DL/SCY/TM71E

-

Levorwg COTPYy

Cor

technical memorandum

Daresbury Laboraton

PORTABLE MESSAGE-PASSING TOOLS

by

R.J. ALLAN, SERC Daresbury Laboratory

NOVEMBER, 1990

Science and Engineering Research Council .
DARESBURY LABORATORY .
Daresbury, Warrington WA4 4AD

DL/SCI/TMTIE
“--.-__‘—_'_

DARESEURY |

LABORATORY
17 JAM199]
LIBRARY

ClL|

IV

750

@ SCIENCE AND ENGINEERING RESEARCH COUNCIL 1990

Enquiries zabout copyright and reproduction should be addressed 10:—
The Librarian, Daresbury Laboratory, Daresbury, Warrington,
WA4 4AD,

ISSN 0144-5677

IMPORTANT

The SERC does not accept any responsibility for loss or damage arising
from the use of information contained in any of its reports or in any
communication about its tests or investigations.

Portable Message-passing Tools for Sharad-memory, Distributed-
memory and Networked Computing Resources. in Introduction and Guide
to the Work done at Daresbury Laboratory.

R.J.Allan, Advanced Research Cemputing Group, S.E.R.C.,
Darasbury Laboratory, Darasbury, Warrington, Wi4 4AD, U.K.

Abstract

The Daresbury Laboratory distributed message-passing harness
consists of a combination and extension of several portable tools
which are available through the public domain. These are firstly
described as independent pleces of software in sections A to C, and
then they are described as a single complete tool in the Daresbury
implementation in saction D. The software is in order of appearance;
A. Fortnet and its npumerical library interface developed by
R.J.Allan, E.L.Heck and R.K.Cooper; B. ipcv3, the ANL networked
package developad by R.J.Harrison from the PARMACS software and
extended for use on multicomputers; G. the ARL Schedule package with
graphical front and back end tools in its distributed-memory form
developad by A.Bauglin of the AMDCO Dil Company. The graphical tools
have been converted for use in xview by W.H.Purvis of D.L., and the
original machine-dependent shared-memory code has been corrected and
brought together in a standard interface library for applications
vhich use a message-passing paradigm by the authox.

Terminalogy

Multicomputer -- a number of indapendent computers, each with
its own memory, in one cabinet and requiring message-passing for
communications to achieved parallelism. Typical examples are the
Intel and NCube hypercubes.

Multiprocessor -- A number of compute elements, possibly with
their own cache memory, in one cabinet which share the system’s main
memory and bus. Parallelisation is achieved through coperating system
hooks to manipulate the shared memory, or by compiler directives.
Typical examples arae the Alliant fx2808 and Convex C220.

Networked resource -- a number of independent computers, which
might include workstations as wall as the above types, linked with a
network such ae ethernet. The network must ba capable of supporting
tommunicationa between operating system hocks such as TCP sockets to
achiove parallelism. &4 typical eoxample is an ethernet with a numbaer
of UKII hosts running NFS and rpc protocoels.

General Introduction

In the following pages we describe the useaga of threa portable
message-paseing tools for parallal computing resources which are
essentially in the public domain (but the authors should be
consulted and preferably included in publications). These tools
evolved at approximately the same time, concurrently, in the U.K.
and U.5.A. and were driven by the need to express parallel threads
of execution in sclientific applicatioms on available high-
performance hardware platforms. Ths software is known individually
as

1) Fortnet (DL}

B) ipcv3d or the PARMACS (ANL)

C) Schedule (ANL and AMDCD 0il Company}

By moans of justification for the adoption of such software, as
opposed to any other available (Linda, Express or NCS for instance
[22-24]), we cite the ease of availablility in the public domain, as
comparad to the need to obtain software licencas, and the
distribution across a large range of hardware. Only Express can
claim the latter, although the language Strand_88 [25] is availabla
on nearly as many machines but is mot useable in current scientific
programs without considerable modification. The work presented here
combines the U.K. and U.5.A. experience on many machines, and also
the sequential functionally driven and object oriented approaches to
programming. A further important consideration is the development of
the software considered within the scientific arena, enabling useful
functionality to be inbuilt.

There is a lengthy and ongoing discussion about the validity of
a message-paesing philosophy as opposed to a shared-memory database-
styla philosophy when programming parallel computers. Clearly both
are admigsible, and portable tools may be devised as pros for aach
regime, but the former are natural for multicomputers with
synchronisation problems, and the latter for multiprocessors with
cache and bup contention as cons in the balance of consideration.

It seems that in scientific applications, which are presently
aimed at the course-grained level of programming, the former
approach is preferable since it makes any cause of delay in
computation explicit, and therefore allows the user the possiblity
to optimise his program regardless of any quirks of the operating
aystem.

The object-oriented style has however been embodied in the
Schadule software, which is available in a dietributed memory form,
and is alse included in our collection of portable tools.

The Daresbury Laboratory Harness therefore combines Fortaet,
ipev3 and Schedule in one package available across the videst range
of resources.

A. Fortnet v3.0 (traca).

R.J.Allan Advanced Rasearch Computing Group, S.E.R.C.,
Daresbury Laboratory, Warrington, WA4 4AD

E.L.RBock Physice Department, Science Laboratories, South Road,
Oniversity of Durham, Durham DL1 3LE

R.K.Coopexr, Dapartment of Asronautical Engineering, Queen's
University, Stranmillis Read, Belfast

I. Intreduction

The original concept of Fortnet and its v2.1 incarnation have
baen deoalt with in refs. [3, 4]. A& few new additional featurag are
worth mentioning, and a summary can be given of the current
situation.

Fortnet ie now available for use with the following low-level
routing software and compilers

i) Maiko Computing Surface occam-2 libraries, € and FORTRAN-77
7]

ii) Meike Computing Surface with C5-tools, C and F77 compilers
(18]

iii) Intel iPSC/2 and iPSG/860 G and FORTRAN-77 [5, 6]

iv) 3L Parallel FOATRAN-77 [8, 9, 17]

v) URIXI 4,2BSD sockets (a.g Convex and 3UN operating systems)
using C and FORTRAN-77 compilers [10]

vi) Alliant fx2B00 Concentrix with C and Fortran [11]

Fortnet is a multi-layered system of subroutines. Each layer is
largely independent of the exact functions of the provious one
providing calling conventions are adhered to. Thus each layer can be
independently optimised or tailored to Buit a wvide variety of
parallel computers. The top layer is the application code. This
structure of Fortnet is described as follows.

1) Initial development of Fortnet centred around the need to
supply a convenient means to use FORTRAN on the Meiko computing
surface for writing concurrent programs. This was not available from
Meiko Ltd. when verk started in 19587. The first stage of Fortmet wvas
therefore a communication harnees to pass messages (data) between
the transputers in a controlled fashion. It also performs soma taskns
such as accessing the front-end file-store, printing diagnostic
messages to the screen, and bookkeeping. This layer of code is
vritten in the concurrent language occam-2 which vas designed for
the transputer, and was partly the result of work by Sebastian Zurek
(TCH Group, Cambridge) who visited Daresbury during the summer of
1987; it is configured for a dual daisy chair of transputers with a
xeturn connection forming a ring for the data path (but not for the

file sBystem calls). Fortnet could in principle be implemented on any
type of transputer array. More recent work on harnesses for general
topologies is now available [19, 20] and the Fortnet protocol is
baing implemented upon this (R.X.Cooper, priviate commwnication,
1890). Other work in the aroa is still ongoeing [21]. On hardware
platforms which offer an alternative interfaca to occam this routing
layer is naturally abandoned in favour of the manufacturer's
softwarae.

