using supercomputers would
be lost. Another important area in which we have seen major advances
in recent vyears 1s in debugging and analysing complex code. The
presence therefore, of very good F77 programming tools provides an
incentive to the academic scientiflc community in exploiting
parallelism.

What is parallel computing? For the purpose of this review the
definition 1s restricted to the use of N processors and M taska (1n
other words M interconnected seguential F77 programs) which execute
simultaneously to produce a useful result. This is multiple
instruction multiple data (MIMD) processing as opposed to single
instruction multiple data (SIMD e.g. as on the dilstributed array
processor, DAP [5]1). Tasks may be doing independent work on
different data, independent work on the same data, or concurrent
work with inter-task communications. More discussion of the
approaches is deferred to section III.i. No consideration is given
to the the debate over hybrid or distributed-memory machines, the
present dilscussion being restricted to distributed memoriles, Sone
comparison and analcgies are hinted at.

What characteristics of a programming language are required for
a MIMD computer? The processes require the abillty to synchronise
under program control: this may be for data transmission. The term
"blocking" will be used for this synchronisation - 1f ensures that
the correct processor is ready to receive the correct message and
bilock incorrect ones. A more restricted terminology used in the
literature means that the task ls blocked from continuing Iits
execution until the transfer completes., This will effectively also
be the case in our implementation as seen in section IV.3. In the
protococl of communicating seguential processes (CGSP) (6] all
communiication is blocked by definition. The reason for blocking 1is
simply to allow different amounts of work to be done by each
processor, egsential to a MIMD operation. While the argument that
this causes load imbalance and therefore waste of resources 1s
valid, it is no worse in practise than not fully utilising a vector
processor in sequential code. Some redundancy of operation may
indeed be an aid to concocting an efficlent parallel implementation,

L1.1

and losses are then outweighed by gains. Blocking or CSP protocol is
gquite different in strategy from buffered protocol (of which the
prime example 1s UNIX (7]). It is more primitive and we shall see
that the latter might be implemented in terms of the former.

More general data transfer in messages may be unblocked and
synchreonous, or asynchronous protocol. All processors want to hbe
able to access files and devices {often attached to +the front-end
computer unless a distributed filing system 1s avallable) to reduce
program complexity l.e. reduce calls to message passing routines. A

file system must therefore be provided, possibly through UNIX
servers or other processes operating concurrently and invisible +to
the programmer. All these features must be callable as F77

extensions. One reason for wanting to reduce message passing is that
it 1is slow. As modern processor chips increase in performance,
communication becomes a real bottleneck, Just as In a sequential
machine where memory access rate dictates the nltimate performance.
This 18 the reason for favouring MIMD architecture in the first
place, but careful programming is needed to make full use of all
available resources.

What other features might be useful? Firstly the program might
want information about itself, such as the processor [(node) address
upen which it runs, the configuration of 1ts hardware environment
and 1ts process id (pld) in UNIX. The abillity to lcad or spawn new
processes or threads and kill old ones is also useful. Messages must
be checked and corrected if in error (wrong message or wrong
addresas) and perhaps gueued in buffers. We would ideally like to be
able to automatically configure programs for a gilven machine
topology or vice versa. That would balance the workload in the
optimum way for a given arrangement of processors, or suggest how a
machine should be built optimally for a specific application. More
discussion of load balancing and performance monitoring is given in
section III.3; it is a current research topic. Automatic routing of
messages ls essential to high-level applications.

Areas of other current and future research include the
following. Implementation of both special topelogy-dependent and
topology-independent optimlised mathematical algorithms, and machine
topology varlable under program control (accesa to hardware

switches). There is a clear need for concurrent debuggers to check
programs and data flow, which would ideally be able to place
processes so that trial conflguratlons can be made. Graphlcal

interfaces will be important in this area. Design of mathematical
software packages similar in nature to those available on vector
sequentlal machines is in progress. Implementation of shared-memory
emulators on MIMD machines to facllitate porting of programs will be
useful. There is however as yet nc generally accepted conventien to
write such software, and many strategles can be conceived and must
be tested in practise, A few thoughts on parallel subroutine library
Inplementation are given in section IIX.1.

In the next sections a brlef description of some of the
operating systems existing on parallel machines is provided. This
will help to understand what the FORTRAN77 language implementations
can be capable of, and how they work.

11.2

1! Parallel Operating Environments

This section gives a brief introduction to how some of the most
common parallel environments operate, but is by no means exhaustive.
A moderate understanding of the main features should give 1nsight
into what a parallel program 1s capable of doing within 1its
environment, how access 1s gained to the hardware, and to what point
knowledge of the hardware is required {leaving aside the fine-tuning
issues}. In a MIMD computer parallelism is put explicitly into the
code by writing separate host and node programs. The operating
seystems essentially provide only a way to access a set of kernels
which transfer data as messages between processes, either concurrent
in one node or in networked nodes.

Access to system kernels 1s via a set of higher-level Jllbrary
routine or server calls, which package the messages using a sultable
protocol depending on thelr length and destination, automatically
route them through the system ensuring minimum disturbance to other
processes, and prevent errors from occurring. Erroras may be of the
type that a message arrives that isn't wanted yet [or indeed ever).
There are two approaches to this problem; the first is to gqueue the
message, so that the user's program may later check for lts presence
- a strategy that will work well for either synchronous or
asynchronous transfer, although for the latter i1t is assential. If
there is an error in the program the message gueue may eventually
ovarflow and the job fall requiring a post-mortem trace of the gueue
buildup. The second approach 1s to signify an error to the sending
process and block it until the message is required.

Most systems described in this document, which are based on
UNIX-like kernels, use the first approach. Our own work (described
in section IV.3) uses the second approach and contains an error-
correcting scheme with handshaking protocol to account for both
"lost! messages and to resolve blocking. Program errors are assumed
to be the cause of one class of lost messages and are flagged
immediately as such in a run time trace.

A description of parallel communications on the CRAY, IBM, ETA
and FPS5-T20 and in the SPLIB (standard parallel library) ie given by
David Snelling and Geerd-R. Hoffmann (II.1.1). Thelr analysis 1s
somewhat different from the one presented here.

IX.1 Parallel processing in UNIX

One of the most important parts of 4.2BSD UNIX and the proposed
POSIX standard [I.1.7] is the interprocess communication (ipc)
facility. In UNIX version 7 {the previous standard discussed in many
textbooks) the only way that processes could communicate was by
pipes. Not only is it difficult for pipes to be maintalned 1in a
digstributed environment, but the scope they offer is limited., UNIX
4.2BSD contalns the implementation of sockets through which
processes may rendezvous to transfer data via a flle-system name,
esgsentially a buffer, or via a network. :

Three types of sockets exist, and they may be used to connect

either processes executing Iin the same host, or processes in
different hosts over a network. A client-server model is often used,
and many UNIX facilitles are avallable as servers, to which a

process connects by a socket, albeit imbedded in another system
library call. The three types of socket are, firstly a stream socket
which provides bidirectional, reliable, sequenced, unduplicated data
flow with no record boundaries, and 1s usually used inside a single
host. Plpes are implemented using a pair cof stream sockets. A second

Io.1.1

type, the datagram socket, is used over a network and closely models
a packet-switched network protocol such as Ethernet. It supports
bidirectional flow of messages that are however not guaranteed to be
sequenced, rellable or unduplicated. and may therefore be duplicated
or out of order upon arrival. Record boundaries are however
preserved. Finally a raw socket is provided to gilve access to
underlying protocol, it should not normally be used 1n applications.

To communicate between processes a socket must first be created,
then bound to a name {either a file name, or network name) and may
then be connected to and used for data transfer. Again in the UNIX

model clients connect whilst servers listen and accept connectlons
bafore providing a facility.
Synopsis of UNIX ipc calls.
Establishing and ueing synchronous hlocked sockets.
s=gocket(domain, type, protocol} -- create a socket, in this

call values of domailn of 'AF_NET' and 'AF_UNIX' are for transfer over

a network or inside a machine, vailues of type of 'SOCK_STREAM',
‘SOCK_DGRAM' or 'SOCK_RAW' are for a stream socket, a datagram socket or
a raw socket respectively. If protocol=0 a sultable protocol is

chosen by UNIX, alternatively the call

protocol=protobynane(tcp) —— may be used to get a protocol
number .

bind({s, name, namelen) -- asslign a name to a socket

connect(s, server, serverlen) -- rendezvous with process server
ueing a streams socket

listen(s, n) -~ wait for up to n connection requests from
clients

snew=accept({s, from, fromlen) -- accept a connection when

requested by a client. A blocking call which returns the new sockat
anew and description upon receipt of connection.

Wwrlte{s, buf, buflen) —- write to socket s with established
connection to a streams socket

read{s, buf, buflen) -- read from socket s

send(s, buf, buflen, flags) -- send to socket s, llke write

recv(s, buf, buflen, flags) -- receive from socket s, like read

shutdown(s, how) ~- shut down connection prior to closing

close(s) -- discard a socket

sendto(s, buf, buflen, flags, to, tolen) -- send data to a
datagram socket

recvirom{s, buf, buflen, flags, from, fromlen) -- recelve data

from a datagram socket
select{nfds, readfds, writefds, execptfds, timeocut) —-
multiplex 1/0 requests between multiple sockets or fillies

Other calls are avallable to specify service addresses on a
network:

gethostbyname(...) =-- return a hostent structure from
/etc/hosts

gethostbyaddyr(...) -- map host address into a hostent structure

gethostent(...) —--

getnetbyname(...) -— as above for networks

getnetbynumber{...) --

getnhetent(...) —-

getprotobyname{...) —-- as above for protocols

getprotobynumber(...) --
getprotoent{...} -~

mi.2

getservbyname(...) —-— for servers
getservbyport{...) --
getservent{...)}) --

Miscellaneous calls:

becomp(sl, 2, n) -—- compare byte-strings, 0 if same, <>0
otherwige

bcopy(sl, 82, n) -~ copy n bytes from s1 to =52

bzero(base, n} -- fill n bytes from base with zeros

htonl(val) ~— convert long 32b from host to net byte order

htons{val} ~- convert short 16b from host to net byte order

ntohl{val) ~- convert long 32b from net to host byte order

ntohs(val) -- convert short 16b from net to host byte order

If a machine has UNIX implemented it is clearly possible to set
up and talk to communications servers and thus send data between
processars on the same or different nodes. This 1s done by a kernel
and we wilil see this in the next few paragraphs. For thls reason it
has been outlined in some detall here. Similar calls for instance
are used by Transtech in theilr NiIiCHE PRE system which also uses UNIX
with the Trillium ipc layers for underlying communications servers
(see next section) and by Meiko in their SUN CStools. A version of
UNIX called AXIS ls used on the NCUBE machine (section IV.4), with a
kernel on the nodes called VERTEX. The Intel hypercube hans
implemented the NX/2 kernel on the nodes and a Unix host operating
system. On the Parsys SN1000 there is a system called IDRIS which
adheres to the POSIX standard. Parsys offer only these socket calls
as a neans of communication in F77.

II.2 Trollius (lately called trillium)

Both trillium and trollius are wild flowers native to the New
York region. and when it was found that the former name was already
licensed for use by another company's product the Cornell Theory
Center rapidly changed it. However trillium is now international
Jargon for thelr multicomputer operating environment.

Trillium [1] was origlnally designed for the transputer—based
FPS T-series hosted by a Gould UTX-32 and other connected UNIX-based
machines on a network. This explains 1its use on the Transtech NT1000
platform developed by NiCHE Technology with its transputer array and
SUN 3.0 front end, and on the Topologix boards. ’

The operating system has two fundamental layers, the local ipc
layer, which is a message rendez-vous kernel to pass messages
between blocked processes in a node and which is tightly coupled to
the underlying UNIX, and the remote ipc layer which loosely follows
the OSI network standard to pass messages between nodes. The former
is always present, whereas the latter, which is called from the
application code, is loaded as required from a library. Within the

latter layer are four more layers called physical, data-link,
network and transport. These respectively transfer to physical
ports, adjacent nodes via a protecting process, any node on the

system with routing information transparent to other

processes, and
any other node with a protection protocol which checks system status
to ensure reliable delivery. Because of the way transputers are
linked there is a higher overhead in using the network and transport

calls, More information and the system subrouti
caction oos] v [+] ne calls are given in

21

I1.3 CE/RK

The Cosmic Environment and Reactive Kernel were developed by
the research group at CalTech for use on the Cosmic Cube medium-
grain multicomputer which they designed. The multiple-process
message-passing environment is configured on both network hosts and
attached arrays with internal data transfer between nodes.

The CE host runtime system handles message passing between

programs on a collection of networked UNIX hosts and alsc allows
them to allocate and interface to one or more arrays. It provides a
set of daemon processes (servers), utility programs and runtime
libraries to do this. The RK node operating aystem supports
multiprogramming, message-driven process scheduling, storage
management and system calls on each node.
: A message can be any size from zero to the maximum avallable
memory. Messages of different lengths and destination have different
protocols, but are handled in an identical way by the programmer.
Messages are queued if necessary in either the sender, the receiver
or in transit. Aan arbitrary delay is therefore I1ntroduced, but
ordering is preserved between palrs of processes.

A process group within the CE system is the complete set of
node and host processes that make up a computational Job. CE
establishes and maps these processes onto the multlicomputer nodes,
and handles communication between them. Each process has an id
consisting of an ordered palr (node: pid). Node parameters range
from 0 to N-1 and N is the host. The mynode(), myhost(} and mypid()
functions give Information about them (see section IV.2). Messages
are sent between processes according to the structure wlthin the
process group. Processes have reference to other processes so that a
complete map can be maintained and new paths discovered, whilst flow
control is applled to preserve ordering.

Explicit spawning and kllling of processes ls permitted, by for
instance the call

spawn{ filename, node, pid, mode)

The writers of RK have been careful to consider the requirement for
fagt process creation in multicomputers. They therefore share code
segnents between processes created from the same program in <the
string filename and cache the initial data segment so subseguent
creations using filename need not acceas the flle system again.

3.1

11.4 Helios

Helios is the name of an operating environment developed by
Perihelion Software Limited [1]. It 18 designed to run on
transputers with at least 256 Lkbytes of memory each, and can cope
with an arbitrary interconnection topology. The hardware for which
it was developed is the Atarl ABAQ system. Peribelion also produce
their own transputer cards, and Helloa can be run on other systems
such as the Transtech NTP1000, Parytek, Meiko etc.

Hellos is a completely distributed operating system, with each
task contalning a nucleus which manages processes under its control
and their relationship to other processes. It can therefore be used
as an embedded sysetem (c.f. section IV.7). The nucleus consists of a
kernel, a system library, a loader and a process manager.

The current user interface gives a command line similar to the
UNIX C-shell coupled to an implementation of X-windows VII [2].
Commands plped together on the command llne may be distributed over
several processors by the system to run concurrently.

The basic unit manipulated by Hellos 13 a task. It i1s a program
in a known state of execution containing a number of concurrent
processes and environmental data such as files, memory, and other
resources. The only means of communicating between tasks is by
messages. Message passing primitives are implemented in the Hellos
kernel. A message is sent upon reguest to a server.

Distributed programming under Helios entalls putting a single
task on each processor (although there may be others from other
users too}. A blueprint file contains a description of how the tasks
are related and 1s read by a server which matches the reguested
configuration to avallable cpu and memory resources.

The system 18 designed as a client-server model, where each
procesgor has a number of servers (perhaps different ones) and a
name server talling whers they and others can be found. Tasks also
running concurrently on these processors reguest services such as
file handlers, window managers, date servers, spoolers and so on,
using a general server protocol. Servers are designed to have no
state 80 that they are unaffected by hardware faults and can be

brought up on any avallable node to balance loading. Memory and
processor management 1s carrled out by assigning a list of
capablllitles to each client. All objects (such as files,
directories, tasks, processors) have an associated access matrix
telling what operations may be performed on them. Only a client
having the correct capability may carry out an operation. An

encryption scheme 1s used for additional security.

4.1

IT.5 Occam _and the Transputer Develcopment System

Occam

Occam-2 is the language of the transputer and 1is an
implementation of the CSP protocol [I.1.6] and a development of the
experimental programming language EPL of D.May [1]. It enables a
system to be described as a collectlon of concurrent processes,
which communicate with each other and with peripheral devices
through channels. FEach transputer assignes local memory space for a
number of processes executing with local varilables. The only
connection between them 1s by calling procedures which pass
arguments, global variables and channel communication. It might be
argued that if processes share global variables they are actually
the same process. Only three primitive operations are combined +to
form an Occam program; these are

v := ¢ -— asslign the result of evaluating expression e to
variable v

¢ ! e —— output the result of evaluating expression e to
channel c

€ 7 v -~ input variable v from channel c

Processes may be combined into constructs in either sequential SEQ,
parallel PAR or alternative ALT fashion. Whilst the flrst two
constructs should be self explanatory, the last one is novel. It
indicates that the first of the ready processes listed together
under the ALT should be executed; useful if one requires to wait for
input from more than one source. It will be seen that this 1is a
fundamental feature of the CSP model and is also provided In a
number of higher-level 1implementations of FORTRAN. Other more
conventional language constructs such as IF, WHILE and CASE are also
provided and replicators may be applied to all constructs. Occam 1s
reentrant.

Occam processes are connected by channels which are strictly
defined. Communication is synchronous and does not occur until both
the sending and receiving processes are ready.

The Transputer chlp executes concurrent processes, and the
programming model for on-chip concurrency and distributed processes
are 1dentical. Processes are executed, if they are ready, with
round-robin scheduling. Unready processes are swapped out (they
might for instance be awalting input from another descheduled
process). Soft channels connecting processes in a single transputer
are buffered Iin memory so that data is not lost as process
environments are swapped. There is some similarity to the UNIX
sockets. The channels connecting processes on different transputers
do however require to be mapped onto hardwire links. This 1s done at
configuration time along with placement of processes onto
transputers. Since the connecting processes are on different chlps,
data ls passed when they are both scheduled and ready to transfer.

The form of an Occam-2 program 1s specified by a &yntax rather
similar 1in style to € ({at least it locks so to a FORTRAN
programmer). Structure is however maintained strictly by indentation
in units of two spaces, no semi-colons being needed to terminate
lines. The only lines not indented relative to one another are those
belonging to a list of items, such as processes belonging to a SEQ,

PAR, ALT, IF, CASE or WHILE construct. Indentation represents
hierarchy. The language facilities are very limited, there is for
instance (as in C) no default i/o0 specified and a number of

libraries are now avajlable which have implemented the procedures

II.5.1

commonly used by C programmers, such as printf, putchar, getchar,
lineptr. strcpy, sin, coa, etc.

Apart from this brilef overview detalls of the Occam-2
programming language cannot be described here. Many books are now
availlable which do that in easily readable form, some are listed in
the references at the end of this document {(2-5].

Occam Programming System and Folding Editor

The Qcecam Programming System OPS (MEIKO) and Transputer
Development System TDS (Inmos) (6] are Occam environments which work
through a folding editor. The environment (I shall refer to 1t
generically as 7TDS}) may be used to edit, compile, configure,
extract, load and run programs on a transputer array. Editing,
compllation and configuring are done on the host processor (or local
host), and access 1s provided to the filing system on the front end
or dedicated s8csi disk (MelkOS). Files belonging to the program
source and object code structure are automatically maintained by the
editor.

The editor interface 1s based on a concept called "folding".
The folding operations allow the text currently being entered to be
given a hierarchical structure {"fold structure") which reflects the
structure of the pragram under development. A smsection of code can be
hidden from view of the current edlitor window by placing i1t in a
fold which is then closed. Three dots “..." appear on the screen to
remind one of 1ts presence. Folds wlthin folds are possible and,
whilst the editor is good for on-line editing, 1listing of programs
and reading listed programs 1s difficult - Inmos seem to have
Implicitly admitted +this defect since they produce few listing
tools.