2) The second stage of development is a layer of FORTRAN-77
subroutines wvhich may be called by the parallel program as an
interface to the occam or t¢ provide a standard library to reference
machine specific routing software. These incorporata a protocol to
verify the correct transmission of messagas and warn the user of any

problems. These problems axe often of tha sort that occur during
early code debugging which would just cause deadlock if no error-
checking mechanism were present. A novel handshaking and blocking
paradigm is ueed for this checking which differs from other systems.
Fortnet is envisaged to be the seimplest possible communication
system with explicit synchronisation of processors and further free
transmission of data with low overheads. The routine calls are
howaver superficially similar to those on hypercube machines such as
the Intel 1P5C/2. Development of this layer and incorporation of the
full FORTRAN i/o on all nodes of the Meiko version vae done by Lydia
Heck of Durham University.

Completion of stage (2) yialded Fortnet v2.2 which is installed
on a number of machinea in the UK.

Durham Physics Meiko M10

Leeds Computing Science, M1 and In-Sun system

Lancaster Computer Science Campus MG60

Birkbeck College Physics M60

Sheffield Transputer Centre M10 and M40

Liverpool Transputer Centre M40

Bath SWURCC Central Computing Services M60

Rutherford Appleton Lab. M10

Daresbury Lab. M10

Daresbury Lab. Intel iPSC/2 (Intel version}

baresbury Lab. Intel iPSC/860 (Intel versiom)

Daresbury Lab. PC-based system (3L vereion)

Daregbury Lab. Convex C-220 (UNII version)

Daresbury Lab. SUN 3/260 (UNII version)

Kational Physical Lab. M40

Belfast Applied Maths M40

Northern Iraland Transputer Centra, Belfast M10

Belfast Aeronautical Eng. PC-based system (3L and TINY
versions)

Bristel Polytechnic Meiko

The Fortnet harness is available from Computer Physics
Communications, and is included in the third-party software
catalogue of Meiko Scientific Limited (the Ensemble programme) and
3L Limited.

3) 4 domonptration interface has been written to the graphical
post-execution display package Schedule/Trace from the irgonne
National Lab (described in eection C here). This depicta dymamic
exacution of an actual parallel program on the screen of a SUN oz I-
window workstation in pseudo-real time allowing ome to identify hot
spots, bottlenecks and errors and to effactively compare different
algorithms. in example is shown in the figure.

Some work is still needed to tidy up this interface and resolve
some philosophical questions about exactly how tha display should
look. Fortnet version 3.0(trace) is howevar curremtly in use. More
detaile of this are given below.

A parallel profiler haes been written which shows the activity
of oeach processor in terms of the communications functions and
sequential code which it assumes to be cpu active. BSee the erample
output below.

Implementation of ataga (2) of Fortnet on the Jntel hypercuba
and other hardware allows us to banefit from these toocls also in
devalaping portable programs. Such an exercise was necessary because
ve do not have access to the internal workings of the manufacturers
message-passing subroutines. Furthermore Fortnet now provides a
copmon environment and devlopment platform on both thae Meiko, Intel
and UNIXI-based sharaod-memory computers allowing direct porting of

applications.
4) Development of a generic set of global-memory operations has
started. This is a 1library of eubroutines which handle

gynchronisation and communications to, for example, distribute or
recall data in a known way over a known set of processors allowing
results to be calculated im parallel and then be globally accessed.
i number of frequent operations, such as generic vector-vactor ar
matrix-matrix operations can then be programmed where elements of
the vectors or matrices are distributed.

Further work is needed to investigate optimisation strategies
which will fully extract the parallelism inherent in these global
operations. Those involving & pair of elements will work well if the
available processors are logically divided into sets of indapendent
pairs for instance, and the same for any k-fold covering to
implement an operation involving k distinct data elements. This is
the subject of a larger Teport and separate publications [12-13].

§) The highest layer of the enviromment is the application
which would directly call these global routines to do numerical
tasks. Standard library calls have already been implemented in thie
way for vactors and matrices emabling the interface to look like
familiar mathematical library operations.

II. Summary of Fortnat calls

The basic synchronisation and routing available in the Fortnat
library is as follows:

STOP{) -- when first called by a node it initialises the
Fortnet syetem and signals to the server that the node is active. If
called a second time it tries to shut doun that node.

CHECK(m) -- chack to gee if processor m is waiting for data in
order to synchronise communication. This together with subroutine
WAIT constitutes the blocking mechanism.

WAIT(n) ~- wait until processor n checks, or acknowledge ready
to receive data

SEND(m,nbytes,buffer} -- send nbytes to target processor m from
buffer

RECEVE(n,nbytes,buffer) -- receive nbytes from source processer
n into buffer

lSEND(m.nchar,string) ~= pend nchar te proceesor m from
charactaer string

ARECEVE(n,nchar,string) ~- receive nchar from processor n into
character string

RECANY(iproc,nbytes,buffer) -- receive nbytes into buffer
regardless of which processor they came from, the source processor
id is stored in iproc

READ(lu,nchar,buffer) -- read data from globally accessible
file lu via the driver process

WRITE(lu,nchar,buffer) -- urite data to globally accessible
file lu via the driver process

inode=NODEID{)} -- get node id of current processer, 0 for
gerver, 1 for master and 2 to nnode+l for slaves. Note that the name
of this routine has been changed in line with the ipcv3 routines to
avoid conflict on the Intel hypercubae. This reflects the logical
position of the process, and inode is used as the argument to the
message-passing Troutines; it may bear no relation to the physical
processor piacement

nnode=NUMSLAVES() -- find number of alave processes im array.
Note that the name of this routine has been changed to aveid
conflict on the Intel hypercube. The total nuwmber of processaes is
nnode + 2

BR$ALL(mode) -- allows the broadcasting mede to be controlled,
mode can take the values 'ON', 'OFF' or 'RESET’

BRCAST(proclist,nproc,nbytes ,buffer) -- broadcast nbytes from
buffer to nproc processars whose ids are contained in the integer
vector proclist

STATS(moda) -- collects and provides information about messages
arriving or sent to each node. Mode can take the valuas *ON’, *OFF’,
or 'PRINT’

The operation of these routines is described in references [3]
and [4). Some additional calle have been implemented in the 3L
version to give more advanced access to shared files through the
file perver. ASEND and ARECEVE above are examples of routines with
atrong typing enforced (SEND and RECEVE can send any type, but there
will be no data translation on the receiving machine soc the two
nodes must have the same data type). This convention corresponds to
the narming of vector mathematical 1library routines. Ite
implementation is discussed in more detail in sections B and b.

ALLOCATE() -- initialises the Fortnet symbolic data structure
system. Thie is used to distribute data across the machine which can
then be accessed by the following subroutines and referenced by
strings consisting of up to eight charactexs.

ASSIGN(symbol, nbytes) -- symbol ie a character string up to
aight laetteors long. This assigne nbytes of physical memory on the
calling proceseor to ba used as part of the global definition of
symbol

PUT$A(temp,symbol,ioffset) -- given a value in local variable
temp, put this value into the memory element referenced by
symbol (ioffset)

temp=FETCH$A(symbol,ia) -- inverse of the above. Boadcasts the
result if BRSALL mode is ‘ON'.

Note that the above four routines just form part of a largar set
for distributed data handling and are wused in the 1libraries
associated with Fertnet [12]. Their description is included here
since they have been used as part of the interface between Schedule

and Fortnet to be covered in sections C and D.

In the early days Fortnet gave us a way to write parallel
programe in FORTRAN for the Meiko Computing Surface. It has now
become a basim for later developments and provides a standard
portable platform for writing parallel coda. It furthermore includes

diagnestic and graphical display tocls to help program development
as seon in the figure, these are now discussed.

III. Definition of logical processes in Fortmet. Data
dapendency and Scheduling. Graphical analysis and profiling tocls.

In order to take over and make use of, on local-memory
multicomputers, software developed for shared-memory computers it is
necessary to define a "“logical process".

A logical procees is a piece of sequential code which runs on a
procegsor and has communications, or hooks inte the operating
system, at either end. A number of logical processes placed together
end to end on one processor form what I shall call a "sequential
program’. Programs are linked together by complex data dependency
paths in a topology which is representative of the overall work to
be done. We will come back to thie definition in the section on the
Schedule software {section C).

In a shared-memory ccmputer a logical precess might, for
instance, be a subroutine which is scheduled to run on a processor
vhen data in its arguwent list is ready. In a local-memory machine a
process is usually a shorter piece of code and data must be
physically transferred te the processor on which it is to run. The
conceptual scheduling mechaniem is howaver identical and does not
occur until all the data dependency is satisfied (it is blocked
until then).

This scheduling can be done automatically under control of a
main program, as in the Argonne Schedule package (14, 15]. In a
gimilar vay the job lends itself to graphical display and profiling
in this form; details of the sequential chunks are less interesting
than the passage of data between them. We have therefore used the
Argonne Schedule Trace analysis package to display execution of
parallel programs running with the Portnet communications routines
as shown in the figura.

Using this scheme it is possible to profile the length of time
spent in doing data transfer, or computation or waiting on each
processor. There is a Portmnet parallel profiler which does this.
The technique of active profiling is in general the only way to
test performance of a parallel algorithm, although valuable
theoretical work has been done by some workers to predict
performance.

Typical output from the Fortnet profiler (time stamps vere zero

for thie run}.

wxend Fortnet Profiler sswew

casa
case
case
casge
case

14 not understood
14 not understood
14 not understood
14 not undarstood
14 not understood

Fortnet timings in seconds

proc, receve, send, wait, check, sequential

, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000
, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000
, 0.000000, 0.000000, 0.000000, 0.000000, ©.000000

, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000

Q
1
2
3, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000
4
5

, 0.000000, 0.000000, 0,000000, 0.000000, 0.000000

s

proc,

» 0,

» .

Nk WN = O
OO0 00 .

3 »

number of calls
receve, send, wait, check, sequential
IOJ

»
»
]

»]

O 00O =00
-

OO0 OO0

OO0 O R ND

O 000 =

.diagnostics

procassor 0 terminated

processor 1 terminataed

processor 2 terminated doing send

processer 3 terminated

procaessor 4 terminated doing sequential code
processor 6 tarminated

<< CONSQLE »>
d15b.’;Q

Schedule Traceing Facility

Directory: fnfs/tecsashoma/rja/schedule/trace

procassing svants
=| sereendunp scresndump

L £77 /home/meiko/$77/bi
|d1sb% screendum
J/usr/Tocal/bindpsraster: E

RS R N L e T A o L B T 1 329
adctive :

: i
\pr: Fstal errar- npothing Timing ! 75 ":?”' T a p TE] 198
1d1s0% szreandump ST :

RPN

-
=

B. ipcv3 Harness for Netvorked Computing Resources, version 3.0
(3/27/90) .

with apologies to: Robert J. Harrisen

Bldg. 200, Theoretical Chemistry Group,

Argonne National Laboratory,

9700 S. Cass Avenue, Argonna, IL 60439.

tol: (708) 972-7197

E-mail: harrison@tcg.anl.gov, harrisonCanlchm.bitnet

I. Introduction

These routines have been written with the objactive of
providing a robust, portable, high performance message-passing
system for distributed-memery FORTRAN applications. The C interface
is also portable but not ae clean as FORTRAN. The syntar is nearly
identical to that of the iPSC subroutines, but thea functionality is
rastricted to improve efficiency and speed of implementation. On
machines with vector hardware sustained interprocaess communication
rates of 6.0Mb/s have bean observed. This toolkit (referred to am
ipcv3) only atrives to provide the minimal functicnality needed for
current applications. It is only a stopgap until soms better model
becomea widely (and cheaply) available. However, I believe that many
(not all) chemistry and physice problems are readily and efficiently
codad with this simple functionality, and that such effort will not
be wasted when better tools are found.

Currently tested implemaentations ara:

iPSC/1860 (stand alone)

Sun (Sun 0/5 4.0%)

a1liant (Concentrix 5.+, and 2800/1.1.02)

Ardent (0/5 3.»)

Convex C220 (v7.0)

Cray (UNICOS 5.+#)

¥ Encore (UMAX-4.3; for 4.2 replace u_short with ushort or
vice versa)

* Sequent Balance (DYNII V3.0.14)

(» only v2.1 of ipcv was chacked)

Underway now:
NCube

The programming model and interface is diractly modelled after
the PARMACS (Parallel Macros) of the ANL ACRF [sae 16]). Thanks are
extonded to Jim Patterson and Pete Bertoncini (and other members of
4NL ACRF and CTD) for their help while I was working with PARMACS.

10

These macros (and many other packages like tham) were fine for
modest test programs, but unsuitable for large applications. 1In
particular no allowance was made for the FORTRAN runtime environment
required on many machines to perform FORTRAN I/0 the system has
therefore bean ra-sritten.

Communication is over TCP sockats, unless indentical procaesses
are rumnning on a machine with support for shared memory, which is
then used, or on a distributed-memory multicomputer such as the
Intel of NCuba hypercubes. Applications tan therefore be built to
Tun over an entire mnetwork of machines with local communication
running at memoYy or message-passing bandwidth {plus synchronisation
overhead) and remote communication running at Ethernet speed (close
to the maximum of 10 Mbits/s can be seen on quiet networks).

4 configuration file specifies the placement of processes over
the network. The message-paseing program is invoked with the command
’parallel’ which teads this confighration file and invokes the
roquirad precesses using fork() or rsh. This has the benefits that
the placement of processes are identical no matter from where on the
network the command is given, and the ’spare’ process running the
command parallel is used to provide lead a balancing service in a
straightfowvard fashion.

Hooke are in the lower level routines for conversion of data
between machines with different byte-ordering or floating-peint
numerical representation. This is currently only implemented for
FORTRAN integer and double precision (C long and double) data types
but will be extended in the future.