One fold of the editor screen normally contains a set of Occam
utilities. These comprise a compiler, a termlinal emulator (so that
your program can talk teo the screen and keyboard) and wiring
utilities to control the link switches between the transputers, An
editor screen on the Meiko might therefore contaln:

{{{F /home/rja/export/toplevel.top
{{{F /utlilLlib/util4Lib.1lib
...F Occam Compller T4 and TBQO
...F Terminal emulator
.-F Global search and replace
..F Library compacter
..F Explicit configuration tool
..F Implicit conflguration tool
..F Load wiring file
..F Test switch chips
..F Test switch chips: remote node
...F source/termemul.fex
i}
... PROGRAM Program.tsr —-- user's program

IR

Utilities are accessed by moving the cur or onto the appropriate line
and pressing a special key sequence, after which a new menu appears

in the editor window.
More information about the folding editor environment and

.52

utilities will be contalned in the manual for the transputer arra
in use, which should be congulted. See also section IV.3 below K
set of Emacs macros 1is avallable from the ODccam Users"' G;oup [R i 2]
to simulate the TDS editor on any UNIX system: it is not rest i é
in use to occam programs. ' ricted

Harnesses

Transputer arrays like the Meiko
and Inmos eayste
t::ditlonally on occam harnesses tg carry out communlcatgonsmget::ii
gbjge:sors {but see section IV.3). That means linking the FORTRAN7?
handfe code +to the occam and supplying subroutine libraries to
pandl meseage passing. Configuration is done in occam. This 1is
d:: I no different from other operating systems that we have
1nt::f:22' . which are :outly wrltten in €, but the current user
8 poor so that the Programmer must be to
::zilé::ngwi:hkthetoccam environment. This is not likedsom:nde:::::
aken to change it so that the occam 5
embedded foreign languages (FT7 or e e D
C} may continue to
hypercubes l1ike the Intel or NCUB pater sroacn
E, or indeed with tran t
like the Transtech NTP1000 and n have more
Me 1k
sophisticated operating systems, o fStools eystem have more

Some of ocur own work on gccam
described in section IvV.3,. farnesses for the Meiko 1e

I1.5.3

I1I.6 Threads and lightwelght processes

The ability to produce or spawn new concurrent processes has
already been mentionesd in the discussion of CE/RK and 1is also
available in the Ncube operating system. Xt 1s also the single most
important feature of UNIX with its fork and Join satrategy for
producing child processes from parents. Some approaches to
parallelisation embody particularly efficient methods to create or
spawn processes which consequently, having low overheads, might be
of short duration. These are referred to as threads or as
lightweight processes. They are processes in modula-2 or coroutines
in some other languages. They share code, heap, static and external
data memory with all other threads created by the same task. We will
later examine iIn detall the 3L. FORTRAN compller which allows
explicit control of processing threads,.

If such a strategy 16 implemented +then algorithme may be
developed which are characterised by replication. The divide and
conquer and merge sort technigues are examples, illustrated 1in
section III.1.1. Some of these methods are particularly useful on
shared-memory multiprocessors, where replicatlon of processes does
not necessarily demand replication of data and inherent nessage-—
passing complexity. Work is being done in Argonne National Lab. to
explolt these methods in numerical analysis algorithms. One might
envisage usling threads as a way to replicate processes within a
single processor of a MIMD machine, and use its local memory in a
shared fashion. This would 1n fact yield emulation of one type of
hybrid architecture. This 18 done for instance in the 3L parallel
system where FORTRAN common space on a single processor is common to
all threads in the same process task. Semaphore functlons are used
to prevent Iinterference between threads sharing the same data.

A disadvantage of threads in a MIMD architecture is that they
may not be moved to another processor from their invoking task,
whereas a normal process may be reconfigured.

6.1

1I.7 Semaphores and ports

One protocol to communicate data is using blocked
communications o©f the CSP type., or some variation of that with
buffers. A different protocol is to use ports as a place to put data
which can then be read by another process at a later data. Ports are
used by 3L and by Meiko, see section IV. The actual port (a buffer)
may be anywhere in the system and is akin to a shared file with
multiple access. In the general sense this involves difficulties
such as those mnet in shared-memory machines or 1in multi-access
relational databases, and mostly port useage 1s restricted to one
process WwWrlting and others reading, or vice wversa with the port
being a FIFO buffer so no messages are lost. This is the UNIX
method. The same problem arises with shared resources such as disks.
Since concurrent file systems are now becoming avallable (e.g.
[iv.2.€) the question is non trivial.

One way to handle shared resources is by the use of semaphores

[1,2]. These are used to indicate to the operating system when a
process has finlished with a resource and it is free to be used by
anather process. They must be included by the programmer 1in his

code, but are implemented in the operating system in a special way,
so0 that they are not themselves subj]ect to the same difficulties.

7.1

Summary

Aspects of only a few operating systems have been mentioned for
machines which were evaluated at Daresbury during 1988. One further
example which is of some interest is the SUPRENUM node operating
system PEACE (program execution and connection environment).
SUPRENUM, which may later be comblned with the Europeen ESPRIT P1085
Supernode {1], 1s a german project [II.1.2] which involves couplling
together 256 subarrays of processors in clusters of 16 with a 200
Mbyte/s bus network arranged in a 16X16 grid. The operating idea is
again to have a number of layers (ten), written in C, from 1/o0 and
message servers up to file servers and program loaders. A high-
performance kernel is implemented (the nucleus} which provides for
basic Iinter-process communication and cooperation, and all other
operations are implemented as dedicated server proceses accessed by
remote procedure calls. Another example is Snelling's personalised
library SPLIB [IT.1.1].

It is clear that there are now really two types of operating
system for parallel computers: UNIX and Occam-TDS with of course
some variatione such as the 3L system. TDS 1s a beautiful concept as
the full-screen folding editor facllity provides easy-to-use menus
and an excellent modular programming and filing system. It does not
however =at present provide sufficient separation between the user
and the hardware, and will therefore be labelled "unfriendiy" by
anyone not enamoured with the subtlety of concurrent processing per
se, UNIEX on the other hand is a familiar, but o0ld fashloned,
environment that provides a sufficiently good line-mode interface to
allow exploitation of large-scale parallel resources. Many screen
window tools permit extended use of UNIX ([see ([II.4.2] for
instance}.

In none of the systems described here can loaded processes
migrate between nodes. This is because of the requirement for the
loader to establish simple bindings for communication which last the
lifetime of the process. Future regearch may change this
restrlction.

A further broad distinction 1s between operating systems which
retailn "control” of the loaded tasks, and minimal embedded systems
in which the task is self-sustaining and the operating system must
be booted again when it terminates. The latter approach 1is used
where memory 1s at a premium, or the process rarely terminates -
such as in industrial applications like flight simulators or robot
controllers.

It is impossible to predict what lies in the future. It seenms
however that UNIX is here to stay. more foreign language tools will
be needed for occam to survive. It also seems that there is a
tendency to make parallel languages and algorithms look sequential
as will be seen in section I1II11.1.3, by writing only host code for an
attached array controlled by sophisticated subroutines. Its more fun
at present to program the array itself, and after all someone has to
provide the routines for the next decade of science. The more tools
available +to do this job the better. New tocls to emulate shared-
memory operations on distributed-memory machines will aid porting of
programs.

Some sclentists dream of unlimited resources and automatically
parallelising compllers. These do not exist. If you want to use a
parallel computer today you have to get your hands dirty; you can
even build the machine yourself using transputers.

The next two sections will indicate how a program can be built
from simple ideas and simple extensions to existing sequential

FORTRAN.

Ir.8.1

ITI.: Parallel Alqorithms for FORTRAN

This section 1is divided into three parts; III.1.1 1s about
algorithms, methodology and ideas, III.1.2 1s about FORTRANSX and
possible language extensions and inadequacies, JIXI.1.3 1s about
mathematical subroutine 1libraries which are available for MIMD
computers.

I11.1.1 Parallel Algorithms

Parallel algorithms can be classed in three types: simple cones,
which are coarse-grained and use the inherent symmetry of the
physical problem with no communlcatlon overheads, almost a
definition, and could be called symmetry parallelism for obvious
reagsons, coarse and fine-grained ones in which the problem is mapped
onto the machine in a geometric way so that only nearest-neighbour
communications are needed in the main (geometric parallelism), and
difficult ones which are fine-grained, necessarily involve a lot of
communications, and try to solve a single mathematical operation in
a distrlbuted way, e.g. multiplication of large matrices.

Since thils text presents only an overview, and most newcomers
to parallel processing find it easier to think in terms of the
symmetry of their problem, I concentrate on the first approach in
paragraphs 1-3 and the rest of the document.

I again split this section into five somaller pleces; 1)
Farming-type algorithms which might be of either the data-farming or
task-farming kind, 2) Pipeline and conveyor-belt algorithms, 3)

other geometric algorithms, 4} binarvy-tree and recursive-spawning
algorithms, e.g. the merge sort methed, and finally 5) more general
techniques.

1) Farming-type algorithms.

Farming methods are of two types; a) 1in which the same program
is put on all nodes and is expected to be run many times with a
stack of input data, different data being sent to each occcurence of
the waiting program and b) with a set of tasks that require to be
carried out either on the same or different data so that many
different programs need to be Trun. I shall refer to the former as
data farming, and the latter as task farming.

Examples of data farming are gilven in sections IV.3 and IV.4
and are described in detall there. The idea 1s gquite =simple and
trivial to Iimplement. A s#set of n processors all hold identical
coples of a program, or different programs. A host process, often
called the master, sends them data to work on and waits for them to
reply. When they have replied more data 1s sent until it is all used
up. In that way load balancing 1s guite automatlc, especially i1f all
n processors are dolng the same task so it doesn't matter to which
one the next batch of data is sent.

Task farming is egqually simple, but requires on the master to
be able to dynamically load tasks onto the nodes via the operating
system. The usual way to procede is to have a flle contatning a list
of independent jobs which constitute the program, but which might be
run concurrently wlth only limited synchronisation through data
passed via the master. The master lcads the jobs 1in turn onto
avallable nodes and carries out data forwarding. When a node has
finished i1ts appointed task it must signal its readiness to raceive
a new ohe, which 1s the next in the list. So on untll the list is
used wup and the program finishes. This is the prototype of a

nr1.1

parallel batch gueue.

An intermediate style of programming, which may be considered
medium grained but occurs very frequently as a result- of unraolling
(splitting) inner loops 1ln a sequentlal program, is described as
foliows.

i} spllt the inner loop and send out independent tasks for each
value of an index reflecting progress through the loops as long as
no processors are waiting to return results, otherwise go to (iii)

i1) receive all results which are pending and then go to (1)

iii) receive all remaining results and shut down nodes.

An example of this coding is shown below. During loop
splitting, a problem of data presentation on the screen is often
encountered. Output during cycle (1), which consists of header

information, must be stored in a FIFO buffer to be retrieved and
displayed only during cycles (ii) and (iii) along with the other
data to which it belongs.

host program

SUBROUTINE DIFFXS

¢ workspace for header information
character®l132 head{50)

counter for number of headers per task
dimension lhead{nloop)
common/talk/inode,nnode, thoat
khead = 1
lhead(l)=1
READ(S, ...
call crecv{-1.,ns,4})

C LOOP OVER COLLISION PROCESSES

c start of sending loop, phase (1)
iproc=0
nsent=1
nrecvd=l

70 READ(S5,...

IF({finished)goto 30

¢ send data to idle processor
call ceend(1l,nsent,4,iproc,0)

¢ internal write of header information to be later output with
c results
write(head(khead),...
khead=khead+1
210 VMU=V*AMASS5*1836.1
if(wnorm.1t.0.89d0)goto 70
nsent=nsent+1
iproc=iproc+l
c starting point in vector head for first header of next task
ihead{nsent)=khead
1f (iproc.g¢ge.nnode) iproc=0
¢ recelvea cross sections back in correct order, phase (i1}
B6 iret=iprobe(nrecvd)
if{(iret.ne.1)then
goto 70
end if

nLi.2

call crecvi{nrecvd,bmpt2,mang*é)
nrecvd=nrecvd+l
call crecvinrecvd,bmpt,mang*8}
nrecvd=nrecvd+1l
¢ print header Iinformatlion and then results from this proc
k=nrecvd/2
do 50 i=ihead(k),ihead(k+1)-1
write{(6,'({al32)')head({i)
50 continue
GOTO 86
30 CONTINUE
¢ receive remaining results phase (1ili)
nsent=nsent-1
if{nrecvd.le.nsent*2—1) then
call crecvi{nrecvd,bmpt2,mang*8)
nrecvd=nrecvd+l
call crecv{nrecvd, bmpt,mang*8)
nrecvd=nrecvd+1
¢ print header information and then results
k=nrecvd/2
do 60 i=ihead(k),ihead({k+1)-1
write(6,'(ai132)"Yhead{1}
60 continue

nsent=nsent+1
goto 30
end if
c shut down nodes
do 31 i=0,nnode-1
call ceend{1,nsent,4,1,0)

a1 continue
END

node program
SUBROUTINE DIFFXS

integer buffer
common/workspace/buffer (2000}
common/talk/inode, nnode, lhost

READ(S, ...

read(2}...

1f{inode.eq.0)lcall csend{l,ns.,4,1ihost,0)

10 continue
call crecv(l.nsent,4})
nretn=nsent*2-1
call crecv({l,ko0,4}
call crecv(l,kf, 4]
if{k0.eq.0.and.kf.eq.0}return
call crecv({l,mde, 4}
call crecv(l,welght,8)

71 DO 25 I=NRO+1,HNRO+NRO1
nbytes=8*(2+ns+ns*ns)
read{2)...

c campute intensive routine
CALL ERIKOMN(ZA,ZB,ZETI,ZETJ,RPHAS,V, VMU, MANG, ANG,MDE, JBP, BMP)

NL1.3

IF(WTOT.LT.D.99D0}GOTO 95

call csend(nretn,bmpt2,mang*8, ijhost,0}
nretn=nretn+l

call csend{nretn,bmpt,mang*8, 1ihost,0)

95 rewind(2)
goto 70
END

The above example 1s taken from a real application of an atomic
collision package on the Intel ([5].

Another example of unrolling a loop 1s provided by the
following multi-dimensional integral code. The simplicity of the
code derives from the fact that all nodes have read or recelived data
from the host so they know all values of the loop indeces and are
able to execute synchronously with the host.

host program

knode=numnodes-1
kount=3
lword-4
do 999 je=1,ng2

do 777 jj=1,nyl
do 666 i1i1=1,nanl

do & J=l.ng

kount=kount+1

lproc=mod|{kount, knode}+2

call check{iproc}

call receve(iproc,nan”lword,dsdo)

5

666 ..
117 ...
999 ...

end

node program

Inode=nmynode
c start of loops here

if({inode.eq.mod{kount knode)+2) then
do 1t i=1,nan
1 contlnue
call wait{1}
call send(1,nan*lword,dsdo}
end if
5 continue
666 continue

II1.1.4

777 continue
999 contlnue
end

It can be seen that this method of distributing work 1s quite
anrtomatic and deadlock will not occur unless the nodes cease to
return a result. This can happen e.g. on the Melko, for reasons of
numerical error (overflow) and is hard to debug. The above example
is taken from a real application of an electron-atom scattering
program on the Melko using the Fortnet harness [€].

2) Pipeline and conveyor-belt algorithms.

Pipeline algorithms work in the same way as a vector pipeline
processor, but each step in the plpe is a considerably more
complicated operation. A number of tasks are jolined one after the
other, input being from the one previous and output to the next in
line. A master process sends a continuous stream of data down the
line, and might even dynamically load tasks. This 1s the first kind
of algorithm we have met {and the simplest) which explicitly
involves inter-node communications, albeit to nearest neighbours.
Many extensions of this idea are possible, such as nearest-neighbour
communications over a grid topology.

This kind of technique is ideal for applications in which the
program may be split into a number of almost independent tasks, but
in which the overall program must be executed many times. Note that
data dependency might also be allowed through common disk file
storage with semaphore megsages passed to signal access clearance,

3) geometric algorithms

The geometric loop algorithm is useful 1f =a program 1is
modelling interactions between objects (either physical or
symbolic), and all pairs have to interact. Data describing the
object can be passed around the processorse so that eventually each
object's description will be passed tc every other. True systolic
algorithms would involve synchronising this data tranasfer with, for

instance, every processor sending data one way to 1its neighbour
around a ring or a mesh iIn a series of regular pulses spaced by
computation. Other ways to do regular communication in which all

processors perform on an egqual footing could be envieaged. See
reference [1].

4) Bilnary-tree and recursive-spawning algorithms.

It seems that there Is a class of problems which are ameanable
to the divide-and-congquer strategy. I refer +to thelr solution
generlcally as binary-tree algorithms, although that might not be
wholly accurate.

I 1llustrate the method wlith the merge sort technigue for
sorting a large number N data elements into order in an uncountable
set. Another sorting program, illustrated in section IV.3 assumes a
uniform distribution within a bounded uncountable set to achleve
locad balance - we shall not do that here. The method consists of
subdividing the data arbitrarily until the maximum 2**n processors
is reached, sorting the subsets {(a combinatorial problem of N/2%**n
complexity rather than N) and subsequently merging palrwise in n
steps to obtain the completely ordered result.

This might be achleved using fork and join procedures if such
were avallable. I give an example, but untested, program where these

oL1.s

are not used, but the node programs are aware that they belong to
2%*n clones. The pattern of events is then to send a processor's
ordered data to 1ts left nearest neighbour, a distance 2**0 away,
which receives it and merges 1t with its own data. Then send the
data to the neighbour 2**1 away and merge, and iterate from i=1,n-1.
The last step takes all the data onto the leftmost processor and the
final merge sorts 1t completely.

A radundancy of operation is involved, for example in the code
the last step involves 2**({n-1i)-1 processors doing worthless merges.
There 1s also in the example code a redundancy of storage - which 1s
much more serious, but I have left i1t in s0o a®s not to overcomplicate
the illustration. Of course both these points are extremely serious
on shared-resocurce machines where more that on task i1s put on a
single processor, Iindeed 1t might be more than one person's task,
and if I were to make my processors wait instead of computing, they
could be used by someone else.

program merge ! Fortnet-like coding syntax
¢ node program of merge/eort routine, recursive binary tree
dimension a{enormous),b{enormous}
integer seg,seg0,segn
common/talk/inode,npend{10),nw, nwalt
data ndim/power/
lword=4
nnode=2**ndim ! number of nodes
call receve(0, lword,seg)
call receve(0,seg*lword,a{l)) ' get share of data from host
call sort{seg,a(l)) ! sort this data
Cc now merge first to left nearest neighbour, then to p-2%**n;
¢ n=0,ndim
do 5 i=0,ndim-1
n=2%*+j
segn=0
if{inode. le.nnode-n) then
call receve(inode+n,lword,segn)
call receve({inode+n,segn*lword,a{seg+l))
end if
if{inode.gt.n)then
call send(inode-n, lword,seq)
call send{inode-n,seg*lword,a{l))
end 1if
Cc mearge/sort two vectors into b
J=1; k=seg+l; 1=0
10 iff{ai{j).eqg.a{k))then
1=)+1; b{l)=a(}); J=3+1
1=1+1; b{l)=a(k); k=k+l
else if(a(j).1t.ai{k))then
1=1+1; b{l)=a(j): J=J+1
else l1f{a(k).lt.a(]))then
1=1+4+1; bil)=a{k); k=k+l
and if
1f{3.1t.seg.and.k.lt.segtsegnjgoto 10
1£(j.1t.seg)then
do 15 m=j,seg
1=1+1
15 b{l)=a(m)
else 1f{k.1lt.sag+segn}
do 20 m=k,seg+segn
1=1+1
20 bi{l)=a{m)

OIL.1.6

end if
seg=seg+segn
c all used, do next dimension
do 25 i=1,seg
25 a(i)=b(i)
5 continue
¢ all merged, send from procl to host
if(inode.eqg.1)call send{0,seg*lword,a)
c this is real parallel programming isn‘t it!
end

5) General algorithms.

Simple sequential processes were of the type; get one data
elenent, do operatlion, store result. This was generalised for
mathematical processes to; get as much data as required for
operation, do operation, store result. For vector processors many of
these operatlons were carried out at once in SIMD fashion. All this
assumes <that the data and results are to be in the same menory
available to the processor (albeit several processors with
individual jobs to do as in a pipeline}. However data tranamission
problems do arise in virtual memory where slow data access fronm
discs 1s countered by introduction of cache and paging devices.

These problems are the same, but highlighted, in a MIMD parallel
machine since data management is essentially left to the programmer.
By that I mean if data is in the local memory of one processor and
is required by another for some operation it must be sent
explicitly. This is hard work, reguires imagination, and is the
central issue of general parallel computer algorithm design.