II. User interface

The FORTRAN programming interface is quite straightforward. The
C interface is identical <to that of FORTRAN axcept that procedura
names are defined through macros (so that the FORTRAN interface is
portable) and all arguments are pointers. Thus the FORTRAN statement

call snd(type, buffer, lenbuf, node, sync)
is expressed as the C prototype

#include “endrev.h"
void SND_(long wtype, char *buffer, long *lenbuf, long *noda,
long *sync);

Tha only exceptions to this are that C calls the routine pbagin
rather than PBEGINF_, and C calle Error instead of PARERR. Have a
look in sndrcv.h and srftoc.h for mora details on the C interface.

NB: Use of FORTRAN character variables in argument lists is NOT
supported as some implementations pase them using two arguments, or

il

as a pointer to a structure.

NB: Strong typing of messages is enforced (it was not in the
version 1.0). Thus the type on a send and receive must match or an
error will result. The type is nowv an input-only parameter.

NB: 411 user detected erroxs requiring termination MUST result
in a call to PARERR (sea testf.f for an example). From 'C’ call
Error{char smessage, long info).

NB: The value of message types must be in the range 1-32767.
Bits higher than this are used {amonget other things) to indicate
that data translation is requested (eee point 3). Bits 0 and 1less
may be used by tha system.

1} Dn entry the tiret thing all processes must do is call
PBEGINF. Thig connects all them together and initialises the
environment. {C calls PBEGIN_()).

2) Immediately baefore exit all processes must call PEND to tidy
up any shared resources and notify the load balancing server that it
has completed. PEND does return but only to allow you to STOP or
call the FORTRAN version of exit, =eo that the FORTRAN runtime
environment can tidy up. Calling PBEGIN or PEND moxe than once per
process is bound to produce some bizarre sort of screw up. Note that
you must call PEND only afte ALL processes have completed (use
handshaking messages to be sure) otherwise everything will be
zapped.

3) Data translation is enabled by OR-ing your message type with

the appropriate choice of:
HMSGDBL - for doublae preciscin floating point data
MSGINT - for FORTRAN integer (C long) data

These are defined in include files:
megtypesf.h - for FORTRAN
msgtypesc.h - for C

Obviously all the data in the message must be of the same type.
It should be simple to add extra typee if required.

e.g. to send a double precision array I with translation if
necessary simply code the matching calls

TYPE = IDR(TYPE, MSGDBL)

CALL SND(TYPE, X, LENX, NODE, SYNC)

TYPE = ICR(TYPE, MSGDBL)

CALL RCV(TYPE, X, LENX, LEN, NODESEL, NODEFROM, SYNC)

4) Between the calls to PBEGINF and PEND any of the following
may ba used.

12

INTEGER FUNCTION NNODES() -- Returns no. of processes

INTEGER FUNCTION NODEID() -- Returns logical node no. of the
current procese (0,1,...,NNODES(}-1)

SUBROUTINE LLOG() -- Opens separate logfiles in the current
directory for each process. The files are named log.<MYNODE()>.

SUBROUTINE STATS() ~- Print ocut summary of cemmunication
statistics for calling process.

INTEGER FUNCTION MTIME() -- Return wall time from an arbitrary
origin in centi-seconds

INTEGER TYPE [input]
BYTE BUF(LEKBUF) [input]
INTEGER LENBUF [input]
INTEGER NODE [input]
INTEGER SYNC [input]

SUBROUTINE SND(TYPE, BUF, LENBUF, NODE, SYNC) -- Send a message
of type TYPE to node NODE. Type is an arbitrary integer from 1 to
32767 which may be iored with a data translation mask if required.
LENBUF is the length of the message in bytes. BUF may be any type
other than CHARACTER. SYNC indicates synchronous (1) or asynchronous
(0) communication. Note that only sycnhronous communication is
supperted in the UNII envircnment.

INTEGER TYPE [input]

BYTE BUF(LENBUF) [output]

INTEGER LENBUF {input]

INTEGER LENMES [output]

INTEGER NODESEL [input]

INTEGER NODEFROM [output]

INTEGER 5YNC [input]}

SUBROUTINE RCV(TYPE, BUF, LENBUF, LENMES, NODESEL, NODEFRCM,
SYNC) ~- Recelve a message of type TYPE from node NODESEL. LENBUF is
the length of the receiving bunffer in bytes. Type must attach a type
in a corresponding snd call, and may not be a wildcard value. LENMES
returns the length of the message received and NODEFROM returns the

node from which the message was received. If the NODESEL is
specified as -1 then the next node to send to this process is
chogsen, The length of tha buffer is checked and the type of the
message must agree with that baing received (thare is only ona
channel between processes 80 messages are received in the order
sent). BUF may be of any type other than CHARACTER. SYNC indicates
synchronous (1} or asynchronous (0) communication. Hote that only
sycnhronous communication is supported in the UNIX environment.

13

INTEGER TYPE {input]

BYTE BUF(LENBUF) [input/output]

INTEGER LENBUF [input]

INTEGER IFROM [input]

SUBROUTINE BRDCSTN(TYPE, BUF, LENBUF, IFROM) -- Broadcast from
procaese ITFROM to all other processes & message of type TYPE and
length LENBUF. 411 processes call this routina which uses a
hypercube-like pattern to distribute the data in 0{log p) time.

INTEGER TYPE [input]
SUBROUTINE SYNCH(TYPE) ~-- Synchronize all processes by
exchanging zero length messages of type TYPE with process 0.

INTEGER ONOFF [input]

SUBROUTINE SETDBG(ONOFF) -- Switch debugging output on
(ONOFF=1) or off (ONOFF=0). This output is useful to trace messages
being passed and also to help debug the message passing software.

INTEGER HPROC [input]

INTEGER FUNCTION NXTVAL(MPROC) -~ This call simulates a simple
shared counter by communicating with a dedicated server process. It
returns the next counter assoclated with a aingle active loop
(0,1,2,...). NHPROC is the number of processes actively requesting
values. After the ond of the loop each process calle NITVAL(-MPROC)
vhich implements a barrier. It is used as follows:

next = nxtval(mproc)
do 10 i = 0,big
it (i .eq. next) then
. do work for iteration i
next = nxtval(mproc)

endit
10 continue
¢ call with negative mproc to indicate end of loop ... processes

¢ block hare until mproc processes have raegistered completion
junk = nxtval(-mproc)

while { (i = NXTVAL_(#mproc)) < big) {
... do work for iteration i

}

Dproc = -mproc;

{void) NITVAL_(&mproc);

Clearly the value from NXTYAL can be used to indicate that some

14

locally determined no. of iterations should be done as the ovarhead
of NITVAL may be large (approx 0.5a8 per call ... 5o each process
should do about 50s of work per call for a 1) overhead).

SUBROUTINE PARERR() =-- Call to reguest error termination, it

tries to zap all the other processes and succeeds in causing havoc.
¢ should call Error(char *message, long status).

INTEGER KODE [INPUT]

SUBROUTINE WAITCOM(NODE) ~-- Wait for all asynchronous
communication with node NODE to be completad. This syntax matches
with common implementations of asychromous ifo to disc. This may be
modified subsequently. Again note that all UNIX communication is
synchranous.

I1I. Configuration file ard server

The command 'parallel’ is usaed to eXecute a program. It reads a
configuration file (the PROCGRP file in the parlance of the PARMACS)
to determine which process to run where. Currently it tries the
following in order to determine the file nama:

1) the first argument on the command line with .p appended

2) as 1) but also prepending $HOME/pdir/

3) the translation of tha environmental variable PROCGRP

4) the file PROCGAP in the current diractory

The command line arguments of parallel are currently propagated
to all processes, though it is probably not advisable to rely on
this (?). There is currantly no widely accepted way to write or
implement configuration files. Note that extra arguments are
appended and that the fila, if apecified, is still thaere, so any
arguments that you use must be flagged rather than just positional.

If you want a process to interactively read input then it must
be running on the same machine ae parallel. This is because remote
processes are invecked with ’'rsh -n’, necessarily or the parallelism
will cause problems.

The configuration file is read to the EOF marker. The character
‘st (hash or pound sign) is used to indicate a comment which
continues to the next EOL character. For each 'cluster' of procasses
the following whitespace separated fialds should be present in
order.

<uperid> <hostname> <nslave> <executable> <workdir>

userid -- The username on the machine that will be executing
the process.
hostname -- The hostname of the machine to execute this

procesg. If it is the same machine on which parallel was invoked the

156

name must match the valua returned by the command hostname. It a
remote machine it must allow remote execution from this machine (se¢e
man page for rlogin}.

nslave -- The total number of copies of this procese to be
executing on the specified machine. Only ’clusters’ of processes
specified in this fashion can use shared memory to communicate. If

no ehared memory is supported on machine <hostname> then only the
value one (1) is valid.

executable -- Full path name on tha host <hostname> of the
image to oxecuta. If <hostname> is the local machine then a local
path will suffica.

vorkdir =-- Full path name on the host <hostname> of the
directory to work in. Processes exacute a chdir() <to thie directory
before returning from pbegin(). If spacified as a .’ then remota
proceeses will wuse the login directory on that machine and local
processes (relative to where parallel was invoked) will use tha
currant directory of parallsl. e.g.

harrison boys 3 /home/harrison/c/ipc/testf.x /tmp # my sun 4
harrison dirac 3 /home/harrison/c/ipc/testf.x /tmp B sund
harrison eyring 8 /usrS/harrison/c/ipc/testf.x /scratch # £x/8

The above configuration file would put processes 0-2 on boys
(executing testf.x and using files in /tmp), 3-5 on dirac {executing
tostf.x and wuvsing file in /tmp) and 6-13 on eyring (executing
testf.x and using files in /acratch). Processes on each machine use
shared memory to communicate with each other or native mnessage-—
passing protocol in multicomputers, sockete otherwise.

Note that the number of processes and where they are executed
is the same no matter where the command parallel is invoked, as long
as the configuration file is the same.

If programs are correctly set up they will function as expected
vhen invoked with parallel no matter how many processes are
spacifiaed in the configuration file.

IV. Installation

If your machine hae been ported to already then simply edit the
makefile to comment out unwanted machine c¢ptions and uncomment the
dasired machine. Then:

a) Chack testf.f for the detinitions of LOG, MAXLEN, NBYTPI and
NBYTFD. These should only need modifying if you want the Cray or
Sequent versions of the test program. LOG is defined in two places.

b) Type ’make’. This makes the library and also FORTRAN and C
test programs.

c) Edit the files test.p and testf.p to reflect your local
netvork, working directory and the number of processes you desirae.

16

d) Invoke the FORTRAN test program with the command ‘parallel
testl’,

e) Try the ¢ test program with the command 'parallel test’.
Tha C program interactively prompts for tests to run and stresses
tha system more effectively than the simple FORTRAN code.

To reduce some of the message passing overhead compile and link
without -DTIMINGS (-DTIMINGS enablas gathering of timing statisitcs
aevarytime a snd/rcv is made).

If your machine haz not been ported to, initially try compiling
with the definitions of the machine closest to yours, but without
the -DSHMEM flag (i.e. only support the socket IPC). This should
vork apart from possibly a few include file complaints which sghould
be readily resolved. If you have the system V semaphores and shared
memory interface include the flags -DSYSV and -DSHMEM. If you have
some other routines providing this functionallity then you will havae
ta code the routines in shmem.¢c, and sema.c (this again is quitae
easy) .

If you look at the source it will ba guite apparent that I am a
FORTRAN programmer and know very little about UNIXI (espacially vhat
distinguishea various breeds of UNII). If you have any comments
about the source, hovw to clean it up, and make it more portable than
please contact me at tha above address. Similarly reports of
problems or bugs will be well raceived, though no support is
guaranteed.

A sample makefile for an application is in Makefile.sampl.

The above comments are valid only for multiprocessors (shared
memory). For multicomputers with distributed memory there is a
parver program which mupt be made to run on the hest processor, that
is the one which accepts the rsh calls. The nodes are then loaded
vith the inatances of the cluster, and then run by communicating

batwoen themselves using the locally defined library and with the
rast of the task by passing messages to the host vhich relays data
to its socket connection. Thus code for multicomputers is
necessarily very machine dependent.

V. Hiscellaneous and Bugs

if a program crashes on machines with the saystem V¥V shared
memory and semaphores some of these resources may not be
deallocated. If these are not tidied up the system can run out. The
shell script ’ipcreset’ (by Jim Patterson?) removes all such
Tesources currently allocated by a user. Removing the resources for
a running process will cause it to crash the next time it tries to
access it., Try 'man' on ipcs, ipcrm for more details. On a Sequent
ipcs, ipcrm are found in '/usr/att/bin', and on the Encors in
‘lete?.

17

Many machines have the numbar of sockets fixed, either
statically in the kernel, or capped by some number. While debugging
a program that keeps crashing sockets may ba left open. Most syatems
tidy these unused sockets up overy fow minutee (7). Howaver when the
system rune out of these rescurces it will wreak havoc with all
netvorking and windowing operations and possibly crash the system
(o.g. Ardent Titan, 2.2},

The script ‘zapit’ (bsd and sysv versions, courtesy of JP
again?) kills all processes whose command contains a given string.
This is useful for a crash or deadlock occurs which leaves junk
processes lying around (rsh is prone to run away on some machines).

DYNIX on the Sequent Palance (at least as configured at ANL) is
limited to 20 open file descriptors and 24 (7) semaphores per group.
These 1limit the total number of processes to approx. 15 and the
maxipum no. of processes in a cluster to 8., Similarly on the Sequent
Encore there is a maximum of 8 processes per cluster. 1 have
successfully run with three such clustere (i.ea. three lines in the
configuration file). @n the Alliant each process is limited to 32
gemaphores and the system to a total of 128. This limits you to 10
procaesses in a cluster, and 4 clusters of this =size on the machine,
(If you talk nicely to Alliant‘s excaellent customer support staff
they will give you tha names of the kernel variables that can be
patched to up the limit to 128 semaphores per procass and 512 system
vidae).

The message-passing routines vant message laengths in bytes,
which is machine dependent. Have & look ir testf.f for one solution
to this problem. Also see the routina pfname for how to create
unique file names for each process.