Consider for instance a scenario in which the entire memory of
the machine, of which a segment on each processor, is used for the
storage of array variables, which may span segment, that 1is
processor, boundariee. Offsets can be assigned, and a table can be
provided to search for individual array elements. An operation, such
as multipllicarion, with tweo operands and a result reguires the
cocperation of all processors to do the gather-scatter part, but for
only one vector multiplication of perhaps just a few elements. Hence
the scenario begins to look sequential if the number of elements is
small, and the application will therefore run slowly. This
emphasises the, now well known, fact that to achieve linear speadup
on parallel machines it 1s necessary to scale up the problem rather
than just subdividing it. A further discussion of such implicit
shared memory emulation is given in [II.1.2}.

This dlscussion brings into question the usual philosophy of
FORTRAN subroutine libraries, which require to have data put into
them, and results stored after some complicated operation. In
general the data is not in the optimum place for the operation and
all processors must cooperate to get it. This eventually leads to
sequentialisation unless one is careful. There is as yet no protocol
for the storage and retrieval of data on a parallel machine by which
this problem may be overcome. I stress that local-memory machines on
which general algorithmic parallelism is implemented will alwaye run
into sequentialisation through file or wmemory contention or
violation of data integrity {(ontside the CSP methodology), 1f a
naive approach is employed. New research work done in the field of
multi-access databases will hopefully indicate answers to the
problem of contention and transmission of data for both shared and
distributed-memory architectures. Semaphores are a convenient way in
some applications.

I illustrate the above ideas in a very naive form, with the

nr1.7

following program that uses the entire computing resouce of an n-
processor machlne to transpose a large matrix, of which seg(i)
elements are stored on each node 1 in contiguous fashion.

subroutine mtrans(idim,a}

parameter {nnode=nprocs)

integer seg,procs,offs

dimension a(*)

common/proclist/procs(nnode),of £s{nnode),seg{nnode}

common/talk/jinode,npend{10),nw,nwait

external egual

do 1=2,idim-1

do J=i+1,idim
¢ find out on which processor element a(i,]) of the full matrix
c resldes, and put 1ts number into procs{1)

call use{idim.41,3}.1}

call use(idim.j,i.2)

if{inode.eq.procs{1).or. inode.eq.procs!2)jthen

procs{3)=procs(1)}

call vcopy(l,a{offs(2)}),1,b,1,2,3,equal)

call vcopy(l.a{offs(1)},1,a(offs{2}},1,1,2,equal)

¢all veopy{l.b.1,a(cffs{1)),1,3,1,equal)

end 1f

end do

end do

end

.‘t‘“.i.itt*.*llI'.l-.'-.ttt!'!llt-.ti’!"..-llli’tllﬁl.*ltt'!!l...

. FORTNET V 2.0 *
* IOSUP parallel communicating subroutines *
.t'.‘t‘t“*l'llll..lll.t!*#'!.!llt-!-'llll-l-l.ll'!!lttt"*"ttllllt
subroutine use{idim,1,3j,n}
c for a sguare array {ldim,1dim) return in procs{n) the number of
c processor on which element (1,Jj} is stored and its local offset
c in offs(n)
parameter (nnode=nprocs)
integer seg, segQ, procs, offs, offset
common/procllist/procs(nnode) ,offs(nnode), seg(nnode}
common/talk/inode,.npend{10),nw,nwait
offset=1+(J-1}*1dim
[eg0=0
do i=1,nnode
if{offset.gt.ceg0.and.offset.le.seg0+seg(l))goto 5
seg0=geg0+seg(i}
end do
5 procs(n)=1
offs(n)=offset-segld
end

subroutine vcopy(nel,b,nb,a,na,npb.npa, func}
c modification of VecLib routine vcopy for distributed aperation.
c sets a=func(b}
parameter (nnode=nprocs)
integer seg, seg0, procs, offs, offset
common/proclist/procs{nnode) ,offs{nnode),seg{nnode)
common/talk/inode,noend(10) ,nw,nwalt
lword=4
if (procs{npb).eq.inode.and.procs{npa).eq. inode)then
J=0
do 1=1,nel,na

1I1.1.8

J=3+nb

call func(a{i),b{]))

end do

else 1f({procsi{npb).eq.inode)then
do i=1,nel,na

call receve(procs{npa},lword, temp)
call funcia(i), temp)

end do

else if(procsinpa}).eq.inode)then
do 1=1,nel,nb i
call send(procs(npbl,lword,bli})
end do

end if

end

sutbroutine equal(a,b)}
a=b
end

The functionality of the above code looks sequential at first
sight. Concurrency is however possible through the selective nature
of the loop In mtrans. This is obviously true in the instance where
a(J.1) and a(i,j) are both contained in the same segment, and vcopy
will then Just eguate b=a(],1) without any message pasesing. In the
case where message passing 1s requlred the other processor must
cooperate too, so both processors must execute the vector calls in
order to synchronise. Thils does not dismiss the possibility that
some other processors will be doing the same thing for a different
selection of 1 and j.

Vcopy is an example of a "skeleton" routine since it can carry
out any operation using the external function func. This might for
example, 1n a more meaningful case, actually generate data to be put
into the vectors depending on the node in use. It Is a good way, I
think the only one, to avold wholesale data transfer by using
elegant syntax.

I17.1.2 Parallelism using FORTRAN BX.

The definition of seguential FORTRAN 8X [5] explicitly includes
array-handling syntax, through the provision of intrinsic functions
and subroutines, and through whole-array equivalence and operators
and generlic functlions which act element-wise {2]. This will allow
importatien of much current work on parallel array manipulation
directly into the language I1f compilers are to be used which

distribute compute-intensive tasks to attached processors. Some
shared-memory machines such as the Alliant FX and CRAY X/MP already
have this facllity along with loop unrolling and microceding. Such

in-line whole-matrix operations will be of use in coding only
programs on a host which has an attached processor array upon which
the data is stored and operations are carried out. Our present
discussion 1s however largely concerned with the detalls of how to
program the array of MIMD processors. FBX does not offer a solution
to this.

The German SUFPRENUM project has adopted the syntax of F8X as a
standard for their run time calls, and base their communication
calls on modified READ and WRITE statements as in

send| taskid= , tag= Ji/0 list

recelve{taskid= , tag= Yi/o list

which implement F8X array notation, In this way SUPRENUM offers a

MnL1.9

very good communications interface to the operating kernel, better
than the simple procedural interfaces on other systems in which
libraries are employed.

IIT.1.3 Kumerical subroutine libraries for parallel machines

Eiscube

A parallel version of the Eispack library for matrix eigenvalue
problems 1s being prepared for the Intel hypercube. So far only the
central part of the library is avallable, that is the computation of
all eigenvalues and eigenvectors of a dense, real, symméetric matrix.
Calculations are distributed, and the lnnermost loops of the
algorithms access columns of the matrix. A matrix of order N is
distributed over n processors by storing N/n columns per processor.
There may be a small load imbalance if N is not a multiple of n.

The programs use Housholder similarity reduction to tridiagonal
form, followed by bilsections on each processor and “perfect-shift"
tridiagonal QR 1terations with accumulation of the distributed
elgenvalue matrix.

Lincube

The Lincube library developed from Linpack for the Intel
hypercube analyses and solves systems of linear algebraic egquations
involving dense matrices. Data is again distributed columnwise as in
Eiscube.

NAG

‘A NAG library implementation and general study has been
provided under SERC EMR and EEC Esprit 1085 projects by the group at
Liverponl University [3]. A small set of fully-documented parallel
library routines hae been provided [4]. Routines are written in
occam and are assumed to be callable from a serial FORTRAN (or other
"alien" language) source running on the host proceaaor.

Data 1s distributed as necessary, some planning has however
been done for the case of already-distributed data. A rectangular
grid topology has been adopted as the standard case at present,
although the authors of the report [3)] consider it to be a temporary
measura, The library 1s not reconfigurable.

Some discussion in [3] focuesses on the program structure and
notes the "inslde-cut" environment Iinherent In multi-processor
occam. I do not conslder it to be uniquely a feature of occam,
although 1t is very much emphasised in that language with the need
to write explicit harness code {see section IV.3 for instance). It
seens rather to be deeply engrained in one way of parallel coding
which I labelled above "skeleton" coding.

A further development is the possibllity to dynamically 1load
routines under control of a "library sleeper". Routines are loaded
when requested by the host program by a set of buffer proceseses
which are transparent to the user. Only one routlne is loaded on to
the array at a time.’

SUPRENUM
The project recognises the need for standard communications
libraries [I¥.1.2] both to simplify programming and for portability.

The portability issne means that standard 1libraries should be
implemanted on all machines., The major thrust of the library so far

nL.1.10

has been in grid topologies for finite-element type calculations.
Since the routines were developed on an iPSC/1 hypercube the library
is available through the Intel Users' Club.

Summary

Clearly the above libraries have been developed for cases 1n
which the array is viewed as an attached processor pool. They cannot
be called from completely distributed programs, unless run on
attached subarrays or an attached array mapped onto the original
processors and executing concurrent code (probably causing a logical
bottleneck and contention as in shared-memory machines).

nL1.11

I1I.2 Debugging parallel executing programs

OQur discussion ls limited to MIMD architectures with
partitioned local memory. A debugger must therefore be able to
analyse the following

1) sequential code of a process or task

2) messages between processes in send or receive operations

3) dynamic process movement in load or kill operations, and
relocate operations in the future

5) analyse and change varilables in local store

6) analyse and change contents of messages

7) analyse and change configuration of active processes (not-’
presently avallable)

This assumes that the software debugs segquential processes, messages
and taske, which are collections of seguentlal processes.

The debugging procedure is in essence famlliar, and similar to
that for normal sequential code, Debugging of UNIX processes Iis

equivalent. An awareness must be maintained of what processes are
active, their source code (so that it can be pointed to for symbol
manipulation), and thelr interconnection and dependency (through

messages) .

A set of problems specific to concurrent processes has been
defined by Snelling and Hoffmann [II.1.1]). They are as follows.

The "stampede" effect which occurs when evidence of an error in
one process is destroyed by the continuing execution of other
processes. It 1s hard to find out whlch process originally caused
the error.

The "bystander" effect is seen when a process falls because its
data was corrupted by another process.

The "deadlock" effect when several processes stop waiting for
messages. Thls is usually easy to correct.

The "irreproduciblllity" effect in which a program may glve
different results each time it is run because processes are executed
in a different order. This may, or may not be a problem. It makes
convergence techniques hard to parallelise.

The "Heisenberg" effect, in which addition of the debugging
processes to the task remove the apparent problem or shift 1t to
another area.

A good debugger should enable these problems to be sorted out
Debugging is inherently difficult because of the non-deterministic
nature of concurrent executlon, itself 1responsilble for the
irreproducible behaviour of programs.

The present concurrent debuggers provide a capabllity to:

Control program executlion, by initiating, suspending and
reastarting execution of processes through breakpoints and
tracepolnts which may, conveniently, be conditional. Points may be
set on user-defined objects pointed to in the scurce listing, such
as variables, statements, labels, subprograms or any other program
entity.

Accees data and structures, to retrieve information when a
program 1s suspended, modify program entlties, read message status
and contents, and continue execution after making repaira.

Load processes. A ugser may wish to modify the program structure
by loading or killing processes. This iz not easy as their relation
to other processes relies on abllity to communicate - a feature
built in to the compiled code. Nevertheless some flexlibillty can be
allowed by careful programming. Most use of these commands are made

a1.2.1

when initially loading the task to be debugged onto the machine. A
particularly important aspect of this on parallel machines is the
ability to load tasks onto different, or the same processor 1.e. to
configure the job. That makes it possible tc experiment with
arrangements for load balancing.

Control the debugger, with execution of command scripts and
logging of sessions {in case of accldental typing mistakes}, calling
UNIX services, defining aliases and getting help.

To our knowledge the DECON concurrent debugger for the Intel
iPSC 1s the first one satisfying the requirement to debug and modify
messages [1,2]. Neverthelees it does not allow much flexibility 1in
configuration, except in the inital loading as mentioned above. It
furthermare fails to debug code which is loaded under program
control, since the code starts executing immediately and no break
points can be set.

The use made by NiCHE Technology (Transtech} and Meiko of the
SUN dbxtool allows a complete parallel program to be compiled on the
SUN and analysed, message passing and process contol being done by
the trililium-like PRE operating environment or SUN CcStools
interface. Fully debugged processes can then be recompiled for the
array.

YAnother debugger is avallable for the NCUBE machlne, which has
the capability to analyse messages and is otherwise rather like sdb
on conventional systems.

m.2.2

1.3 Load Balancing and Graphical optimisation methods

Only a few hints on what is possible, and some examples of
implemented tools can be given.

Analysils of mathematical algorithms is the first step to
optimisation. In segquential machines consideratlions are the number
of floating-polint operations performed, amount of memory used, and
total memory access time. In MIMD machines we must add to this list
memory access time to another node. This is a complex guantity since
1t involves sending and receiving operations as well as data
transmission on a link. Sending and receiving between concurrent
processes in the same node processor 1s yet another problem
regulring separate consideration. In both cases, processes must
synchronise, and the inevitable waiting time must be accounted for
in a detalled analysis. This analysis should he performed for
different configurations to find an optimum, and different
algorithms compared. An additional serious complication 1s the non-
deterministic behaviour.

Whilst this procedure might be feasible for a given
mathematical operation, such as gaussian elimination in a matrix,
and has Indeed been carried out [1) it is not possible in more
sophisticated tasks where data dependency 1s involved. In these
cases the only solution, unless we resort to acteal programeming,
which 1s likely to be expensive and tedious, 1is to use simulation
tools. A sequential block of code of the traditional type might be
analysed for floating-point operation count and memory access as
usual, and Interacting blocks of code analysed for data dependency
in decision making and message passing. This information i1s then
used to program a simulator which will model the passage of
computaticnal activity through a processor array. Different
configurations mlight be tried to see the effect and the owverall
performance estimated.

An example of this techigue is the TRANSIM simulation tool and
dynamic profiler package written in C and developed under the Alvey
Project [2]. A similar tool is Schedule {3] avallable for placing
and analysing activity on shared-memory machines. The packages run
on a S5UN workstation, and depict the processor array with colouring
to indicate c¢omputation rate. Hot bottlenecks and cold areas of
inactivity can be identified easily and corrected by relocating the
processes. Interesting wave motion of computational activity has
been found in moderately complex codes. This unexpected nonlinear
behaviour emphasises the importance of such analysils exercises, and
also the inherent difficulty of parallel programming.

A satatic profiler has also been developed under the ParSiFal
project [4]. A high priority timer runs in parallel with the
application and a mapping to source code instruction pointers enable
runtime information to be gathered.

m3.1

IV Programming Environment (FORTRAN)

This section is divided into seven parts which present the
FORTRAN77 programming environment on different multicomputers. Thesge
are mostly librarlies of communicatlions routines which may be linked
to the user's sequential c¢ode and loaded onto the nodes. The
routines interact wlth the operating system kernels as described
above.

Of particular importance to Daresbury Laboratory are the Intel
and Meiko multicomputers which are therefore described in greater
detail.

IV.1 Helios

The following notes on the Helios programming environment are a
summary of the presentation at the Helios developers' workshop held
in 1988. The original overheads were for the C programming language,
so the examples have been translated and may not correspond exactly
with the commercially avallable package.

Inter-process communication 1s by message passing using links
if the processes are on different transputers. This is transparent
to the user and insensitive to the network topology because
logically created perts and surrogate ports are used as
intermediaries. Processes can therefore be placed anywhere, and a
table is kept with their location and capability. The overall systen
should be fault tolerant because processes can be relocated. Hellos
works as a client-server model the distributed servers are
transparent, can be relocated, and all have the same protocol. Port

servers send a message at the request of a client {a process}. A
program running on the host computer is also a Helios node and
supports a file server process plus screen, keyboard, and port
servers.

Messages, ports, lists, semaphores and other objects have a
specific data structure which 1s described in the Hellos
documentation.

List of routines avallable in Hellos

Message-passing calls

port=NewPort|[) =-- locate, allocate, and initialise a free slot
in the port table

ierr=FreePort(port) -- release the given port and invalidate
its port descriptor

ierr=PutMeg{mcb} -- send the message described in the message
control block (mchb)

lerr=GetMsg{mcb) -- receive a message into the mcb

lerr=AbortPort{port) -~ abort any exchanges on this port

ierr=SendExcept (port, code) -- send an exception message to the
given port

List handling routines. Head and tail are pointers to a process
list. MAccess to the transputer's process list is provided by these
operations.

InitList(list) —- initialise the 1list to empty

AddHead(list, node) -- add the node to the head of the liet

AddTail(list, node) -~ add the node to the tail of the list

node= RemHead{list) -~ remove the head node of the 1list and
Iv.1.1

return it. or NULL if the list is empty

node=RemTail{list} —-- remove the tail node of the list and
return it, or NULL if the list is empty Other
Remove{node} -- remove the node from whatever list 1t 1s in. It servers.
must be in a list
PreInsert{next, node) —— insert the node immediately before

next in its list. Next may polnt to the central field in a list
structure, in which case node becomes the new tail item

PostInsert({prev, node} —-- Insert the node immediately after
prev in its list. Prev may be a list structure, in which case the
node 1s added to the head of the list

WalkLlist{1list. function)

node=SearchList({list, function}

Semaphores are used to synchronise between processes sharing
memory on the same transputer. This is also a feature of the 3L
FORTRAN system and other shared-memory operating systems.

lerr=InitSemaphore(semaphore, count} -- initialise the fields
of the semaphore and seed the count with the wvalue given

ierr=Walt(semaphore) —- perform usual semaphore wait operation
on the semaphore

ierr=Signal (semaphore} --perform usual semaphore signal
operation on the semaphore

icount=TestSemaphore(semaphore)

Terminal i/o0. Interactive streams are deflined to be windows,
consoles and serial or parallel ports. Functions are available to
control stream attributes and i/o events on streams.

port=EnableEvents(stream, mask)

ierr=Acknowledge(port, counter) —- send an acknowledge signal

lerr=NegAcknowledge(port, counter) -- send a negative
acknowledge signal, e.g. 1f an event is lost

HandleEvent (eventbuf(i))

ierr=SetBEvent{handler) -- install the given event handler in
the event chain
jerr=RemEvent{handler} -- remove the event handler from the

event chain

Other Kernel routines handle tasks, links, memory and
miscellaneous functions

lerr=TaskInit(task)
lerr=KillTask({ task)
jerr=CallException{task, signal)
ierr=BootLink(1link, image, conflig, confsize)
ierr=EnableLink{link)
lerr=AllocLink(link}
jerr=FreelLink{link}
ierr=Reconfigure(linkconf)
lerr=LinkData(link, linkinfo}
iblock=AllocMem(size, pool)
lerr=FreeMem{iblock)
InitPool{pool)

FreePool{pool)
iblock=AllocFast(size, pool)
iresult=InPool (addr, pool)
Terminate(}

Delay[microsecs)

calls

itype=MachineTypa()

are

available for

system

libraries

and UNIX

on the Convex C2 or SUN 3.0 machines. Remote login to the Intel is
possible for external users from the Ceonvex through the DL Ethernet
or from the SUNs for Internal users. I will assume that you are
working from the Convex and that a shell has been opened Iin gemacs
so that files may be held and edited on the C2 and run on the Intel
after copylng with the remote protocol software. Direct remote
hosting of the Intel SRM is also possible and the following notes
should be interpreted accordingly. We also plan to directly access
the Convex filling system from the Intel through NFS.