For shells that support it STOP/CONT signals should work OK.
Interrupts (SIGINT) are trapped and should cause everything to tidy
up and die (with a few error messages). To kill a program the best
vay is just to use "C on the parallel program or tc send it an
interrupt with kill -2 (usually).

18

C. SCHEDULE, Guide to uge on Multicomputers.

R.J.Allan (Intel varsion) &.K.C.G., Daresbury Laboratory,
S.E.R.C., Daresbury, Warrington, Wi4 4AD e-mail: RJAQUK.AC.DL.DLGM

with apologies to: Addam Beuglin (NCube varsion) imoco
Production Company, Tulsa, Oklahoma, USA. 23/11/87, e-mail: adamb @
boulder.Colorado.EDU

I Introduction

SCHEDULE, a tocl for developing portable parallel Fortran
programs, was converted for use on the NCube hypercube by A. Bouglin
and translated for use on the Intel iPSC by R.J.Allan. The original
SCEEDULE was developed for shared-memery parallel processors;
Sched3, the hypercube version, was developed around a mastar/slave
medel on a local-memory parallel processor. The implementation of
Sched3 is discussed in section II along with tha differences batween
Sched3d and standard SCHEDULE. Limitations of the current version of
Sched3 are also discusead with suggestions for future improvements.
For information on running scheduls the original documentation
should be consulted [14, 15). Tha original shared memory versionm of
schedule has been corrected by R.J.Allan and W.E.Purvis, and is now
running on the following machines at Daresbury along with the naw
schedd software:

i) Convex €220 (cxa v7.0)

ii) SUN 3.0 (available)

iii) SUK (v4.0 on tcam)

iv) Alliant £x2808 (parallel versiom on dlall)

v) Intel iPSC/2 ipsc (Sched3)

Differences in wuseage between the Dazesbury iPSC version and
the AMDCD NCube version of Schedd revolve around the provision of a
configuration file facility for the host program. By this means a
degcription of the job may be supplied in a standard text file, with
executable routine names, thair dependency, and explicit variables
vhich need to be passed between them. This has been dona by using
the method of symbolic variables, developed for use with distributed
data structures within Fortnet. The variable names may be read from
the configuration file by a standard program invoked from Schedula,
and given memory space. This is dealt with in detail in section D,
only the direct means of calling the system is described heres.

In addition to thia the post-execution display package
sched.trace (15} is now running under sunview and vas converted te
xview by W.H.Purvis. An example of ite use was shown in sectian 4.
This package is now accessible from Fortnet as describsd in sections
4 and D. It is available for:

19

i) SUK 4.0 on tcsm

The front-end build package ie currently only working in the public-
dowain version on SUN 3.0 machines, and has been found te be very
unreliabla. Further work is required to relaase this.

The source and executable files are to be found in directories
as follows:

/cxa/priv3/rja/schadule/schadule

/tesm/home/x ja/schedule/achadule

/tcsm/home/xja/schedule/trace

/tcem/home/rja/schadule/opan

/dlall/user/rja/schedule/achedule

/cxa/priv3/rja/ipsc/schedule/schedula

II.1 Implementation on the NCube and Intel iPSC hypercubes.

In the shared-memory vereion of Schadule routines are saved in
a queue by storing the addrese of a routine and ite parameters. On
the hypercube the routines will ba loaded in the local memory of
another processor sc having a pointer to the address of the Toutine
on the host would be of little valus when starting the process on a
node. In Schedd the name of the file to be loaded or the node is
therefore given inatead of the addrass of the routine; it can then
ba loaded or called by a UNIX rsh command. The fila to be loaded is
created by conmpiling and linking the subreoutine along with the
program worker. Worker will act as the main program for the
subroutine (called subroutine user} when it is loaded on the nodae.
Worker receives the parameteras <from the host, calls the subroutine
with tho proper pointers into the parameter buffer and sends the
parameters back to the host when the node subroutine returns. 4s a
convention each parallel subroutine is in a different file which
will be compiled and linked placing the executable in a file with a
descriptive namae. For instance the file ’'dotprod.fn’ might contain a
parallel subroutine to compute a dot product. The routine would ba
compiled and linked to worker and the executable file would bs
called dotpred. When the process is put in the queue the string
‘dotprod’ is used to specify it.

Since there is no shared memory, the parameters are sent to the
parallel subroutine via a message. This message is built by copying
data from the pointers to the parameters storsd in the gusue. When
the subroutine completes a message returng the values of the
parameters and these values are stored back into the memory of the
host. This setrategy results in the parameters being passed by
address if no other parallel routinee accesse the memory while the
parallel routine is executing. Non-determinacy may be introduced if
routines are allowed to operate in parallel on the same data. It ig
the programmer’s respensibility te control euch non-determinacy by

20

building a proper dependancy graph for parallel routines. To copy
the parameters to a message buffer Sched3 needs the langth of the
paramaeters. The shared-memory version of Schedule doean't need this
information since the parameters are in shared memory and pointers
can simply be passed to a parallel subroutine. Originally the code
to psave the pointers were written in C since Fortran cannot
manipulate peointers. To allow pointers to be manipulated from
FORTRAN three routines have been written in assembler for both the
host and the node processors on the NCube (thess have been ra-
vritten in C and two more addad for portability at Daresbury).

p= ptoi(i) stores tha address of integer i into the integer p

p= ptod(d) stores the address of double precision variable d
into the integer p ’

i= ptar{p} the value pointed to by p is asasigned to i

call lstar{p,i) loads the value of i to the location pointed to
by p

p= pointer{symbol, ioffeet) storas the address of the memory
raferenced by symbolic variable symbol and offset into the intaeger p.

The original Schedule code that decides when to run which
subroutines has not been changed except the routines GTPRE and
LIBOPN. In the shared-memory version each processor would call GTPRB
to get the next routine to execute. In Sched3 there is a main loop
oxecuting on the host which calle GTPRB to get the mnext job.
Previocusly GTPRP would block waiting for work. In Sched3 GTPRB
returns a zero if there is no work to be had. LIBOPN previously

started processes on every processor and the processors would then
ask for work. In Sched3 the hosat will poll for work and only load
processas on a node when a routine is ready to run. If there is a
job to run it ie loaded onto the next available node. Nodes are
simply chésen by picking the lowest numbered node that is available.
Perhaps a better strategy would be to chose nodes closest to the
host firat. It may also be advisable to aveid node zero sinca it may
be busy as a communication gateway to the host. When a job is ready
to run a node is selected and the filename containing the routine is
loaded on the chosen neode.

Procasses may spawn other processes. Tho dependency information
of a epawned process ie the sama as its parent. To spawn a process
NXTAG must first be called to obtain a unique jobtag for the process
to be created. NXTAG is implemented by sending a message from the
node to the host requesting a new jobtag. The host services the
raquest by calling NXTAG (the NITAG routine from the original shared
memory code} and sending the result back to the nede in a message.

After a nev jobtag has been obtained there is a call to SPAWN.
This call will send the name of the routine and its jobtag to the
host. The host loads the routine omr the next available node and then
notifies the parent where the child has baen placed. The parametaers

21

are then ment out from the parent to the child.