The following sequence of commands can be issued

rlogin ipsc

logon: <id>

pasaword: <password>

This establishes a sesaion on the SRM and the root directory 1s
/usr/user/<id>. We Assume that flles host.f and node.f have been
created (using gemacs for instance}) on the Convex. They are copled
to the SRM by issuing the command

rcp cxa:<convex path>/host.f host.f

kA host program is only needed if host routines are to be run,
and if communication to the host 1s required e.g. for farming type
applications. Compute-intensive taska should NOT be run on the SEM
as that would cause serious overloading in a multi-user environment!
The SRM 1is redundant if only fille 1/0 1s needed on the nodes and
only node.f need be written. However I continue to assume that a
fully parallel program is being developed with both host and node
processes. A useful makefile containing the compiler switches to use
is as follows

all: host node (or vnode)

host: host.f ftime.o
£77 -0 host host.f ftime.o -host

ftime.o: ftime.c ! a small € timing routine
cc =-¢ ftime.c

node: naode . £
f77 -0 node -sx node,f -—-node

vnode : vnode . f
£f77 ~o vnode -sx vnode.f -single -lvxexvec -lvx —node

Compilation may be found faster 1f the -X3o?2 option is used instead
of ~vx in cases where that works. The -single option can be replaced
by -double (for double precision intrinsic functions, the default)
or -both. The -lsxvivec option loads the correct version of the
VecLib 1library. A -g option may be put on the compiler to praduce
object code with information for DECON, and =-v for verbose
compllation. :

The makefile yilelds executable modules host and node, or host
and vnode. Quite a long wait is needed for complicated vector code
due to the slow link editor. This again emphasises the need to
carefully manage SRM resources which is why editing on the Convex is
suggested and not using compute-intensive tasks.

A subcube of the 32-node array can now be allocated, with
redirected i/o (if required) by issuing the command

Iv.23

getcube [-c <cubename>] -t n (< <input file>] [> <output file>]

n is the number of nodes in the subcube, which must be a power of 2,
If such a cube 1s available i1t will be allocated, an error message
is printed i{f the reguest ls not possible.

Informatlon about currently allocated cubes and their names 1is
abtained with
cubeinfo -a

The node processes are loaded onto the currently allocated cube
with the command

load [~c <cubename>] node <pld>
where pid is a number used as the process id for communications. It
is selected by the current user and should not be the same as any
other processes on the same cube; If omitted zero, is used. The
process starte executlion ilmmedlately and will continue until either
it waits for host communlcations, it finishes {or crashes) or it is
aborted by the command

killcube [-c <cubename>] {[<pid>»]

The host process is started simply by typing 1te name

host

The cube is released for other users by typing

relcube-c <cubename’>]

If the name is omltted the current (last referenced] cube I1s
released and all processes on it are killed. The current cube 1s
changed with the command

allocate —-c <cubename>

An alternative way to redirect output is to use

newserver [-c <cubename>] (> <output file>] [< <lnput file>]

It is difficult teo get information about programs running on the
cube, they tend to look dead unless the files are being updated.

The 1PSC/2 simulator

We have put a copy of the UNIX simulator in cxa:/privl/wab/sim.
You can link to it by typing

’ ln -8 /privi/wab/sim/bsimlib.a
In -s /privli/wab/sim/bsim

in the directory you want to use.

A host and node program are compiled for the Convex (upon which
the simulator scftware executesn).

fc -c host.f node.f

The aobject files produced are then linked to the simulator

v.l4

library by typing
fc —-o host host.o bsimlib.a

and the simulator is started with the command
bsim

After which a few lines of banner and a special prompt wlll be seen.

The command list of the simulator is quite short and the
commands are different +to those on the cube [5]. Nodes can be
allocated (up to 16} and programs run in a similar way though, for
instance

getcube -t 4
load node
cubeman host
gtart

The commands

trace on
status -a

will be found useful for debugging purposes. Trace gives a one-line
message each time a system routine i1s called in the program, and
gives information about message type, source and length. The DECON
debugger cannot be used in simulation mode. Further information can
be found in the manual [6].

The Vector utilities

Use of the vz vector-extension boards 1s greatly complicated by
the fact that they do not share the memory of the sx boards. They
must be thought of as separate nodes, and provision made for sending
data to and recelving it from them, Just as between any two scalar

nodes . This can only be done however from the scalar node to which
they belong by copying data from scalar variables to vector
variables. There is a high overhead in doing this, which may be

somewhat reduced through use of the system mscopy subroutine.

VAST2 will analyse and re-code a FORTRAN program assuming that
all 1its variables are in vector memory. After some further
modification by hand this can yield very efficient programs if less
than 1 Mbyte of data is regqulred. VAST2 may be used as a development
tool, 1t can be applied to for instance Just one critical subroutine
which 1s to be placed in vector memory, the resulting VecLlb calls
being subject to further modification.

Partitioning of variables into vector and scalar space ls done
using the vxld utility. A block data program called for instance
vkb.f can be written in which all vector variables are defined as
follows

block data vxb

parameter (isize=big)

cogmon/vector/a(isize).b(isize.isize).c(isize).ivec,jvec

en

This 1s then compiled and a link control file is produced using

vxld which wil) place the variables of common vector in the rest of
the pregram onto the vector board

V.25

£7T -c -8x vxb.f
vxld -single -0 vxb vxb.o

The 1link control file is read into the linker alongside the
vector subroutines and directs the relevant variables to be placed
on the VX node as follows.

E77T -c¢ -sx vnode.f
£f77 —-o vnode -sX wvxb vnode.o -single -lvxsxvec -lvx -node

Concurrent flle system

An intrunduction to the Intel concurrent i1/o facilities has been
given by D.Moody (6]. It is possible to access files on the
directory /cfs/<id> from the nodes, but not from the SRM. For this
reason a node-based subset of UNIX has been provided which has the
capabllity to copy filles from SRM to cfs file osystenms, and to
jnspect files, It can be inconvenient not to access cfs files from
the host process. We have therefore written a subroutine library and
parallel-executing node file server process to enable this to be
done by message passing.

A cfs file and directory might be created as follows

getcube -t 1

nsh

cd /cfs

mkdir <id>/<directory>

cd <id>/<directory>

cp fusr/user/<id>/<directory>/<file> .
l1s -1

[control-d)

It is referred to in the node program as
/cfs/<id>/<directory>/<fille> in standard UNIX fashion and all
FORTRAN access modes are avallable. In additlon some further
optimised byte-oriented access modes are described in the reference
manual [3]) and below, these may not be mixed with normal FORTRAN
calls to the same file as the resulting file has a different format.

The concurrent fille asystem is very useful for storing
executable images of node programs, this being the one occaslon when
the host can access the cfs in for instance

call load(/cfs/<id>/<directory>/node, -1, 0}

Our host file server 1s loaded in parallel on the last node
call lcad(/cfas/rja/eikonxs/faserver.out, nnode-1i, 1)

and its message passing library, contalned in
/usr/user/rja/eikonxs/cfsemul.f is compiled and linked with the host
program. Routines avallable are

open{lu}) -- open file on lu {(defined in feserver.f)

close(lu) -- close file on lu

rewind(lu) -- position file pointer at beginning of file on lu
read{lu,variable,nbytes) -- read nbytes from file on 1lu
write({lu,variable,nbytes) —— write nbytes to file on lu

Although this emulatlion is slow it does contain the optimised
Intel 1/0 routines to reduce actual disk accesa time.

List of FORTRAN routines for handling the cube

V.26

attachcube{cubename) -- attach a cube and make it the current
cube

cprobe(type) -—- walt for a message to arrive

crecv(type, buf, len) —- receive a message of len bytes and
wait for completion

ceend(type, buf, len, node, pid} -- send a message of len bytes
and wait for completion .

cubelnfo{ct, numslots, global) -- obtain information about
allocated cubes, see [3]

flick{) —-- relingulsh processor to another process

flushmsg(type, node, pid) —-- flush specified message from
system

getcube{cubename, cubetype, srmname, keep) -- allocate a cube

gray(]j) =-- return the bilnary-reflected Gray code for an integer

ginv{j) -- return the inverse of gray. These calls are used
when devising the shortest actual path between nodes.

handler{type, ifunc) -- provide user-written exception handler

infocount({) =-- returns information about a pending or received
message

infonode()

infopid(}

infotypel)

ctohd({vs, n)

htocd(vs, n)

ctohf({vs, n)

htocf{vs. nl

ctohli{vs, n)

htocl{vs, n)

ctohs{vs, n)

htocs(vs, n)

hrecv(type, buf, ‘len, procedure} -- interrupt-driver receive
with handier procedure

iprobe(type) —— determine whether a message of a selected
type 18 pending

id=1recv(type, buf, len) -- receive a message asynchronously,
without walting for completicn

id=isend({type, buf, len, node, pid) -- send a message

asynchronously. The above calls are used to overlap computation and
communication.

killcube(node, pld} -- terminate and clear out a process

killproc{node,plid) -- terminate a process

killsyslog() -- terminate a syslog process

led(lstate) -- turn the node board's green led on or off

locad{filename, node, pid) -- load a node process

masktrap(mask)

mclock() ~- return the time in milliseconds

msgcancel{1d) -- cancel an operation with identification id
returned by a call to irecv or isend

msgdone(id) -- determine whether a send or receive operation
has completed

megwalt{id) - wait for completion of a send or recelve
operation

ihest=myhost{) -— obtain node 1d of the host machine

inode=mynode() -- obtain the node id of the calling process

ipid=mypid() -- obtain the process id of the calling process

newserver (cubename) -- start a new file server for the
specified cube

ndim=nodedim() -- obtain dimension of hypercube

nnode=numnodes()} -- obtain the number of nodes in the cube =

.27

2**ndim

relcube(cubename) -~ release a cube

setpid{pld} -~ set process id of a host process, must be done
before loading node programs

setsyslog(stdfd) -- start a syslog program

trapblock{mask) -~ block selected traps

trapset(mask) —-- sets a new mask value

waltall(node, pid) —-- wait for all the specifled processes to
complete

waltone(node, pid, cnode, cpid, ccode) -- walt for a specified
process to complete

cread(lu, buf, nbytes) -- synchronous byte read from a
concurrent file

cwrite{lu, buf, nbytes) -—- synchronous byte write to a
concurrent file .

istat=iodone{id) ~- has an asynchronous read/write operation
terminated 7?7

istat=iomode(Iu)} ~- find mode of a cfs file

fowailt({id) - wait for termination of an asynchronous
read/write operation

id=iread{lu, buf, nbytes) —- do asynchronous read from file 1u

id=lwrite(lu, buf, nbytes) -- do asynchronous write to file 1lu

i1stat=igseof(1lu) -~ is file pointer at EOF ?

ipoint=lseek{1lu, ioffset, iwhence) ~— move flle pointer in a file

ibytes=1slze(lu, ioffset, iwhence} -- size of flle from glven
poslition

istat=restrictvol(lu,nvol , nvollist}) -- restrict distribution of
concurrent files to a particular disk volume

setiomode(lu,mode) -- set file pointer mode for multiple access

of cfs file on lu

Example programs

The followlng example is a farming-type application. The nodes,
af which there can be any number, first read the file rate2.dat and
a few lines from the file rate2.go. All nodes read all the data as

they have independent fille pointers (its UNIX don't forget). Then
the host program skips a few lines and waits for the necdes to
request data. Upon recelving a request it reads the next line of

file rate2.go and transmits ite contents to the requesting node. In
that way a different line of data is eent to each node, This carries
on, with each node requesting a new line of data when it has
finished its work with the old one, until all lines are used. At
that point the host process wants to termlinate, but it can't because
it would then killl off the node processes that are still working an
the last data read. This illustrates that starting and finishing
parallel programs is often the most tricky job.

c program rate2
¢ iPSC/2 host program for parallel execution farming data from file
¢ rate2.go
implicit real*s(a-h,o-z)
logical list
character*2 ctype
open(2,file="rate2.go’',status="0LD')
¢ Jump over data lines in this file not required on the host
read{(2,'(f4.1) ')dum,dum,dum,dum
read(2,'(i3) ')nstep
read{(2,'(11})'}list
write(5,'('' ***** program rate2 **xss 1131}

vz2s

c

c

<

c

c

Lo

c

c

Q00

aooooaooan

C
C

c

ask from keyboard
write(6,'{'"' number of nodes 7
read(5,'{a2)"'}ctype
a cube and release it when this task finishes
call getcube('rate2' ., ctype,'',0)
a process 1ld for communications,
call setpid(0)}
load the node process contained in file rate2.out
call load('rate2.out',-1,0}
start clock
start=float{mclock(}}/1000.0
nocde reguests data

I'!"l')
get

set can be any number

5 call crecvi{-1,buf,0)

find out which node and what pid
inocde=infonode()
ipid=infopid()

read temperature from file
read{2,'(£f10.5)"')temp
if(temp.lt.1.0e-6)goto 10

send data to inode
call csend{2,temp,8,1inode,ipid)
goto &

10 finish=float(mclock())/1000.0

time=finish-start

write(6,'('' host executlon time '',gl12.5,'' seconds ''jtime
How do I know that all the processes have finlished 7 [left as an
exercise for the student)
this next line kills the processes and unloads the cube....

end

PROGRAM RATE2
this is the node program for the 1PSC/2

CALCULATES MAXWELL-BOLTZMANN AVERAGED RATE COEFFICIENTS BY
SPLINE INTERPOLATION OF CROSS SECTIONS FOLLOWED BE ANALYTIC
INTEGRATION OVER A SMALL INTERVAL WITH STRAIGHT-LINE FIT

IMPLICIT REAL*8(A-H,0-Z)
PARAMETER {(INS=5)}
LOGICAL LIST
DIMENSION E{50,ins},S5IGMA{50,INS]),CSIGMA{50,INS) AARA(50),BBB(50),
1 CCC(50),SIGA{INS),SIGB(INS),sigas{ins),sligbs{ins),
2 rate(ins), thresh{ins) ,nest{ins)
open{l,file="rate2l8.dat’,status="'0LD")
open(5,file='rate2.go',status="'0LD"')
READ{S, 10)REDM

10 FORMAT(F10.5)
READ(S5,1C)CONV
READ(1,'(213)')NE,NS
READ(5, 10)EMAX

read(5,'(Bf10.5) ') {thresh{3j},j=1,ns}
DO I=1,NE

READ(1, '(g12.5)")E(I,1}, (SIGMA(I,J}.J=1,N5)
end do

loop over temperatures, data is farmed out from the nost
get host's id

idhost=myhost(}
tell the host I am ready for data

V.29

50 call cesend(5,dum,0, idhost, 0}
C receive temperature for this loop
call crecv(2,temp,8)}
C node Just hangs if its not sent anything, 1.e.

WRITE(6,45)TEMP, (RATE(1),1=1,ns8),ratet

at the end

45 FORMAT(/' TEMPERATURE K ',G12.5,' REACTION RATEs CM*®*a/5 !
1 6G12.5)
GOTO 50
END
The above code is a real, but very small application. The
kernel of another application in which an inner loop of a multi-
dimensional quadrature wae parallelised i1s shown in section III.1.1

above.

The second example is again from a real code which is the host
file server mentioned above. It 1s an example of how to implement
the ALT functionality using the iprobe routine

10 do 300 i=1.,5
1type=i+300
1f({iprobe(itype).ne.0}goto(1,2,3,4,.5),1

300 continue
. ??fl flick() ﬂo&o 10

goto 10
2 e

goto 10
3 eea

goto 10
4 aa

goto 10
5 -

goto 10

end

IvV.2.10

r

IV.3 Meiko Computing Surface (installed_at DL summer 1987,
upgraded winter 1988)

Acknowledgements: the original M10 computing surface is on loan
from the SERC/DTI Transputer Initiative loan pool at RAL. DL is an
Assoclated Support Centre to the Initiative, and undertakes to make
programs develeoped on the machine nationally available through the
Sheffield National Transputer Support Centre library.

Configuration of the current surface at DL, transputer types:

1x T414 mkOl4 3IMbyte host processor H

1x T414 mkO15 128kbyte graphics processor G

1x T414 mk021 BMbyte mass-store board M

4x TBOO compute nodes {1 guad board mk0E0) AMbyte memory each
P1-P4

8x T800 compute nodes (2 guad boards mnk009) 256 kbytes memory
each P5-P12

electronic switching of links to reconfigure nodes

300Mbyte scsi disk and 1/4" tape cartridge driven off the mko21

front end Sun tcsa operating Sun0OS 4.0

The IMST414-20 integer traneputer can run at 10 mips, the 64-bit
floating-point unit of the IMSTB00-20 can sustain 1.5 Mflops/sec
{Inmos figures)

Figure 1. topology of M10 for Fortnet v2.1, T-links in dual
"dalsy chain".

Sun ‘ H M G
tosap :

Pl P2 P3 P4
P8 P7 P6 P5
P9 P10 P11 P12

message-passing links
filing system links

The programnlng environment is FORTRAN7T complled on the Sun
under Sun0S 4.0 and occam 2 compiled on the Meiko host board under
OPS., The pain associated with simultaneously using two operating
systems is reduced on a SUN with two or more suntools windows
{separate ones for each environment}. The OPS must be booted in a
shelltool window rather than a cmdtool window. The Melko at
Daresbury has also been provided with the MMVCS and MeilkO0S operating
systems, however this requires the host, mnass-store {(to drive the
disk) and one mk060 node to be dedicated to the system leaving only

11 nodes (mostly of low memory size) to the user. Alternative
software tools, called CStools, are avallable from Meiko for the in-
Sun hardware, and will provide a more familiar UNIX-like

environment. These are breifly described at the end of this section.

The FORTRAN77 extensions supplied by Melko Ltd. in 1987 were
minimal. They access the occam channels for data transfer and timing
[1]

V.3l

ibli{ichan, ibuff, islze(l)) -- inputs integers from ichan,

iblo(ichan, ibuff, isize(l)) -- cutputs integers to ichan.

Corresponding routines are provided for other data types. The
channels must be correctly defined in the descriptor flle and in the

underlying occam harness.

time=itime() -- gets the current transputer clock time in 64us
ticks.

Harnessgoftware for the Meiko

Some harnesses (see gection II.5) have been written by MWeilko
Ltd. at PEdinburgh for very specific jobs :1like task-farming
applications, either single tasks from several users, or several
tasks from one user. Another harness runs a cell-type application
with the possibility to swap data at cell edges, useful in CFD or
lattice~guage type work.

Other harnesses are available from the Spouthampton Transputer
Centre, via Sheffield, and also do farming applications [2-4].

The harness used at DL and Durham University is called Fortnet
v2.1. It was develaped by Sebastian Zureck (Cambrldge), Lydia Heck
{Durham) and myself. A more detailed description and published
version of the code is currently beilng prepared for publication (6].
A verslion could also be made available for the Inmos TRAM in the
future.

"une double postulation simultanée” Baudelaire

The original harness program at Daresbury was written entirely
in occam—2 by Sebastian Zurek during the summer of 1987. The code
was subsequently simplified and partly converted to FORTRAN by B1l1l
Purvis of DL shortly after Seb left. Since then I have taken over
the work of improving and maintaining the code - the most Important
improvement being to implement a way of communicating READ and WRITE
statements in the user process on each node with their respective
filee and devices on the front end machine. To do this it 1s
necessary to develop a protocol for sending and requesting formatted
{or unformatted) information to or from a particular logical unit. A
more advanced protoccl is now used to do full blocked parallel SEND
and RECEVE cperaticons and version 2.1, written by Lydia Heck, has
the full FORTRAN file system on all nodes,

A naive sorting program is illustrated here as an example, It
reads data on the mass store board and partitlions it into segments.
Each segment is sent to, and worked on by a different processor, and
the results are finally collected again on the mass store. The same
slave programs is now implemented on all the nodes to reduce the
disk storage overheads and complication of the harness (see Flg. 1}.

_ The slave processes (fig. 2) coneist of a buffer process {fig.
4} to handle transmission of messages along the chain (fig. 1), and
a worker process (fig. 3) which contains the FORTRAN. READ and WRITE
and SEND and RECEVE communicatlon is done using the protocol of flg.
5. The user's program is embedded in FORTRAN code and should be a
self-containad program with the statement "SUBRQUTINE USER" at the
beginning. The program and its subroutines muat have been compiled
on the SUN with t£77 and linked with tlink as shown below. It must
fit in the memory of a single MKO0OS processor board (256 kbyte) if
all 13 transputers are toc be used, although this is clearly not a
restriction on other implementations.

.32

keyb screen
'y

DRIVER 7

7 fileSys
Mux

,I
fromF toF
fromFto -

toF
| fromKForw

Forw forward
FileSys

to

Slaveg

from

| lout0

| Slaves

fromF

=
ﬂeiﬁi

MASTER

toF

forward

FileSys

fromUser

‘ User1 \
from FoHost
Host

——1 fileSys

SLAVE |

Mux

|}

forward
FileSys

&

V.34

Transputer

1

Transputer

2

T;DUl
super B vl
Stream - system
|—..——|debug
node. T -
. fromF
in[Ti} ni0]

—1 | hook hook¥® [0
in o 4 * = "
out{1] F10]

_ hooky hooku "
— 00K UP P out0

v.35

in[0]

in(1]

message.

controller

out([0]

Y comm.buf

buffer.mess

data

{ comm

WORKER

out[1]

!

toF |

Iv.3.6

fromF

debug

inl0]

inl1]

data

TADDRd:EI comm.mux{0] _
[myacer - mess.

input

Zmyaddr fuxer comm
outmux(1][0] comm.mux[1]
e

[y mess.

input] -
Zmyaddr / o (| Muxer out[0]
outmux[0][0] ¥ outmux{0I[1]

TADDRd(d

e mess. _
Ofifﬂr - muxer | out1]

outmux[1](1]

Iv.3.7

isiz | :: [TADDR | FADDR [TAG

dimension isiz{1), ibuff(n)
isiz(1)=n

iblo(ichan, isiz, 1)
iblolichan, ibuff, isiz{1))

Iv.38

Subroutine calls {contained in the IDSUB library)

CALL STOP -- This call toggles the activation index for the
processor in the server process. It is called by the worker process
and should not normally be reguired by the user. Workers activate at
the start of executlon and deactivate when the user process
terminates correctly. When all processors are deactivated the server
produces a table of statistics about the entire job.

A STOP statement in the user's code should be replaced by

CALL STOP
STOP
except in subroutine USER when RETURN should be used instead. The

FORTRAN STOP shoudl correctly terminate a process.

CHARACTER*132 BUFFER

CALL READ(LU,NCHAR,BUFFER)

READ(BUFFER, <fnt>)<iolist> -- This is the usual way to read a
line of formatted data from LU which is attached to a Sun file or
the TTY via the server. The connectlion between LU and the flle name
js made in the FORTRAN SERVER routine which runs on the first
transpuer of the chain. It must be modified if required. This
preocedure gilves a way of distributing data in a globally accessed
file out to many processors Just by reading it. Load balancing 1Ii=s
automatically achieved 1f each processor reads a line of data when
it is ready to work on 1t, as seen in the rate2 example in section
I1.2.

CHARACTER*132 BUFFER

WRITE{BUFFER, <fmt>)<lolist>

CALL WRITE(LU,NCHAR,BUFFER} -- This iz the usual way to output
formatted information to LU which may be attached to a Sun file or
the TTY vla server. Comments apply as above., These read and write
subroutine bear some resemblance to the host file-server library we
have implemented on the Intel, see section IV.2.

Normal FORTRAN i/0 and OPEN and CLOSE statements can alsao be
used, in which case all processors read all the data in a file which
is opened by them. Care should be taken when writing to shared files
opened in this way as the result will be unpredictable.

CALL WAIT(N) ~- Causes the program to walt on the current
processor until processor N attempts to synchronise with it, This is
used as part of the blocking protocol for SEND and RECEVE.

CALL CHECK(M) -~ Checks if processor M is walting and wailts
until it is to synchronise. Used with CALL WAIT above.

CALL RECEVS(N, 1ISIZ, BUFFER) =-- Receives IS$IZ bytes Into
character string BUFFER from processor N assuming that they are
synchronised. It walts for the data to arrive from an occam buffer
process via channels.

CALL RECEVE (N, ISIZ, ARRAY) -- Recelves data of other types as
above

CALL SERDS(M, ISIZ, BUFFER) -- Sends ISIZ bytes from character
string BUFFER to processor M which should previously have been
synchronised by calling CHECK. Thils 1s done via an occam buffer
process and the call is to some extent asynchronous.

Iv.3.9

CALL SEND (M, 1ISIZ, ARRAY) -- sends data of other types as
above

CALL RECANS{(L, ISIZ, BUFFER) -- Recelves ISIZ bytes of data
into character string BUFFER from any processor that happens to send
them. L 1s a redundant parameter on calling, but returns the address
from whence the data came.

CALL RECANY (L, 1ISIZ, ARRAY) -- receive other data types as
above

CALL BRCASS({LIST, NPROCS, ISIZ, BUFFER)] -—-— Should broadcast
ISIZ bytes from BUFFER to all the processors in the LIST{1:NPROCS}.
At present the implementation is slow, changes are needed 1in the
occam to improve it.

CALL BRCAST (LIST, NPROCS, ISIZ, ARRAY} -- broadcast other data
types as above. The above four routines form part of a more general
set of global communication routines which are being written for the
Meiko and contained in the IOSUP library.

INCDE=MYNODE()} -- Obtains the address of the current processor
which can be used in program constructs of the form l1llustrated in
section III.1.1

Subroutines for debugging

CALL DEBUG{MODE) -- Mode 1i1s a character string which may take
the values 'ON, 'OFF', and 'TOGGLE'. The three cases switch on, off
and toggle the debugging mode respectively. In debugging "on" mode
message are printed out during the execution of each of the IOSUB
routines, which give -information on the status of the system. This
is rather like the trace command in the Intel 1PSC simulator (see
Iv.2)

CALL STATS(MODE} =-- Similar to the above, MODE 1s a character
string which may take the values 'ON', 'OFF', 'TOGGLE' and 'PRINT'.
The four cases switch on, off and toggle the debugging mode, and

print currently collected results respectively. The effect of 'OFF'
is alsoc to rTeset the results to theilr initial values so 'PRINT'
should be used befare this is done. The statistles are collected
each time a system call is made.

CALL CPU{TIME) -- This routine returns the present value of the
local procesgor clock in seconds in double precision double
precision variable TIME.

CHARACTER*NCHAR BUFFER

CALL SUPER(NCHAR. BUFFER) -- This 1s the way to send a message
of NCHAR characters in BUFFER to the TTY screen via the Supervisor
Bus. BUFFER may be replaced by an explicit text string in guotes.

This routine will not be availlable for the Inmos TRAM.
Changes in standard FORTRAN to use Fortnet
5ix steps to parallel FORTRAN
1) replace PROGRAM statement by SUBROUTINE USER

2) replace WRITEs if necessary for common flles
3) replace READs if necessary

IV.3.10

4) replace STOP with a return out of subroutine USER to the

calling system program
§) synchronise any points where Iinter-processor communications

are neceasary and use blocked SEND and RECEVE.
6) put in debug calls!

Examples of the use of the subroutine library are shown below.

Practical hints for compiling and linking FORTRAN on the Meiko
M10 at Daresbury

in order to use the Fortnet procedures described above a valid
id on the Daresbury front-end Sun tcsa must be obtalned. The usual
way, as for the Intel, l1s to obtaln an 1d on the.Convex after which
a remote login to the Sun can be made. Once this has been done both
the FORTRAN and occam OPS environments can be used as well as
MelkOS. Meik0S 1s not discussed in any detall here. An example of an
include file for the linker is shown below, one of which should be
created each for the master, server and worker programs. Names
adopted are workerO.tpo and server.tpo which run on the mass satore
board, and worker,tpo which runs on all compute boards. We suggest
that these names are adhered to, and a new UNIX directory is created
for each different program.

worker. tpo

INCLUDE /usr/meiko/f77/fortran/hex/f7Theado

PARAMETERS CHAN OF ANY fromf, tof, keyb, screen, userl, -
user2. report

/home/rja/export/worker

<user's main program modified as above>

[<user's subroutines>}

/home/rja/export/iosub

The directory selected should make reference to the one which
contains the occam environment and the Fortnet system subroutines as
in the above example. These are stored in the directory
/home/rja/export/ which should be copied. When this is done the path
translation file opstrans.trs should be modified to point at the new
fortnet directory in the same way as does the reference Jbob/.

bob usr/rja/export/
user usr/rja/export/sort/
syslib usr/meiko/occam/system/

utilnib usr/meiko/occam/utll/
complib usr/melko/accam/library/
t4sys_objs usr/meiko/f77/fortran/hex/

The user's main program and subroutines should be contalned in
filesr *.f (although if this is not the case only a spurlous error
message is printed) and each one should be compiled using the FI17
compller as follows

t£77 +f <file.f>

After successful compllation, code for each node is linked with
tlink worker t8 library

This has the effect of producing a library file worker.1i8 which can

be attached to the occam harness system. Details of how to do that
are given in the next section. Note that separate files are not used

vi.lil

for each processor and the code contained in them is identical,
therefore statements of the type

inode=mynode()

if{inode.eq.n)then

end if
should be included if different operations are to be performed on
different processors (especially for send and receive operations).
Experience has shown that this restriction is necessary on larger
parallel machines, and is not too difficult to work around.The
INCLUDE statements in the *.tpo files can refer to common source, as
indeed they do for the worker and iosub files in the system
directory.

Code for the mass store board is linked from the worker0.tpo
file which references the part of the program responsible for data
handling and control, and server which handles the front-end files.
Since the mass store only has a T414, different commands have to be
used as follows for the master and server:

tE£77 <file.f>

tlink workerQ library

tf77 server.f

tlink server library

Using OPS to _attach the FORTRAN code to the occam harness

If the current directory is the one containing the Fortnet
harness (e.g. /home/rja/export/ the original one} OPS can be invoked
as follows

sboot -- 1f on a Sun or in a Sun shelltools window or,

boot =- if on ancther type of terminal, these commands are
aliases which may be inspected in /home/rja/.cshrc

[root directory ?)/home/rja/fortnet?

{which termlnal type ?]vtioo

the screen will clear and the line
.. F /home/rja/export/toplevel, top

will appear. One should now refer to the Meiko manual sectlon on use
of the OPS environment to find out how to edit occam programs and
invoke the compile and configure utilitles [5].

The actual occam code of the Fortnet harness is contained in
the fold

.. .PROGRAM Forthet v2.1

which should be opened until the separately complled folds '...SC'
are found. Inside these are references to filed feolds which are the
descriptors of the user's FORTRAN source. They have the appearance:

.../bob/<sub directory>/worker,.118
.../bob/<sub directory>/server.lid
.../bob/<sub directory>/worker0.114

and should be edited to polnt to the correct sub directory.

OGnce this has been done each SC fold should be compiled using
the occam-2 compiler and setting appropriate values for the optlons.
and again whenever the FORTRAN to which 1t refers is re-linked.
Finally the PROGRAM Fortnet can be configured and loaded onto the
transputer network after using the fortnet.wir wiring file for

v.3.12

setting the pipeline switches. Using the run key will produce
results, or fail 1f problems are encountered. In the event of
failure some or all of the above steps will have to be repeated,
which after a while becomes TeDJiouS.

Example: nalve sorting program
master program

subroutine user
implicit real*4{a-h,o-z}
¢ routine to partition and distribute data for simple parallel
sort version (1)
c 14/3/88 R.A.
parameter (nproc=8,nmax=500}
dimension x{nmax}
dimension na{nmax),a{nproc,nmax)
character*132 buffer
real*s8 time, timel
call debug({'OFF'}
call write(6,37,'('' #n%%* program sort ***** yergion 1.0"'')'}
call cpu(timeQ}
c read in data from file 1, all numbers stored on MKC21 board
call read{1,4,buffer)
read(buffer,'(i4)"'})n
call read{1,10,buffer)
read{buffer, '{£10.5)"Ix{1)
¢ search through data for largest and smallest elements
xmax=x(1}
rmin=x{1}
do 5 1=2,n
call read(1,10,buffer)
read{buffer,'[(£f10.5)')x{1)
1£(x{1).gt.xmax)xmax=x(1)
5 1f{x{l).1t.xmin)xmin=x(1})
call cpu(time)
time=time-timel
write(buffer,'{gl12.5,"'' seconds to read data'')')time
call write(6,33,buffer)
¢ partltion for p processors into segments of width [maxa-mina)/p
width=(xmax-xmin}/float{nproc)
write(buffer,'{'' xmax, xmin, width = '', 3g12.5)')
1 xmax,xmin,width
call write(6,57,buffer)
¢ loop over data and collect i1t to send each segment to a processar
do 20 i=1,nproc
20 na(i)=1
do 15 i=1.,n
c first processor handled separately
1f{x{1).1t.xmin+width)then
all,nal1)¥=x(1)
nai{l)=na(l)+1
end 1if
do 35 J=2,nproc-1
xminp=xmintwidth*float({}-1)
xmaxm=xmin+width*£loat(j)
1f(x(i).ge.xminp.and.x(i).1t,.xmaxm) then
c row J of a() will go to processor J+1
a{j.na{j))=x{1i)
na{j)=na(]j)+1

Q

v.3.13

a5

end if
continue

c last processor handled separately

15

if(x(i).ge.xmax-width) then

a(nproc,na(nproc}}=x{i)

na(nproc)=nal{nproc)+1

end 1f

continue

call cpu(time)

time=time-timeO

write(buffer, '(gl2.5,'' seconds to partition data'')')time
call write(6,38,buffer)

¢ send data

25

do 25 1=1,npraoc

ipi=i+1

call check{ipl)
nsend=na{i}-1

call send{ipl,4,n=send}
do 25 j=1,nsend

call send(ipl.,4.a(i, }}}
continue

call cpu{time)
time=time—-timeO
write(buffer,'(gi2.5,'' seconds to send data'’')')time
call write(6,33,buffer)

c recelve ordered results, smallest number comes first

30

do 30 i=1,nproc

ipi=i+1

call check{ipl)
nrec=na(ij-1

do 30 j=1,nrec

call recewvs(ipl,i0 ,buffer)
call write{2,10,buffer)
continue

call cpu{time)
time=time-time0

write{buffer, '{gl2.5,'' seconds to receive data'’'})’')time
call write{6,36,buffer)
end

worker program

subroutine user

¢ slave coding of sort program version {1}

C new
comput

1

code 14/3/88 single flle with fortran for all slaves on

e boards.

character®*132 buffer

dimension x{500)

real*s time,timed
common/talk/inode,npend(10) . ,nwait,nw
if(inode.gt.8}return

call depug('OFF')

nrec=31

call cpu{timed)

call walt{nrec)

call receve(nrec,4,n}

write(buffer,'('' slave '',12,'' receiving '',14,'' elements''}'})

inode,n
call write(6,33,buffer)
do 5 i=1.,n

IvV.3.14

call receve(nrec,4,x{1))
5 continue
call sort{x.,n) ! any seguential sorting routine can be used
call waltinrec)
do 10 i=1,n
write{buffer,'{£f10.5)"')x[1)
call send(nrec,10,buffer)
10 continue
call cpu(time)
time=time-time0

write{buffer,'('' time on slave '',12,2x,g12.5,'' seconds''}')
1 inode, time

call write(6,39,buffer)

end

Future verzions of Fortnet wlll include the following
additions: .

i) dynamic loading of tasks from a names flle, or just by
reference to the executable. This permits a batch gqueue to be easily
divised.

ii) a way to kill executing taske will be implemented

1ii) subroutine names will be made to resemble more those on
the hypercube machines

iv) the end processor of the chain will be given a link to the
first for more efficlent two=way message routing. This will in
general create problems of flow control which must be avoided.

v} a message queuing system will be implemented in addition to
the current self-correcting protocol. This will enable the
asynchronous communications calls and polling calls to be
implemented similar to those on the hypercubes.

vi) a high-level library of global and shared-memory emulation
routines will be provided

vil) run-time trace Information will be displayed graphically
by interfacing Fortnet to the Schedule package.

CStools.

In the above pages we have outlined the general procedure for
acceasing the OPS syatem on the Meiko, or TDS on an Inmos system,
and indicated use of one particular harness to run parallel FORTRAN
code. It 1s significant that Melko Scientliflc Ltd. have recently
announced their CStools products, Initially available to UNIX hosts,
but later to be avallable to all hosts. This range gives a different
philosophy to parallel languages as will now be described.

The means to send messages between parallel executing processes
is rather similar to the UNIX model, One process will create a named
message port, and attempt to read data from it, one or several other
processes may then send to the port. Messages are buffered and
gueued in FIFO fashion and stay in order. By this means a
functionality eimilar to the Occam ALT is provided, data will be
read from any process that is ready to send it.

Any number of ports may be accessed (limited only by the system
buffer space in memory) and the user does not in general know what
pathse the data takes to arrive at its destination. A facllity 1s
however provided to give direct link access for communication-bound
tasks. There 1s in thls respect clear resemblance to the
hierarchical communication protocols i1n trillium. The designers of
CStools have benefitted from experience of the latter product on the
Niche system (sectlon IV.4).

Further functionality is provided in the CStools environment

IV.3.15

factually in the underlying Virtual Computing Surface VCS) +to load
procegsses using the trun <name> command onto a given configuration
of transputers. The processors and their processes are specified in
a flle <name>.par where expliclt links may alsc be specified. A
simple example is

ar
P processor 0 master.exB slavel.ex8
processor 1 slave2.ex8
processor 2 FOR 3 slave3.exB
endpar

Further instructlons are of the type
networkls ternary tree

which is the default, bilnary tree, or unary tree (a plpeline).
The *.tpo files used to create the executable images might be
of the form

/INCLUDE /fusr/melko/fortran/hex/f711head
/INCLUDE /usr/melko/fortran/hex/cs
master

which would be linked at run time with the command tlink <name> t8.

In addition to running a transputer network CStools can run a
network of UNIX processes (on one or more SUNs), giving the obvious
capability to debug with dbxtools. Agaln much has been learned from
early attempts by Niche to do this. Interface to SUN host processes
and graphics processes 1ls clearly also possible

Fortran subroutines 1n CStools

idesc=cs_createPort{name) -- creates a port and returns a port
descriptor, or -1 if unsuccessful

idesc=cs_findPort{name, 1block) -- searches for a port wlth
given name, waits until one exists if iblock=1

lerr=cs_send{idesc, data, nbytes/4, iblock) -- attempts to send
data to the port described by ldesc, blocking as above

ierr=cs_recv(idesc, data, nbytes/4) -- attempts to receive data
from idesc and walts if none is availlable

cs_getInfo(nProcs, procld, localIid)} -- obtain information about
the array

cs_abort{) —-- terminates a process

IV.3.16

IV.4 NCUBE

Current NCUBE products are the NCUBE ten, NCUBE seven and NCUBE
four which are manufactured by NCUBE Corporation, Beaverton, Ore.,
but are avallable in this country through Arrow Computer Systems
Limited of Epsom.

Hardware

The topology of the system is a hypercube.

The NCUBE ten cabinet can hold between 16 and 1024 processors
in less than 1 cubic metre. The custom VLSI processor used In the
ten 1is a 32-bit chip with 32 and 64 bit IEEE floating point and
error-correcting memory Interface and 22 independent DMA links. The
speed of a slngle chip is around 500 kflops or 2 mip in 32 bit, or
300 kflops in 64 bit. Up to 500 Mflops are available in the full
system. A ncede consists of one processor chip and 500 kbyte memory
on six chips although larger configurations are possible. Up to 64
nodes can be placed on a board, and up to 16 boards in the system
cabinet.

The stand-alone host is essentially an B0286/80287-based
microprocessor which runs a UNIX-style operating system called Axis.
The nodes take a kernel system called Vertex, Peripherals can be
easily added to the DMA linke, and up to four disk drives are
available. Up to B host boards can be added giving the possibility
of 64 simultanecus users with 64 Gbytes of storage. High-performancs
graphics and an open-system board are other options.

The NCUBE seven and four are smaller systems, with up to 128
and up to 4 nodes respectively. The four is a PC-AT style card which
can be plugged into a microproccessor system to run the NCUBE
software for development purposes. Up to four cards can be used
together,

Software

The Axis operating system supports an Emacse-like editor called
Nmacs, the Nshell, a debugger and fast tape backup. The normal
language compllers have been extended with communication facilitles
in the usual way.

Extenslons to UNIX are the Ncube Network which 1s a networked
flle system allowing a file structure to be spread across several
disk driven belonging to different physically connected systems, and
more powerful and uniform protection faclilities. The hypercube may
be managed and allocated in subcubes and 1s otherwise similar to
other UNIX-style management mentioned here with the ability to load.
run, communicate with and debug programs in the cube.

The node operating system Vertex allows message passing,
process scheduling and debugging.

Fortran calls

Only a few of the avallable calls are shown to give a flavour,
rather than a complete list

sw=nwrite{buffer, length, proc, type. flag) -- send vector of
length "length" to proc

sr=nread({buffer, length, proc, type, flag) -- receive vector of
length "length" from proc

whoami (incde, proc_id, host, lorder_of_cube) -- call information

va4.l

about node and host

Other facilities and the ability to leoad and kill processes are
rather similar to those on the Intel hypercube.