After a parent has completed its processing it must make a call
to WAITCHILD(n} {(the paramenter m is currently redundant). This is
diffarent to the original NCube version of Sched3 in which the
subroutine wae simply called WAIT. The name ie changed to avoid a
conflict with the Fortnet names. When a child completes it sends its
parameters to its parent thus notifying the parent that it has
comploted. WAITCHILD will recaive the returned parameters from all
of the childran that have been spawned and notify the host that the
children have completed. This stratagy assures that the host
receives a child's complation before its parent’s completion.
Unfortunately this strategy does not assure that a process will
complate after its grandchild. This stems from difforent message lag
time between different nodes and the hoat. When a process calls
WAITCHILD all processing in tha parent is blocked until all of the
children have completed. This is mainly a result of the Jack of
multitasking on the nodes in <the NCube hypercube, and similarly on
the Intel iPSC/860. The shared memory version of SCHEDULE will use
the wait time to do more processing. The blocking wait makes it very
easy to write programs which will deadlock on the hypercuba. Fer
instance if every node ie loaded with a routine which spawns exactly
one child and then waits for the child to complete. The child will
never complete since there are no available processors. Since no
child can complete me parent can complete resulting in deadlock.

IT.2 Differences in shared-memory SCHEDULE and Sched3

The implementation of Sched3 on the NCube hypercube resulted in
several changes to the syntax and semantics of a SCHEDULE program.
The most apparent was the requirement that routines that are to be
run in parallel mnuet be placed in a separate file and linked to
worker.fn. The NCube eupports the loading of pregrams on the nodes;
not gimply routines. Using a standard main program allowed the
Tunning of routines on the nodes as complete programs. Worker is
also needed to parse the messages containing the parameters to the
parallel routine. Using a makefile greatly facilitates creating
Schad3d programs and their related files. This is done through the
usa of file name extensions which have an axtra ‘n’ for a node
process. e.g. Host programs use the routines in sched.a while the

node routines use those in sched.an. An example is given baelow.

i parallel routine must always have a fired number of
parameters. Thie ie becanse Sched3 was written almost exclusively in
FORTRAN, which does not allow variable numbers of parameters to

subroutines, and even in € one cannot paeés data from non-existant
memory. The current implementation allows 4 parameters to the
parallel routines. This can be easily be extaended howaever. The

original version of schedule had routinas written in ansi ¢ and a

22

variable number of parameters could be passed, you do however need
to tell the system how many there are for it to work correctly on
medern processore 8uch as the Intel i860 in the Alliant. A new
parameter *N’ is introduced to do this.

Commons are not really commons acress the parallel routines.
Shared memory ie only simulated on the parameter lists to parallel
routines and commone are only common to a routine and any routines
it may call, not routines on other processors (or spawned routines).

Three of the SCHEDULE calls have slightly different arguments.
A& number indicating how many parameters the subroutine requires ‘N’
is essential in all routinees and an array of the lengths of those
parameters 'L’ has been added to SPAWN and PUTQ which pass
parameters to other processoxs. The externmal subroutine parameter to
PUTQ has also changed to a characters25 variable containing the name
of the executable file to be loaded on the remete processor. This
file may be the original subroutine, renamed subroutine ’USER’ and
linked to a main program callad ’uorker.fn’ (see example makefile).
In addition, for us to be able to integrate the systam fully to the
message-passing harness, and to provide a configuration file driver,
we needed to make all formal arguments in the host program
character+3 symbols which refer to double praecision data. This is
illustrated as follows:

N=4 (extra obligatery parameter to correct original code)
CALL SCHED(nprocs, paralg, N, x(1},a{1),b(1),c(1))

bacomes :
charactar*8 x,a,b,c
N=4
CiLL SCHED{nprocs,paralg,N,x,1,a,1,b,1,c,1}

Note that no L parameter is not needed, the original daocumentation
is misleading in this respact.

external dorprod

CALL PUTQ{jobtag, dotprod, N, x{100),a(1),b(1),c(1})

bacomes:
character+8 x,a,b,c
character+25 DOTPROD
DOTPROD = ‘dotprod’

N= 4

L{1) = 200#8 (length in bytes of double precision data types)
L(2) = 1+8

L(3} = 1*8

L{4) = 1#8

CALL PUTQ(jobtag, DOTPROD,N,L,x,100,a,1,b,1,c,1)

similarly for routine SPAWN.

23

Note that only symbolic raeferences to double precision type variables
and arrays are currently able to be passad throught these routines,
this will be relaxed in future releases of the softwvare as strong
typing is introduced throughout. A more comprehensive example

program is shown at tho end of thie saction. idn example of their use
is shoun at the end of this secticn. The integer numbar following
each symbolic variable is an offset equivalent to a one-dimensional
vactor index.

The WAITCHILD call mentioned above is required and blocking in
Sched3 where it is neither in SCHEDULE.

LOCKON and LOCKOFF are not implemented on the nodes. They are
implementad on the host but in a trivial manner. The host has no
shared memory so no test and set is needed. Implementing some sort
of locks for synchronising parallel processes may be advantageous.

II.3 Future Improvemente

The syntactic differences in the calls to the Sched3 could be
eliminated by building a preprocessor to convart SCHEDULE calls to
Sched3 calls. The preprocessor would have to ba able to deduce the
size of variablee and pad the parameter lists if necaessary. 1 very
aggrassive preprocessor could also separate the parallel routines
into the proper files for Sched3, A more useful WAITCHILD strategy
should be devaloped to allow work to be done if children have not
been completed. The current epawn scheme doean’t allow spauned
children to spawn their own children. This mule syndrome should be
ramovad. Given these considerations the Sched3 methodology is
probably the most appropriate one on which to standardise given that
it is applicable across a networked computing resource. Apart from
the last one these improvements will probably not be coneidered at
Daresbury. We will however increase the number of data types
available in the <calls to SCHED and PUTYQ, in line with those

" availabls in the PARLANCE mathematical libraries (see references to
Fortnet), and continue development of the configuratiom file
interface and binding to the Fortnet message-passing harness to be
described in saction D.

I1.4 Routines available in the user interface to Sched3

sched(nprocs, 'paralg’ ,n,a,ia,b,ib,c,ic,d,id) ~- initialise
system and start processing dependency tree described by routine
paralg. This routine runs on the host. A graphical builder is
available to produce skeleton code forming the paralg routine (see
section III below).

parconfig(a,ia,b,ib,¢,ic,d,id) -- standard dependency trae
routine which reads data from a textual configuration filae.

24

dep(jobtag, icango, nchks, mychkn) -- put dependency data into
gueus for the next process with id jobtag. This routine runa on the
host.

putq(jobtag,‘filename’,n,l,a,ia,b,ib,c,ic,d,id) -- put the name
of executable file filename and its parametars into queue associated
with jobtag. This routine runs on the host.

nxtag(dummy, jobtag) -- find the next available jobtag in the
quene. This routine runs on a node.

spawn (dummy, jobtag, 'filename’,n,l,a,b,c,d) -- put the name of
eracutable file filename and its parameters into queue associated
with jobtag. This routine runs on a node.

wvaitchild(n) -- wait for completion of all spawned childrem, a
barrier. Parameter n currently has no meaning. This routine runs on
a node.