V42

IV.5 Transtech NTP1000

Hardware

The NiCHE platform (now marketed by Transtech) consiste of one
or more linked transputer-based cards which fit into a SUN 3.0
workstation. The cards take up 1 1/2 slots, and say up to 3 could be
put in a normal SUN. Each card has four sltes into which may be put
either one transputer and between 2 and 26 Mbyte memory, or 4
transputers with 2 Mbytes or less, or 8 with 32 kbyte memory. A
fully populated board might therefore have 16x TB0O + 32 Mbyte total
memory. The system if very flexible, and separate VME card cages may
be added to take more boarde, the limit being governed only by
expense and power supply capability. Normally a distributed system
would be envisaged however with several SUN workstations having one
board each for development of parallel caode.

The system is electronically reconfigurable but has a hard-
wired ‘spilne' passing through two links of every transputer. The
remaining links may be wired inside a site, and sites may be wired
together, allowing some flexibility.

Software

NiCHE Technology took the trillium operating system (section
II.2), orlginally designed for the FPS T20, and modified it to suit
their machine. Several major parts have been re-written. The result
is called the parallel runtime environment (PRE). NiCHEs approach in
using this environment was that 1t should be able to link together
any number of processors of different types. In the NTP1000 these
types are the SUN 3.0 host and IMST800 nodes. The data transfer
involves byte-swapping ({as also on the Intel hypercube and Meiko)
but enables programs to be developed wholly on the SUN for debugging
purposes. The SUN dbxtool can be used in a window on each processe of
interest. Once processes are working they can be downloaded into the
box with increase of performance. NiCHE hoped to incorporate ather
types of processor into this system.

As well as the general purpose parallel FORTRAN kernel calls,
software is avallable specifically for farming applications with
farmer, worker and gatherer tasks. This is very effective in FFT
image-processing examples.

ASs can be inmagined from reading section I1.2, FORTRAN tasks
talk to each other by connecting to the PRE kernel to pass messages.
They may also request system services in the same way, for instance
the UNIX-style file 1/o0. There is no occam harness!

Both synchronous NSEND and NRECV and asynchronous NTRY_SEND and
NTRY_RECV message passing 1s possible. The maximum length of message
is currently 8192 bytes. The address of a target process 1s flxed by

the transputer address plus a tag or event number. The gsend or
receiye statements only accept messages wlth the same user-supplled
tag, ctherwise they do not synchronise. It 1is important to

understand that the event tag is actually sampled by the kernel, and
cannot be received by a process not walting for it. It is kept in
the system until regulred. This is like a pid on other UNIK systems.
A message type can also be specified and the target program can
choose between actions depending on that type. The message avents
are fixed at complle time by C-language compller directives
{trillium is written in C). For instance the top of a program might
contain

IV.5.1

#include <trillium/NET.h>
#define ESTART 11 -- start event
#define EEND 12 ~- end event

The FI7 compiler is by Pentasoft, and is an improved version of the
one previously encountered on the T20. A list of the available
subroutine calls now follows. The documentation I have seen was an
early preprint, so there might be errors here!

Kernel requests

kattach —-- attach process to the kernel

kdetach -- detach process from the kernel

kdoom —-- doom a process (to be killed later when 1t makes a
system request)

kexit{n) -- call kdetach and exit

ret=kinit(n) -- 1nitialise data structures and call kattach

krecv -- local message receive

ksend —- local message send

kstate

tsend —- transport layer message send

Network regquests

ator{host) -- absolute to relative address conversion

drecv —- datalink layer message recelive

dsend -- datalink layer message send

lnode=getnodeid{) -- return the network id of the node

ltype=getnodetype(} -- return the type of node

1pid=getpld()

get_route -- given destination, find datalink to use

m=1ltot(n) -- change byte order from local machine's order to PRE
network (transputer) order

nrecv{event, type,length,flags,buf}) -- network layer recelve

nsgend{node, event, type,length, flags,end) -- network layer send

rw -- reverse byte order in a 32 bit word (needed when passing
messages between some machines)

tsend -- transport layer message send

trecv -- transport layer message recelve

n=ttol(m) -- change byte order from PRE network {transputer)}
order to local machine's order

i=ntry_recv =-- asynchronous receive post, returns 0 if 0K, -1
otherwise

i=ntry_send -- asynchronous send post

Utility functions

bcopy —-— copy a block of memory

errno -- return the system errno variable

itime=ldtimer{) -— read the transputer timer: clock ticks at 64
microsecond intervals

setprl -- set process priority on a transputer

i=tprint(string) -- print a string on the user's screen

Low-level C llbrary calls

f4d=TOPEN{...)
ret=TREAD{fd, a, nbytes) -- read nbytes to address a
ret=TWRITE{fd, a, nbhytes) -- write out nbytes from address a

exactly as satored 1n memory

Iv.5.2

TCLOSE{)
In the above list there appears to be no means to dynamically load,

kill or spawn processes. In more recent documentation this feature
has been added.

Iv.5.3

IVv.6 Parsys SN1000

As far as I am aware, the Parsys transputer-based machine
{SN100C sguperhode}, whilst configurably more verszatile, is like the
early Meiko surface in that it has no parallel languages except
QOccam-2. The sequential FORTRANZ77 compiler is the one supplied by
Inmos or 3L. The supernode should however be able to run elther the
Fartnet v2.1 harness {see section IV.3) or the new 3L software
(IV.7), or indeed a version of trillium (IX.2).

The operating environment of the SN1000 1s IDRIS, which
provides a full range of POSIX standard {(UNIX) commands, and enables
the user to run a series of separate processes which may share the
system resources. This allows coupling of F77 tasks via UNIX system
requests (sockets) to the host program.

The main impact of the machine 1is 1te complete 4-fold
reconfigurabllity and efficilent engineering. As a result of the
joint Europeen ESPRIT 1085 project it has undoubtably taught the
partners a lot about parallel occam engine design.

A new project ESPRIT 2085 wlll look more closely at software
design.

IvV.6.1

IV.7 3L Parallel FORTRAN

There are current implementations of 3Ls software for NIiCHE
{Transtech) and PC-based transputer arrays such as the Geminl system
[2] and also the Meiko surface.

The aim of 3L's tools 1s to allow concurrent transputer programs
to be written without using occam. They supply high-level support
for programs which exploit any number of transputers.

The software is designed for a single user, and specifically for
embedded systems of transputers where there is no operating system
as such. After the user program is loaded, 1t, together with some

linked libraries, takes over the nodes. The run time library
controls the transputer channels and scheduling. This results in a
very low overhead of around 5 kbytes per node. Furthermore, since

there is no buffering of communications through occam harness
multiplexors, inter-processor communitcation is efficlent.

The 3L compiler accepts standard FORTRAN [3] and produces binary
object code in Inmos object file format for T414 or TE00
transputers. Some extensions to sequential FORTRAN such as DO WHILE
are permitted. A program is treated as a task and run in parallel
with other tasks. The tasks can be run on a single processor or on
multiple processors and linked via a number of input and output
ports.

Concurrency features are added to the language through run tlme
libraries as in the other products reviewed here. These extensions
are rather similar to the ones implemented by Meike for thelr
CStools environment. As well as the ability to send and receive data
on channels a functionality similar to the Occam ALT is provided by
the abllity to walt untll one group of channels recelves a message
and report which it is, or to check without waiting for the presence
of a message.

A further help for concurrent programming is the explicit
farming software called the flood-fi1lling configurer FCONFIG. A
worker program, which is loaded to all available transputers, reads
a work packet, processes it, and writes a reply packet back to the
master. Data routing is automatic within this restricted paradigm. A
normal configurer CONFIG allows a general concurrent task to be
bullt on an arbitrary array from instructions placed in an external
configuration file.

A second library feature of the language is the multiple-thread
facility. New execution threads may be created within a task at run
time. Threads share the same code, static and heap data areas, but
have their own stack. Threads are allowed to communicate across
transputer channels using messages, and alsoc use semaphore functions
to flag access to shared data areas (common blocks), ports or
message buffers. Unfortunately,since FORTRAN is not reentrant, l.e.
the same program unit cannot be active more than once, a subprogram
can be only lnvoked once by a thread at any one time.

Compilation of code 13 done on the transputer using either the
tdf or t8f commands e.g.

t8f source

which looks for a file source.f77. This produces an object file
gource.bin as output. This is linked with the parallel run time
library using either the t4flink or t8flink commands. Executable
fFiles source.bd4 or source._b8 are produced. In MS-DDS the linkt
linker can alternatively be used for several object files.

The program l1s run using

config sourcg.cfqg source.app

IV.7.1

afserver -:b source,app

The configuration file for a typical job 1s rather complex 1in
appearance. An example is

processor host

processor root

wire jumper host[0] root{0] ! describes hardware configuration

task one ins=2 outs=2 .

task two ins=2 outs=2 data=10k

task afserver ins=1 outs=1 ! declares tasks with the number of
! input and output ports and amount of workspace

place afserver host

place one root

place two root ! placement on host and first transputer

connect ? two[0] afserver[0]

connect 7?7 afserver[0] two[0Q]

connect ? two([l] onef[l]

connect 7 one[l] two[l] ! shows how the tasks are connected
! together by their ports

As will be seen below, the 3L run time library is rich and
sophisticated. It comprises separate sectlons for control of host
memory, threads. timers, semaphores, channels and processor farms.
Channels may be bound to ports of a task, as by the configurer, or
freely assigned to integer words for internal communication between
many threads of one task.

Before communlcation can be done between tasks the address af a
physlical channel connected to a port must first be found, then data
is sent to or received on it. The actual channel address 1s defined
by the configurer and is therefore only known at run time, whereas
the port numbers and internal channel words are defined in the code.

List of FORTRAN subroutines.

out=F77_Chan_out_Port(k) -- finds address of chamnel bound to
output port k

in=F77_Chan_in_Portik} -- finds address of channel bound to
input port k

1addr=F77 _Chan_Address(ichan) —- return address of Internal
channel word ichan

F17_cChan_Init(laddr}) -- initialises an internal channel word

whose address 1s laddr for communication. All internal channel words
must be initialised. Channels bound to ports should not be
initialised.

F17_Chan_out_Byte(ibuff,out) —— send lowest byte from lbuff on
channel out

F77_Chan_in_Byte(lbuff, in) -- read a single byte from channel
in

F77_Chan_out: Word(var, out) -- send four byte var out on
channel out .

F77_Chan_in Word(var, in) -- read four byte var from channel 1n

F77_Chan_out_Message{nbytes, array, in) -- send a message of
nbytea on channel out

F77_Chan_in_Message({nbytes, array, in) -- wait for message on
channel 1n

1=F77_Chan_in_Byte_t{ibuff, in, itimeout) ~- try to read during

next itimeout ticks and return value 1=.false. i{f no byte found.
Egqulvalent functions are avajilable for other message types as above.
in=F77_Alt_Wailt{inchan, 3jaddril, ..., laddrn) -- waits until one

IvV.7.2

of the channels has data ready to read and returns a value saying
which of the arguments 1t is

in=F77_Alt_noWalt(inchan, iaddri, ..., laddrn) -~ as above but
does not wait. Returns a value of 0 if nothing is ready

in=F77_Alt_Wait_Vec(inchan,invec) -- as above but the argument
list is replaced by a vector of channels

in=F77_Alt_noWait_Vec{inchan,invec) -- as above but the argument
list is replaced by a vector of channels

F17_Net_Send(nbytes, array, lcomplete) -- pend processor farm
message. Master to slaves or slaves to master only

F77_Net_Receive(nbytes, array, lcomplete) -- receive a
processor farm message

1=F77_Timer_after(timerl, timer2) ~- is .true. if
timeri>timer2, otherwise .false.

F17_Timer delay{iticks) -- causes current thread to walt for at
least iticks

itime=F77_Times_now() —- return current value of timer

F77_Timer_wait{ltime) -- wait until the value of the priority
time 1s at least 1time

nport=F77_Chan_out_Ports() -- returns number of ocutput ports

nport=F77_Chan_in_Ports{) -- returns number of input ports

ihandle=F77_Chan_reset{laddr)} -- resets a channel, and also a

link 1f the channel is mapped onto one. It will suspend a thread
which was communicating on the channel and return a handle to it for
later restarting.

F77_Thread_start{subroutine, lwsarray, nwsbytes,
FT7_Thread_urgent, nargs, argl, ,.., argn) -- start a named thread
from a subroutine. F77_Thread_ncturgent may also be used as an
argument

lstatus=F77_Thread_create(subroutine, nwsbytes, nargs, argl,

., argn] -- attempts to create a thread using subroutine of the
same priority as the current thread and taking nwsbytes from the
heap as workspace. This workspace is never returned, and
F77_Thread_start should be used alternatively.

F77_Thread_stop -~ stops the current thread

i=F77_Thread_priority() -- returns the priority of the current
thread

F7171_Thread_use RTL(} -- ensure that no other threads use the

run time library, waits if it is already in use. This is agaln
beacuse FORTRAN is not reentrant and library routines can be invoked
only once at a time.

F17_Thread_free_RTL() -- release the RTL

F77_Thread_restart{ihandle) -- ihandle points to the workspace
of the thread to be reastarted. It was obtained from F77_Chan_reset

F77_Thread_deschedule{) -- causes the current thread to be
descheduled and allows another thread to take over execution. Same
purpose as the Intel flick() routine (see example 1n section Iv.2).

FI17_Sema_init(mysema, ivalue) -- initialise the semaphore
varlable to an empty queue
F77_Sema_signal(mysema) -- choose one of the thread waiting for

mysema to be reactivated. The value of the semaphore increases by
one only if no threads are waiting. Only threads executing at.
the same priority can synchronise with a semaphore, otherwise they
must use messages on channels
F77_Sema_signalnimysema, n} -- call above routine n times
F17_Sema_wait(mysema) -- wait for semaphore, if the value is
zero it is increased by one, otherwlse it is unchanged and the
current thread is added to the list of threads and descheduled
F77_Sema_waltn{mysema, n) —- call above routine n times
taddr=F77_alloc_Host_mem(nbytes) -- allocates a black of at

Iv.7.3

least nbytes 1n the base memory of the host and returns its 32-bit
address
F717_free_Host_mem(jiaddr} -—- frees base memory
F717_Block_to_Host(inaddr, iaddr, nbytes) -- transfers nbytes of
data from transputer memory starting at inaddr to host memory
starting at iladdr

F717_Block_from_Host(iaddr, outaddr, nbytes) -- reverse of above

F717_read_Segments(idosblock} -- reads processor segment
registers on a PC -

F77_Host_interrupt{intno, lsegs, 1dosblock} —-- loads the

contents of DOS block into the host registers and then calls an
interrupt on a PC

IV.74

Acknowledgements

I would like particularly to thank Nell Burnett and Patrick
Evans who are now with Meiko Scientific Ltd., Richard Chamberlain of
Intel Scientific Computing Ltd., and David Fincham of Keele
University for helpful discussions and advice.

References

The numbering scheme for these references 13 designed to
reflect the section of text in which they were first of Iinterest.

Not all references are explicitly used 1in the text, but may be
reguired for background reading or further information. The
numbering scheme is [section. sub section. reference number]. The

list is nelther complete nor up to date.

Some compillatione of literature are availlable, one such, which
has been published under the auspices of the SERC/DTI Transputer
Initiative, and is availbale from the Sheffield Natlonal Transputer
Centre, ise (R.1.1]. Other sources of useful information are the
Occam Users' Group [R.1.2], the Edinburgh Supercomputer Centre
Newsletter [R.1.3], the Transputer Initiative Mallshot [(R.1.4] and
ourselves [R.1.5].

[I.1.1] "The programming language FORTRAN" ANSI X3.9 (1978)

[I.1.2] "Reference manual for the Ada programming language" US
DoD Report (1980)

[I.1.3] B.Hansen "The programming language Concurrent Pascal"
IEEE Trans. Software Englineering 1 (1975}

[¥.1.4] J.R.McGraw et al. "SISAL - streams and iteration in a
single assignment language, reference manual"” Lawence Livermore
Natl. Lab. (1980)

[I.1.5] reference to DAP

[I.1.6] CSP

[T.1.7} "IEEE 1003.1 POSIX standard draft 13" IEEE Working
Group Technical Committee on Operating Systems of the IEEE Computer
Society (New York, 1988)

[II.1.1] D.F.Snelling and G.-R. Hoffmann "A comparative study
of libraries for parallel processing" Parallel Computing 8 (1988}
255-66

[IT1.1.2) "Proceedings of the 2nd International SUPRENUM
Colloquium, 30th September- 2nd October 1987, Bonn, FRG" Parallel
Computing 7 (1988) 263-499

[II.2.1] A.A.Brown and G.D.Burns "Users' guide to the Trillium
cperating system {(release 1.0)}" Cornell Theory Center, New York
{19BT)

[IT.3.1] W.C.Atlas and C.L.Seitz " Multicomputers: Message-
passing concurrent computers"” Computer August (1988) 9-24

[II.4.1] Perihelion Software Limited, 24 Brewmaster Bulldings,
Charlton Trading Estate, Shepton Mallet, Somerset, BAd4 S5QE.

[II.4.2) X-windows VII

[II.4.3] "Hellos developer's notes" Perihelion Software Ltd.
(1987)

[I1.5.1] D.May EPL

[II.5.2] Inmos Limited "Occam Programming Reference Manual”
Prentice~Hall (1948}

[II.5.3] Dick Pountain "A tutorial introduction to Occam
programming” Blackwell Sclentific Publications for Inmos Limited,
Bristol (1986}

[II.5.4] G.Jones "Programming in Occam" Prentice-Hall

R.1

Internaticnal

{II.5.5) "IMS TBOD Architecture” Inmos Limited, Bristel,
Technical report 72-TCH-006

[I1.5.6] Inmos Limited "Transputer Development System" Prentice
Hall (1988) I1ISBN 0-13-928995-X

[II.5.7] Edinburgh Harnesses, TINY etc.

[IX.7.1] A.M.Lister "Fundamentals of Operating Systems"
MacMillan Press (1979) ISBN 0-333-27287-0

[II.7.2] A.S.Tanenbaum "Operating Systems: Design and
Implementation”" Prentice Hall (1987) ISBN 0-13-637331-3

(ITII.1.1]) W.Smith, D.Fincham, A.Raine

[ITI.1.2] "FORTRAN 8X features that assist in the exploitation
of parallelism"” J.Reild, Harwell Laboratory

[III1.1.3]) L.M.Delves and N.G.Brown "SERC EMR, Numerical
Libraries for transputer arrays — final report" Liverpocl University
{1988)

[TI1.1.4] "Occam Numerilcal Library Documentation" Liverpecol
University ({1988)

[IIXI.1.5] TCS Annual Report (1989)

[II1.1.6) TCS Annual Report (1989)

[III.2.1] "iPSC Concurrent Debugger"” Intel manual, order no
310613-008B Intel sclentific computers, Beaverton, QOre. (1987)

[I11.2.2]) W.M.Pan and V.Jackson "A concurrent debugger DECON
for iPSC/2 programmers" Intel Scientiflc Computers, Beaverton, Ore.
{1987)

{I11.3.1] Liverpool 7777

[IT1.3.2] TRANSIM 2777

[III.3.3] Sorensen and Dongarra "Schedule" Argonne Naticnal Lab

[II1.3.4] P.C.Capon et al. "ParSiFal: a parallel simulation
facility” IEE Colloguium, IEE Digest no 91 (19886)

[IV.1.1] T serles FPS B60-0001-0144

[IV.1.2) S.Hawkinson "The FPS T Series, a parallel vector
supercomputer” FPS Inc¢., Beaverton, Ore. (1986])

[IV.1.3] D.A.Tanqueray '"The Floating Point Systems T Serles"
FPS {UK) Ltd., Bracknell, Berks. {1987)

{IV.2.1] 1PSC/2 sales brochure, order number 280110-001 intel
Scientific Corporation, Beaverton, Ore,

[I1.2.2)] WCAtlas and CLSeitz " Multicomputers: Message-passing
cuncurrent computers" Computer August (1988) 9-24

{Iv.2.3] P.Plerce "The NX/2 operating system" intel Proc. 3rd
hypercube conference ACM (1988}

[IV.2.4] 1PSC/2 "FORTRAN programmer's reference manual" intel
Scilentific Corporation, Beaverton, Ore.

[IV.2.5] Crystalline Operating System

[IV.2.6] D.Moody "Intel ins and outs" Parallelogram 15 {1989)

[IV.2,7] "Simulator reference manual" Intel Sclentific Corp.,
Beavertot, Ore.

[IV.3.1} Melko Computing Surface Fortran Manual, Meiko
Sclentific Ltd. Bristol (1987/1988/march 1989)

[IV.3.2] M.Surridge "A multi-transputer harness for 'farm’
parallelism using the FORTRAN77 programming language™ Transputer
Support Centre, Southampton {(1988)

[IV.3.3] A.J.G.Hey, J.S5.Reeve and M.Surridge "Software
migration alds for transpoter systems” Dept. of Electronics and
Comp. Scl., Southampton (19B8)

[IV.3.4]1 J.Reeve "A general communlcations harness for
transputer nets" Dept. of Electronics and Comp. Sci., Southampton
{1988}

[IV.3.5] The Computing Surface Reference Manual, Melko
Scientific Ltd., Bristol (1987, march 1989)

R.2

[IV.3.68) R.J.Allan, L.Heck and S.Zureck "Parallel FORTRAN in
sclentific computing: a new occam harhess called Fortnet" Comp.
Phys. Comm. {1989) submitted

[IV.3.7] R.J.Allan and L.Heck "..." Liverpocol International
Conference on the application of Transputers, proceedings., ...

[IV.4.1] NCUBE ten sales brochure, NCUBE Corp, Beaverton, Ore.
(1988)

{IV.5.1)] NiCHE NTP10CO0 Technlcal Summary of ACP, NICHE
Technology, Bristol {1988}. The NiCHE system lIs currently marketed
by Transtech Devices, Bristol.

[IV.7.1]) A.D.Culloch "Parallel programming toolkit for 3IL-C,
FORTRAN and Pascal" preprint, 3L, Livingston, (march 1968)

(IV.7.2] Gemini

[IV.7.3] "3L Parallel Fortran User Guide" 3L Ltd., {1988)

[R.1.1] A.J.G.Hey and M.R.Sleep "Transputer Bibliography"
SERC/DTI Initiative on Engineering Applications of Transputers,
contact Roger England National Transputer Support Centre, Sheffield
Sclence Park, Arundel Street, Sheffleld, S1 2NT (1988) or NTC @&
uk.ac.shef.pa. A library of transputer software ls also maintained
and avallable upon reguest.

(R.1.2] G.Jones "Cccam Users' Group Newsletter"” Oxford. An e-
mail network 1s alsc established, contact gj @ uk.ac.oxford.prg or
derek @ uk.ac.bristol.compscil

[R.1.3] "BEdinburgh Concurrent Supercomputer Newsletter"” contact
David Mercer, Edinburgh University Computing Service, The King's
Builldings, Mayfield Road, Edingurgh EH9 3JZ or D.Mercer 8
uk.ac.edinburgh

[R.1.4] contact M.R.Jane, Transputer Initiative, Informatics
Department, Rutherford Appleton Laboratory, Bldg. R1, Didcot, Oxon.,
OX11 0QX

[R.1.5] contact R.J.Allan, Daresbury Laboratory, S.E.R.C.,
Daresbury, Warrington, WA4 4AD or RJA & uk.ac.dl.dlgm or ARCG @
daresbury

R.3

Appendix A. Timing of various FORTRAN calls on a variety of

parallel computers.

Melko T8
iPSC/1 vector
NiCHE T8
RMS maths error
0.28111E-13

0.19629E-13

u~-VAX/II
FPS T20 scalar
NCUBE

timinge for iteration length 50000

initialise one array
0.20
0.03
0.16

initialise four array (1)
.52
0.05
0.5

initialise four array (2)

.28

.05

.24

[~]

IF test
0.24
0.08
0.2
V = V*V + V¥
0.38
0.05
Q.34
call sub, 0 arguments
0.56

0.22
call sub, 1 arguments
0.72

0.28
call sub, 2 arguments
Q.80

0.36
call sub, 3 arguments
0.848

G.42
call sub, 4 arguments
1.00

0.48
scalar random numbers
2.40

1.76
reciprocal

0.34

0.23

0.30

0.51
1.17
0.54

2.20
3.086
0.98

2.20
1.55
0.49

Q.70
1.50
0.614

2.27
14.01
1.25

0.74
0.81
0.69

0.74
1.13
0.90

Q.81
1.52
0.99

0.87
1.89
1.06

0.87
2.21
1.15

7.34
15.3
5.36

1.09

12.24
1.15

A.l

Meiko T4 MS
FPS T20 vector
ipPSC/2 SX

0.32
0.012
Q.20

C.78

0.046
0.70

0.36

0.855

6.20
0.082
0.47

1.91

5.06
0.20
C.48

Meiko TB MS
iPSC/1 scalar
ipsc/2 SX VX

0.70
2.60

.32
.05

)

0.68

Q.80
2.93

0.92
4.63

1.c0
6.33

2.28
72.10

sguare root

exponential

logarithm

cosine

inverse cosine

sine

inverse sine

sum ({v-v)**2)

gaussian random

vector swap

dot product

INT (v*scalar)+l

gather

scatter

max magnitude el

=00
]
-]

51.26

3.18
0.33
12.4

49.34

0.46
0.08
1.02
numbers
54.42

167.5

0.46
0.05
G.38

0.36
0.05
0.34

0.42
0.08
0.34

0.28
0.08
0.26

0.28
0.05
0.24
ement
0.80

4.52
617.95
1.07

6.88
305.84
3.49

7.56
256.76
11.3

6.59
520.82
2.65

11.52
2317.78
11.54

6.74
399.15
2.59

10.867
1571.32
3.99

1.65
21.81
1.22
122.28
2645.49
146.2
1.28

1.06

Q= N
o
=1}

-0
th
w

A2

€66.78
0.26
1.13

70.73
0.37
1.46
65.37
0.30
1.38
60.B7
0.22
1.08

166.58

63.26
Q.26
1.11

162.77

8.99
D.14
0.52
676.53
30.28
.64
.34
.58

.012
.41

ocoom

0.39

0.19

.03
.066

oo Ww

5.94
20.15

2.79
15.35

5.91
15.53

S
4]
-

.36
.88

(S =]

Notes.

1) The u-VAX clock is accurate to 0.01s, that of the Melko and
T geries to 64us and that of the 1IPSC/1 to 5ms. Thus the scaled
iPSC/1 times may be 1n error by as much as 0.3s

2) The 1PSC/1 vector results were generated from the same
FORTRAN source as the scalar test using the VAST-2 vectoriser. FPS-T
series vector timings result from hand modifications using the
highest level routine avalilable which would perform the task.

3) Both FPS-T series and Melko mass store use 15MHz T414
transputers. The various Meiko times differ in transputer and memory
used. The mass-store [(MS) board has an accessa time of 6§ transputer
clocks, the compute boards have a 4 clock acess.

4) NCUBE timing was produced at DL using an NCUBE-4 on loan
from Arrow Computers Swindon. An lteratlon count of 5000 was run
parallel on four B8MHz nodes. Times scaled to suit.

5} Meiko TBOO timings were generated on a compute board of the
Engineering Board Loan Pool M10 at DL, using FORTRAN code embedded
in the Fortnet harness. The compute boards have only 256k bytes
memory, so an iteration count of 2500 was used and results scaled by
20.

§) Intel iPSC/2 SX times were produced on the DL hypercube.

7) Appalling times on the FP5-T20 are due to poor mathematical
functions. This 1s because the intrinsic functions actually call the
C library in many cases and thereby introduce a large overhead.
Penguln software is responsible. The same problem occurs on the
NICHE system since thelr compllor was obtained from Pensoft (as
Penguin now call themselves)

8) If you want to generate big numbers use an FPS-T20 !

A listing of the program TTIME, which was used to produce the
timing figures of this appendix, is given below. It was written by
R.J.Harrison, and should be useful on any 32-bit machine. Only the
scalar code is shown, vector code 1s produced elther by hand coding
or by use of a vectorising compiler or precompller such as VAST-2.

PROGRAM TEST

IMPLICIT REARL*B{A-H,0~Z)

PARAMETER{ LEN=2500)

DIMENSION A(LENY,B(LEN),C(LEN),D(LEN),IA(LEN),

& T(30)

DATA T/30%0.0D0/

CALL cpu(START)

PO 10 I=1,LEN

A{I}=0.0DO

10 CONTINUE

CALL cpu(FINISH)

T(1)=FINISH-START

CALL cpulSTART)
DO 20 I=1,LEN

A3

20

30

40

50

60

70

80

A{I)=0.0D0
B{I)=1.0D0
C{I)}=2.0D0
D(I}=3.0D0
CONTINUE
CALL cpu{FINISH)
T(2}=FINISH-START
CALL SUB4(A,B,GC,D)

CALL cpulSTART}

Do a0 I=1,LEN,2
A(I)=0.0D0
B{(I)=1.0D0
Cl(I}=2.0D0
D(I)=3.0D0

CONTINUE

CALL cpu(FINISH)

T{3)=FINISH-START

CALL SUB4(A.B,C,D)

CALL cpu(START)
DO 40 I=1,LEN

IF(A(I).EQ.0.0D0) GOTO 40
C This not executed

B(I)=1.0D0
CONTINUE
CALL cpu{FINISH)
T(4)=FINISH-START
CALL SUB4(A.B,C,D)

CALL cpu({START)

po 50 I=1,LEN
A(I)=B(I)*C(I)+D(I)

CONTINUE

CALL cpu{FINISH)

T{5)=FINISH-START

CALL SUB4(A,B,C,D)

CALL cpu{START)

DO 60 I=1,LEN
CALL SUBO

CONTINUE

CALL cpu({FINISH)

T{6)=FINISH-START

CALL cpu{START)
po 70 I=1,LEN

CALL SUB1{A{I))
CONTINUE
CALL cpu(FINISH)
T{7)=FINISH-START

CALL cpu(START)
DO 80 I=1,LEN

CALL SUB2(A{I),B(I))
CONTINUE
CALL cpu(FINISH)
T{8)=FINISH-START

CALL cpu(START)

Ad

90

100

120

130

150

160

DO 90 I=1,LEN

CALL SUB3(A(I),B{L),C(I}}
CONTINUE
CALL cpu{FINISH)
T{9)=FINISH-START

CALL cpu(START)
DG 100 1=1,LEN :

CALL SUB4(A(I),B(I),C(I),D(I})

CONTINUE
CALL cpu{FINISH)
T{10)=FINISH-START

ISEED=12345
CALL cpulSTART)
DO 110 I=1,LEN
CALL SRAND(ISEED,D(I})
CONTINUE
CALL cpu{FINISH)
T({11)}=FINISH-START
CALL SUB4({A,B,C,D)

CALL cpu(START)

DO 120 I=1,LEN
A(I)=1.0DO/D(I})

CONTINUE

CALL cpu{FINISH)

T{12)=FINISH-START

CALL SUB4(A,B,C,D)

CALL cpu(START)

DO 130 I=1,LEN
B(I}=SQRT(D(I})

CONTINUE

CALL cpu({FINISH)

T{13)=FINISH-START

CALL SUB4(A,B,C.D)

CALL cpu(START)

DO 140 I=1,LEN
C{I)=EXP(D(I))

CONTINUE

CALL cpu(FINISH)

T(14}=FINISH-START

CALL SUB4(A,B,C,D}

CALL cpu({START)

DO 150 I=1,LEN
A(I)=LOG(C(I))

CONTINUE

CALL cpu(FINISH)

T(15)=FINISH-START

CALL SUB4(A,B,C,D}

CALL cpu({START)

DO 160 I=1,LEN
C(1)=COS(A(I))}

CONTINUE

CALL cpu(FINISH)

T{16)=FINISH-START

AS

170

180

190

200

211

210

CALL SUB4(A,B.C,D}

CALL cpu{START)

Do 170 I=1,LEN
A(I)=ACOS(C(I))

CONTINUE

CALL cpu{FINISH}

T{17)=FINISH-START

CALL SUB4(A,B,C,D)

CALL cpu(START)

DO 180 I=1,LEN
C{I)=SIN{A(I))

CONTINUE

CALL cpu{FINISH)

T(18)}=FINISH-START

CALL SUB4(A,B,C,D)

CALL cpu{START}

Do 190 I=1,LEN
A(I}=ASIN(C(I))

CONTINUE

CALL cpu(FINISH})

T(19)=FINISH-START

CALL SUB4(A,B,C,D)

SUM=0.0D0

CALL cpu(START)

DO 200 I=1,LEN
SUM=SUM+{A{I)-D{I))**2

CONTINUE

CALL cpu({FINISH}

T(20)=FINISH-START

CALL SUB4(A,B,C,D)

SUM=SQRT { SUM/FLOAT{LEN))

WRITE(6,'('" RMS error from math routlines

HALF=0.5D0O

ONE=1.0DO

AMEAN=0.0DO

SDEV=1.0D0O

CALL cpu(START)

DO 210 I=1,LEN
CALL SRAND(ISEED,V1}
CALL SRAKD{ISEED,V2)

V1l = -LOG(V1)

v2 = -LOG(V2)

X = V1l - ONE

IF (V2.GE.HALF®"X*X) GOTO 211

CALL SRAND(ISEED,U}
IF (U.GE.HALF} THEN
C(I) = AMEAN - SDEV*V1
ELSE
C(1) = AMEARN + SDEV*V1
ENDIF
CONTINUE
CALL cpu{FINISH)
T{21)=FINISH-START
CALL SUB4(A,B.C,D}

A6

11 ,g12.5) ' }SUM

230

240

250

260

270

CALL cpu{START)

Do 220 I=1,LEN
TEMP=A(I)
A{I})=B(I)
B{I}=TEMP

CONTINUE

CALL cpu(FINISH)

T(22}=FINISH-START

CALL SUB4(A,B,C.D}

$=0.0D0
CALL cpu{START)
Do 230 I=1,LEN

S=5 + A[I)*C(I)
CONTINUVE
CALL cpu{FINISH)
T(23)=FINISH-START
CALL SUB4{A,B.C.D)
CALL SUBL({S)

ZL=FLOAT{LEN)

CALL cpu{START)

DO 240 I=1,LEN
IA(I)=INT(ZL*D{I}) + 1

CONTINUE

CALL cpu(FINISH)

T(24)=FINISH-START

CALL SUB1{IA}

CALL SUB4(A,B,C,D)

CALL cpu{START)

DO 250 I=1,LEN
C(I)=A({IA(I))

CONTINUE

CALL cpu{FINISH)

T{25}=FINISH-START

CALL SUB4(A,B,C,D)

CALL cpu(START)

DO 260 I=1,LEN
A{IA(I)})=C(I)

CONTINUE

CALL cpu{FINISH}

T(26)=FINISH-START

CALIL SUEB4(A,B,C,D)

TZ=-1
ZM=0.0D0

CALL cpu(START) '
DO 270 I=1,LEN

IF(ABS(ZM) .GT.ABS(D(I1))) THEN

ZM=D{1I}
I1Z=T
ENDIF

CONTINUE
CALL cpu(FINISH)
T{27)=FINISH-START
CALL SUB2(ZM,IZ)
CALL SUB4(A.B,C,D}

A7

5D-10

[+

WRITB(6,'("'
WRITE(6,'(/)")

WRITE(6,1)

Timings for iteration length

Initialise one array

FORMAT(1X,A,F8.3)

WRITE(6,1)
WRITE(6,1)
WRITE{6,1)
WRITE(6,1)
WRITE(6,1)
WRITE{6,1)
WRITE{G,1)
WRITE(G,1)
WRITE(6.,1)
WRITE(G,1)
WRITE(6,1)
WRITE(6,1)
WRITE(6,1)
WRITE(6,1)
WRITE(6,1}
WRITE(6,1)
WRITE(6,1)
WRITE(6,1)
WRITE(6,1}
WRITE(6,1)
WRITE(6,1)
WRITE(6,1)
WRITE(6,1)
WRITE(6,1)
WRITE(6,1)
WRITE({6,1)
END

i

Initialise four arrays (1)
Initialise four arrays (2)
IF test

vV = VeV + ¥

Call subroutine, 0 arguments
Call subroutine, 1 arguments
Call subroutine, 2 arguments
Call subroutine, 3 arguments

Call subroutine, 4 arguments
Scalar random numbers
Reclprocal

Sgquare root

Exponential

Logarithm

Cosine

Inverse cosine

Sine

Inverse sine

Sum ((V-V)**2)

Gausslan random no.s
Vector swap

Dot product
INT{V*scale)+1

Gather

Scatter

Maximum magnitude element

SUBROUTINE SRAND(IS,C)
C RJH 16/10/8B7

C Should work on any 32 bit machine.

',18) ")LEN

LT(1}

LT(2)
LT(3)
'T(4)
JT(5)
LT{6)
YT{T})
.T(8)
'T(9)
.T(10)
LT(11)
yT(12)
.T{13}
»T(14)
»T(16)
,T{16)
LT(17)
.T{18}
,T{19)
,T(20)
+T(21}
,T{22)
LT(23)
sT(24})
,T(25}
+T{26)
LT{2T)

Actual generator

€ is only fair and not suitable for detailed work.
REAL*8 C,SCALE
INTEGER 1S, IMULT,IMOD,IS1,I52,I552

DATA IMULT/16807/,IMOD/2147483647/,5CALE/4.6566128/

C IS = MOD(IS*16807,2**31-1}.
IF(IS.LE.O) IS = 1

Is2
I51

MOD(IS.32768)
(I5-IS2) /32768

Iss2 = IS52 * IMULT

Is2
Is51

']

MOD(IS52,32768)
MOD(IS1*IMULT+{ISS2-I52)/32768,65536)

IS = MOD(IS1*32766+4152,IMOD}
C = SCALE * FLOAT(IS)

END

SUBROUTINE SUBO

END

SUBROUTINE SUB1(X)

END

SUBROUTINE SUB2(X,Y)

END

SUBROUTINE SUB3(X,Y,Z)

A8

END
Appendix B. CCTA Whetstone Benchmark
SUBROUTINE SUB4(X,Y,Z,Q)

END We have run the CCTA program fovpl2, which 1s the fully

vectorisable double precision Whetstone benchmark, on a number of
different slngle processors for comparison purposes. Results are
glven below. The parameters used in the runs were 12=10, nvn=16,
nv=1,2,4,8,16,32,65,96,128,129,192,256,257,384,512

subroutine cpu{time)
real®s time

C return current cpu clock time in seconds
time=float{mtime())/1000.0

end a b c d e
Intel IPSC/2 sx 1345.406 1.4400 1.773z2 1.7818 0.3679
iP3C/2 vx (f) 435.359 0.1876 4.7201 6.9769 1.4980
Melko TBOO 1899.710 0.9423 1.2424 1.2479 0.4463
Convex C2 -01 (g)220.063 7.5220 10.7062 10.8092 4.0253
Convex C2 -D2 _35.440 3.6293 66,0030 T1.7477 20.9120

a} total time for run, in seconds

b} MWhets vector length 1

¢) Mwhets vector length 64

d) MWhets vector length 512

e} Milop performance in loop n2, vector length 512

f) The Intel vector code was prepared using VAST2 and VecLib
with the following sequence of commands:

my bench.f bench.v

vast2 -o bench.f bench.v

£f77 ~¢ -sx -vx bench.f

£f77 -o bench.out bench.o -s8x -vx -vec -node
getcube -t 1lvx

load bench.out

g} compilation option form the fc compiller is shown (ﬁav 1989)

A9 B.1

node read from host 28.563

Appendix c. Timina of FORTRAN communjications and disk
operations on varallel computers.

Disk and communicatlions actlvitv is hard to time, mainly due to
interaction from svstem activity coing on in parallel. eilither from
other users or buffer activitv, or other message passing in the
system. I have tried to eliminate internal interaction with buffers
and disk confllct by using the semaphore system mentioned in the
text. Best times are given for an otherwise nearly empty machine.

Timing on the Meiko is obtained using the Fortnet v2.0 harness,
and therefore will compare badly with similar processes in Occam-2.
The 3L results should contain low overheads, as should the Melko
CStools results.

Occam message passing is best for short messages, whereas the
Intel is better for long messages, only one example of 80 kbyte
messages is shown below. The former vields (15 + 1.2*nbytes)
microsecs in Occam, whilst the latter is (2000 + (¢ 4" "nbytes)
microsecs in FORTRAN. Loading of an executable file from the SEM on
the Intel is asymptotically (large flle and Jlarge number of
processors) 0.0065 secs per kbyte per processor, this is more
efficiently handled than the FORTRAN read.

Iteration length. dimension 20 10000, times in seconds
iP5C/2 sx Meiko Meiko Melko Meiko
[Fortnet) 3L SUN CStools
{a) (b} (d) (4} (e)

node initiated disk operatlons read or write nlen*8 bytes nloop times
node write to node 5.516
node read from node 5.187
node write to host 28,797 51.469 46,336

45.437 35.434
host initiated disk operatlons read cr write len*8 bytes nloop times

host write to host 3.410 57.885 45.653
host read from host 4.840 53.637 33.655
host write to node 0.340
host read from node 0.160
local memory operations copy b=c of len*8 bytes nloop*2 times
node memory copy 1.094 1.564 1.728
host memory copy 1.940 2.598 1.728

remcte memory operations, send and recelve a message packet of len*8
bytes nloop times

node 0 to node 1 1.688 10.185 9.360
node 0 to node 2 1.234 9.997 9.414
host to node 0 0.440 12.927 9.364
host to node 1 0.310 13.588 9,570
{a) I have used the CFSEMUL library to access the concurrent

disk system on the Intel from the SRM host processor. This involves
message passing and synchronisation.

for
Intel

other means of access.
clo library calls,

used to actually access
passing is minimal {(about half of the round-trip times shown}.

A fuller
delendence

an

investigation
message length,

"Benchmarking the iPSC/2"

Computer
Asymptotic

Science,
message

rate

disk,
of Intel
Report TW114

Katholische
given by

C.l

Universitat

Times appear to be faster than

This is probably because the optimised
which use cacheing on the 1/0 nodes, are
and the overhead in message

communications. and 1ts
is given by L.Bowmans and D.Roosge
(October 1988) Department of

Leuven, Belgium.

the manufacturers as 2.7

Mbvte/sec per DMA channel.
It is not clear why host-node cperations are surprislingly fast.

{b) Timings were taken on the Melko M10 at Daresbury with the
Fortnet v2.1 harness, The host 1s the Fortnet Master procese running
on the mk021 board with a T41l4 Iinteger transputer and 3-cyle access
memory. The node processes run on the mk060 board with T800
transputers and two-cycle access memory. Fortnet carries very large
overheads in any kind of message passing as expected.

{c) Timings as above taken on the Meiko M60 at University of
Bath, 11/7/89. The system is self hosted wlth MK0O60 boards having
TA0O processors running MMVCS and MelkOS.

(d) (e) times not yet available

The timings above were produced with the followlng program
[Intel version shown).

ARRAFERXEE R AR R AIIA RN R R AR R R RN ERINXE XX AKX A N AN ERRARNEE KX KX EEX

program C T I M E

timing of communications on parallel computers
program tests host and node disk operations, synchronous
communications, and memory copy operations

r.a. 3/7/89

I E IR R RS E R Y LT SRR RS SRR R 2SR RS S 222 ST AR R R R R R R R R

[N I N

c program ctime

¢ version for Intel 1PSC/2 with concurrent i/o
IMPLICIT REAL*B(A-H,0-Z), integer(i-n)
PARAMETER(LEN=10000,nloop=20)

DIMENSION A(LEN),B{LEN),C(LEN),D(LEN),IA(LEN),
& T{(30)

character*2 ctype

character*8 cname

DATA T/30*0.0D0Q/

data ctype,cname/'4 ','ctime v/

open{2,file="ctime0.dat',status="unknown')

c allocate cube and kill when this process finishes
call getcube(cname,ctype,' ',0)
pld=0
call setpid(pid)
nnode=numnodes |}

¢ load main elkonxs package
call load{'ctime.out',-1,pid)

c load distributed file system handler driver on node 0 with pid=1
call load{'server.out',nnode-1.1)
WRITE(G,'(/)"')

c wait for node0 to start, assures that load has completed
call semain(100)

CALL cpu{START}

c bilnary write to host file ctime0.dat on unit 2

do 5 1=1.nloop
write(2)a
5 continue
CALL cpu(finish)
t(1)=finish-start
rewind({2)
call cpu(start}
do 16 i=1,nloop

C2

readi{2}b write(6,1)' host to host memory copy '.t{5)
10 continue write{6,1}' host to node D send and recelve ', t(6)
CALL cpu(finish) write(6,1)' host to node 1 send and receive ', t{7)

t{2)=finish-start
copy operation

call cpu(start)

do 25 j=1,nlcop*2

do 25 i=1,len .
c(ii=b(i) subroutine cpu(time}

25 continue real*s8 time
call cpu(finish) integer stime,mclock
t{5)=finish-start time=flcat(mclock{))/1000.0

c signal finished using SRM. this process can wait : end

call semout(l)
¢ wait for clearance to continue, SRM disk free subroutine semout(ltype}
call semain(2) ¢ node process to synchronise with hoat

c open cfs file defined in file server common/talk/inode,nnode, ihost

¢ walt for node to finish belore shutting everything down
call semain(4)
end

call openi3} call ceend{itype,idum,0,0,0}
call cpu{start) end
c write to cfs file via file server c
do 15 i=1,nloop subroutine semain{itype]
¢ node process ta synchronise with host

call write{3,a,len*8)
15 continue common/ talk/inode,nnode, ihost

call cpu(finish) call crecv{itype,idum,0)

t(3)=finish-start end
call rewind(3)
call cpu(start)
do 20 i=1,nloop
call read(3,b,len*8)

FEXEXAERAEIEIEZARINEAFEXERXIINEEERERF SR NANNNFELAFARRENER R R RN EERNNEEERNNEY

c CFSEMUL
¢ this library contains a set of routines used to emulate cio
20 continue c on the Intel i1PSC/2 cfs from the front-end srm or remote host

call cpu{finish) c as an example of their use look at the eikonxs programs

t(4)=Ffinish-start ¢ main0.f and server.f. In all cases the program server.f must run in
c parallel on one of the compute nodes of the system to receive filin
c system requests from the host. Although this emulation is slow
c optimlsed routine calls have been used wherever possible
[+4
x

r.a. 15/6/89
ER LA ER RN RRAERFEES SRR RS RIREE TR R A2 SRR RS P R R R YRR 0]]

¢ signal clearance to contlnue
call semout(?3)
¢ send and receive message to node 0, timing thelr and back
call cpu(start)
do 35 1=} .nloop
call csend(35,b,8%len,0,0)
call crecv(35,b,8%len) subroutine openf(lu)
as continue common/talk/inode,nnode, lhost
call cpul(finish) call csend{334,1u,4,nnode-1,1)

t{6)=finish-start ¢ handshaking
call cpu{start) call crecv{334,dum,0)

c same for node 1 end
do 36 i=1,nloop c
call csend(36,b,B8*len,1,0) subroutine rewind{1lu}
call crecv{36,c,B*len) common/talk/1inode, nnode, ihost
a6 continue call ceend{331,1u,4,nnode—-1,1}
call cpu(finish) ¢ handshaking
t{7)=finish-start caél crecv(331,dum,0}
T en
c write out results at end so that no buffer processes impede c
¢ execution subroutine read(lu,buffer,nbytes)
WRITE(6.'('' Iteration length, dimension '',2i8}'} dimension buffer(*)
1 nloop,LEN common/talk/inode,nnode, ihost
WRITE(6,1) ' host write to host ',T(1} iproc=nnode-1
1 FORMAT({1X,.A,gl12.5) call csend(333,1u,4,iproc,1)
write{6,1)' host read from host ',t(2) call csend({333,nbytes, 4, iproc,1)
write(6,1)' write to node from host ',t(3) call crecv(333,buffer,nbytes)
write(6,1)' read from node on host ', t(4) ¢ no handshaking required

C3 C4

end

subroutine write(lu.buffer.nbytes)

commen/talk/inode, nnode, lhost

dimension buffer(*)

iproc=nnode-1

call csend(332,1u,4.iproc.1)}

call csend{332,.nbytes,4,iproc,1}

call csend(332,buffer,nbytes,iproc.1)
c handshakeing

call crecv(332,dum.0)

end

subroutine close(lu}
common/talk/inode,nnode, ihost
call ecsend(335,1u,4,nnode-1,1)
call crecv{335,dum,Q)
end
c
subroutine copy4(idim,imax. jmax,ain,buffer)
c fill up buffer for read/write emulation routines for 4-byte variabl
dimension ain(idim.*)
dimension buffer(*}
k=0
de 5 J=1, jmax
do 5 i=1,imax
k=k+1
buffer(k}=ain(1, 3}
5 continue
end
c
subroutine copy8({idim, Imax, jmax.ain,buffer)
c fill up buffer for read/write emulation routines for 8-byte variabl
real®*8 ain(idim,*)
real*s8 buffer(*)
k=0
do 5 j=1,jmax
do & i=1,imax
k=k+1
buffer(k)=ain(i, j)
5} continue
end
c
subroutine un4{idim,imax, jmax,ain,buffer)
¢ £fill up buffer for read/write emulation routines for 4-byte variabl
dimension ain(idim.,*)
dimension buffer(*)
k=0
do 5 j=1, jmax
do 5 i=1,imax
k=k+1
ain(i, jr=bufferik)
5 continue
end
c
subroutine und(idim,imax, Jmax.ain,buffer)
c £fill up buffer for read/write emulation routines for 4-byte
c variables
real®*8 ain(idim,*}
real*s8 buffer(*)

C5

c

k=0
do 5 J=1, jmax
do 5 i=1,imax
k=k+1
ain(i,j)=bufferik)
continue
end

program ctime

c node program for Intel 1P5C/2 with cfs

&

1

IMPLICIT REAL*B({A~H,0-2), integer({l-n)

PARAMETER (LEN=10000,nloop=20)

DIMENSION A(LEN),B(LEN),C(LEN),.D{LEN},IA{LEN},
T(30}

DATA T/30*0.0D0/

common/talk/inode,nnode, ihost

inode=mynode{}

lhost=myhost{)

if(inode.eq.0) then

openi(2,flle='/cfe/rja/ctime.dat',status="unknown')

open{3,flle='/usr/user/rja/tests/comms/ctime.dat’',

status="unknown')

c signal to host that node0 has started

call semout{100})
call cpu{start)

c write to cfs

10

do 5 i=1,nloop
write(2)a
continue

call epu{finish)

t{(i1)=finigh~start

rewlnd(2)

call cpu(start)

do 10 1=1,nloop
read(2)b
contlinue

call cpu{finish)

t{2)=finlsh-start

call cpu{start)

¢ local node to node memory copy

25

do 25 j=1.nloop*2

do 25 i=1,len
c(i1)=b{i}
continue

call cpu({finish}

t(5)=finish-start

c wait for clearance to use SRM

15

20

call semain(1}

call cpu(start)

do 15 1=1,nloop
write(3)a
continue

call cpuf{finish}

t{3)=finish-start

rewind{3)

call cpu(start)

do 20 i=1,nloop
read(3)b
continue

call cpu{finish)

C.6

t(4)=finish-start

c signal finished with SRM
call semout(2)
end if

in ¢ test comms between nodes, sending message their and back again (as

c my previous example in occam !)
call cpu(start)
do 30 1=1,nlocop
if(inode.eqg.0)then
call csend(30,b,8%*len,1,0)
call crecv(30,c,B8%*len})
else if{inode.eq.1)then
call crecv{30,c,8*len}
call csend(30,b,8%len,0,0)
end if
3o continue
call cpulfinish)
t{6)=finish-start
call cpulstart)
do 31 i=1,nloop
1f{inode.eq.0}then
call csend{31,b,8*len,2,0)
call crecv(3l,c,8%len)
else if(inode.eq.2)then
call crecv{3l,c,8*len)
call ceend(31,b,8%1len,0,0)
end if
a1 continue
call cpu(finish)
t{7)=finish-start
c wait for signal to continue sending via heost system process
call semain{3)
do 35 i=1.nloop
if{(inode.eq.0)then
call crecv(35,c,8*len)
call csend{35,b,8%len, ihost,0)
elge if{inode.eg.l1l)then
call crecv(36,c,B*len)
call csend{36,b,B8*len,lhost, 0}
end If
as continue
if{inode.eq.0)then
write{6,1}' node write to node ',t(1)
1 FORMAT{1X,A,gl2.5)
write{6,1)' node read from node ',t(2)
write(6,1)' node write to host ' ,t(3)
write(6,1)' node read from host ',t{4)
Wwrlte{6,1}' local node to node memory copy '.t(5)
write(6,1)' node 0 to node 1 send and recelve ',t(6}
write{6,1)' node Q0 to node 2 send and receive ',t(7)
end 1f

c signal end of execution
call semout(4)
end

c
subroutine semout(itype)

¢ node process ta synchronise with host
common/talk/inode, nnode, ihost
if(inode.eq.0)

oy

1 call ceend(ltype, idum,0,ihost,0}
end

subroutine semain{itype)

¢ node process to synchronise with host
common/talk/incde,nnode, thost
if(inode.eg.0)
1 call crecv{itype,idum,0)
end

subroutine cpu(time)

real*s time

integer stime,mclock
time=float(mclock())/1000.0
end

c program server

[EER SRR ERE ST S0 R TR R R RSS2 R R 222 R Rn L)
¢ server program to run on node 0 in parallel with other processes,

c emulates calls to distributed file system from the host !!!1!

c r.a. 15/6/89

c

¢ protocol for server file handling calls
c itype= 1 =-- rewind

c 2 ~- wWrite

c 3 -- read

c 4 ~— open

c 3 -- close

[+

L]

EREREEKEEAESXEXRT N AN UERINEE RSN NE KA SRR SR N ORI N AR R NN EFR R kR kR ERXEEIAR

common/workspace /buffer{20000)
idhost=myhost(}
Inode=mynode()
write{6,'{"'" server program up and running on node'',
1 14)')inode
¢ try te clear host-to-cfs i/o when this process swapped in
10 do 15 1i=1.,5
1type=330+1
if{iprobe{itype).eqg.1}goto{1,2,3,4,5),1
15 continue
¢ no pending requests
carry on computing and try agaln at next swap
call flick{)

goto 10
c read
c 3 write(6,'{'' request to read from a file ''})')
3 continue

call crecv(itype,lu,4)
call crecv{itype,nbytes,4)
c user iPSC/2 high=speed i/0 routine
call cread{lu,buffer,nbytes)
call cwend(itype,buffer,nbytes, 1dhost,C}

goto 10
c write
c 2 write(6,'({'' request to write to a file '')')
2 continue

call crecv(litype,lu,4)

call crecv(itype,nbytes, 4)

call crecv(itype,buffer ,nbytes)
call cwrite(lu,buffer,nbytes)

Cs

der 'c handshaking signal to make sure messages are received in correct or

call csend{itype.dum,0, idhost,0)

goto 10
¢ rewind
c 1 write{6,'({'"' request to rewind a file '')'}
1 continue

call crecviltype,lu.d4}

c move file polnter

ipoint=lseek(lu,0,0)
call csend(itype,dum,C,idhost, Q)

goto 10
c open
c 4 write!(6,'('' request to open file ''})?)
4 continue
call crecv(itype,lun,d4)
1f{lu.eq.3)then
open(3,file='/cfs/rja/ctime0.dat', status="unknown’,
1 form="unformatted')
else
write(6,'('' **** error server **** unknown flle''}'}
end if
call csend(itype,dum,0,idhost,0)
goto 10
c close
c 5 write(6,'("' reguest to close a file ''}")
5 contlnue

call crecv(itype,lu, 4}

close(lu)

call csend{itype,dum,0,idhost,0)
goto 10

end

C9

Index (numbers refer to sections rather than pages)

Ada I

algorithms III.1.1

Alliant IXI.1.2

ALT II.5, IV.2, IV.3, IV.7
Alvey project III.3

Argonne library I

asynchronous I, II

Atarl II.4

AXIS II.1, IV.4

binary tree III.1.1}

blocking I, II, IV.3

bottleneck I, IXI.1.3

c I, I1.5, IV.5

CE/RK II.3, IV.2

channel II.5

client II.1

coarse-grained III.1.1
Concurrent Pascal 1
configuration I, II.5, IV.3, IV.7
conveyor belt III.1.1

Convex IV.2, B

Coemic Cube II.3

CPC library I

CRAY II, III.1.2

CSP I

csStools II.1, III.2, IV.3, B, C
DAP I

dbxtool IXI.2

DECON III.1.3, IV.2

debugger I, III.1.3, IV.3
divide and conquer III.1.1
Elscube library I11I1.1.2

Emacs II.5, IV.4

embedded system II1.3, IV.7
emulator IV.2

EPL XII.5

errors II

Esprit project 1085 IV.6

ETA IX

Ethernet II.1

event IV.5

farming III.1.1, IV.2
fine-gralned III.1l.1

folding editor II.5

fork III.1.1

Fortnet IV.3, C

FORTRAN B8X III.1.2

FPs II, II.2, 1IV.1, A

geometric IXI.1.1, IV.1

harness II.5, IV.3, IV.5, IV.7T
Helios II.4 .
hybrid memory emulation IX.6, III.1.1
hypercube IV.1, IV.2, IV.4, see Intel, Ncube, Cosmic Cube
IDRIS I1I.1, IV.6

IBM II

Inmos XI.4, II.5, IV.3, IV.6, IV.7
Intel IXI.5, XIT.1.2, III.1.3,

Index.1

Iv.2, 1v.5, A, B thread I, IX.6, IV.7

;g?g ;;; :HEEI Topologix II.2
kernel II, II.1, II.3, II.4, topology I, III.1.1, IV.1
trace II, IV.3, IV.2
Ir1.1.2, IV.1, IV.5
TRAM IV.3
libraries III.1.2 TRANSIM III.3.1
lightweight processes II1.6, IV.7 ot
transputer II.5, IV.1, IV.3,
Lincube library IXI.1.3
Iv.5, 1v.6, IV.7, A, B
load I, IXI.1.1, ITI.1.2
load balance I, III.1.3 Transtech see Niche
’ Trilliuwm, Trollius II.i, IIL.2,
master III.1.1, IV.3
IV.5, see Niche, FPS
Meiko II.5, IV.3
UNIX I, II, II.1, II.2, II.3,
Meikos 1V-3 II.4, IV.2, IV.4, IV.5
megsages I, II.2, IX.3, II.4 VAX IV.3 ‘A' ter e .
MIMD I, II, IITX.1.1, TII.1.3 R
VERTEX II.1, IV.4
MMVCS IV.3 K-windows II.4
NAG library I, III.1.3 aL 31.6, IV.3, IV.6, IV.7, B

NCUBE IX.1, II.5, IV.4, A

NICHE I1I1.1i, II.2, II.5, III.1.3,
IV.5, A

NX/2 IV.2

Occam I, IXI.%, YII.1.2, IV.3,
IV.6, C

ops II.5, IV.3

PAR II.S5

ParsiFal III.3.1

Parays II.1, IV.6

PEACE II.3

Perihelion II.4

pia I, II.3, IV.S

pipelines IIX.1.1

ports II.7, IV.7

POSIX I, II.1

PRE II.1, IV.5

process I, IY.2, II.3, II.4

protocol II, II.3, IV.2

gueue II

Schedule III.3, IV.3

sdb ITI.2

segment IIX.1.1, IV.3

semaphore 1I.7, III, IV.7

SEQ II.5

gerver II, II.1, II.3

shared memory, resources I, II.6, II.7, III.1l.,1

SIMD I

simulation III.3, IV.2

SISAL 1

skeleton ITI.1.1, III.1.2

slave III.1.1, IV.3

sockets II.1

sorting IITI.1i.1, IV.3

spawn I, II.2, II.3

SPLIB II, II.3

SUN CStools IX.1, IV.3

Supernode IV.6

SUPRENUM II.3, III.1.2, IV.2

synchronous I, II, IV.3

systolic algorithm III.1.1

task II.4

TDS II.S5, IV.3

Index.2 Index.3