III. The graphical Interface to Schedulas
in additional facility of the Schedule software which is not

describaed in the original documentation is the graphical builder.
Thia allows a display of subroutines and their data paths to be
conatructed on a workstation Bcreen. i main program corresponding to
the display can then be produced automatically for inclueien in a
task. This display program currently works only on sunview screens
on SUN3.0 and SUN4.0.

To use the facility it is best to start with an existing fila
which contains a dependency tree and alter it. Some are available in
the directory

/homa/rjasechedule/trace

Type bld when in suntools to open a nev window and pBtart
procaesasing. Load and go on a file and redraw its contents. The use
of mouse buttons is then as follows:

1} left mouse button is used to select menu options and to put
or erasa objects from the screen. FPress the button on the screen to
put a new (next numbered) object, or selact erase and then the
object to remove it.

2) the middle button is used to form the dependency tree. Place
the mouse arrxow over the parent routine and press the button.
Holding it doun move over the child and release it. The software
will draw a line connecting the two and save the hierarchy.

3) Use the right mouse button to attach subroutine names to the
cbjects. Select a subroutine from the list in the menu (alter the
fila contents of subs.list if necessary). Select the target object
by moving to it and pressing the right button. Selact the subroutine
option with the left button. If you hold down the right button over
a target which is assigned it will show the name in the menu window.

25

The objecte are displayed in number order from left to right
and top to bottom, unless the dependencies are otherwiae. Redraw
vill move objects following the whim of the poftwars, 8o do not be
surprised at bizarre results.

Having completed the display select the dump button on the menu
to save a FORTRAN equivalent to the standard output device (redirect
output from bld to a file for example). This may also be bizarre and
needs checking.

Dne further word of warning: this software is c¢lsarly not
tested and often hangs up the workstation, or aborts with an
arithmetic error. If it hangs up log onto another terminal and kill
off the bld process!

IV. The graphical Trace facility

The graphical playback facility is started by typing
sched.trace

in a suntools session and opens any files with the extensicn
.trace (the default ome is graph.trace produced by Fortnat or
Schedule in its running directory). The display ie as in bld above,
the software reads tha dependency trae and puts up the objacts and
lines between thom when load and go is selacted with the left mouse
button; this also starts the playback sequence in the original
sunview version - rather irritating if it is over quickly. In the
Lview version this has boen amended. The objects change colour (grey
hashing) to indicate activity and swall boxes appear to indicate
spawnad processes (or send/receive calls in the Fortnet version).
The contents of the .trace file are described in the original
documentation, and the correponding Fortnet output in fortnet.trace
ig deacribed in pgection D below along with the use of the

preprocessor to convert it.

Example program written using the Sched3 system for the Intel
iPSC/2 hypercuba.

Makefile for the test program:

SEBRERARARBRRE A NN RAR RN RN ANERSRERR RIS NER NN RARRARERSRRARERAEN AR
|] makefile for SCHED3 version on Intel hypercube

(] r.a. 26/7/89
BUBERANNRIRERUBENRR RSB RN ERRRARRRRUNERNRRRRRRRACRRNRRENRA AN RERRRR NN

host objects
SCHEDOBIS = ftsubs.q putq.q vork.q wrapup.q slen.q swrapup.q \

26

sndtag.q sched.q gtprb.q

#node objects
SCHEDOBJISN = spawn.qn wait.qn slen.qn nxtag.qn

generic compilations
.SUFFIXES: .f .fn .q .qn .a .an

f.q:
177 -c $e.f
cp $*.0 $%.q
.fn.qn:
cp $*.fn temp.f
£77 =-c¢ -8x temp.f
cp temp.o $*.gn
all: schad sptest

make libraries only
sched: schad.a sched.an symbels/iosup.a worker.qn ptr.a ptr.an

#host library
schad.a: $(SCHEDDBJS)
ar rv ached.a $(SCHEDOBIS)

node library
sched.an: $(SCHEDOBJSN)
ar rv sched.an $(SCHEDDBJSK)

host pointer library
ptr.a: ptoi.q star.q lstar.q
ar rv ptr.a ptoi.q star.q lstar.q

Shost symbol library
eymbole/iosup.a:
(cd symbols; make iwcsup.a)

node peinter library
ptr.an: ptei.qn star.qn lstar.qn
ar r ptr.an ptoi.qn Btar.qn lstar.qn

oxample link and run to user’s code

8ptest: sp spl sumaqrt

host program examplae
spt: spt.q sched.a ptr.a symbols/iosup.a
77 -o spt spt.q sched.a symbols/iosup.a ptr.a -host

27

icango= 0

#noda program example nchks= 1
sp: worker.qn sp.qn eched.an ptr.an wychkn= 1
77 -¢ Bp -8X sp.qn worker.qn sched.an ptr.an -node call dep(jobtag, icango, nchks, mychkn)
n= 3
Bumsqrt: Uorker.qn sumeqrt.qn schad.an ptr.an ¢ 1 now contains number of bytes
177 -o pumsqrt -sx sumsqrt.qn vorker.qn ached.an ptr.an -node 1(1)=8
cp lstar.c lstar.qn 1(2)= 8
1(3}= 8
.............................. subname= ’sp’
The code for this example is as follows: ¢ Btart job queue for parallel execution onh nodes
call putq(jobtag,subname,n,l,a,ioa,b,iob,c,ioc,dun,icdum)
The host program: and
c program main . T T E ST TS ST TS T ST T T
include 'symbols/parameter.f’
external paralg Node programs linked with worker.fn, sp.fn:
intager nprocs
double precision al,bl,cl subroutine user{a,b,c,dum)
character+*8 a, b, c, dum double precision a,b,c
data a,b,c,dum/’a L] S ' e ', ¢all sp{a,b,c,dum)
K 'dum ¥ end
nproces 3
print *,’uping 3 procs’ eubroutine sp{a,b,c,dum)
¢ initialise symbolic system double precision a,b,¢,bl,b2,cl1,c2,dummy
call allocate() integer 1(4),n, stat
¢ aseign memory to symbole character»25 subname
call assign{a,8) write(6,’ ('’ in ep *’,3gl2.5)')a,b,c
call assign(b,8) subname= 'sumsqrt’
call assign{(c,8) n= 4
call assign(dum,8) ¢ in bytes now
¢ Store real data into them 1(1)= 8
call put$a(1.0,a,1) 1(2)= 8
call put$a(65000.0,b,1) 1(3)= 8
¢ start achad3 1(9)=0
call ached{nprocs,paralg,3,a,1,b,1,¢,1,dumn,1) bi= (b-a)/2.0
c retrieve resnlts b2= b1 + 1.0
cl=fatch$alc,1) ¢ spawn two parallel jobs on unused nodes
print &, ‘the sum of the square roots from ’,al,’te’,bl,’ is ’,c call nxtag(dummy, jobtag)
end call spaun{dummy, jobtag,subname, n, 1, a,bl,c1,dumny)
stag=s 1
subroutine paralg{a,ica,b,iob,c,ioc,dun,iodum) call nxtag(dummy, jobtag)
charactexr#8 a,b,c,dum call spaun(dummy,jobtag,subname, n, 1, b2,b,¢2,dummy)
integer jeobtag, icango, nchks, mychkn, n, 1(3) stat= 2
character*25 pubname c valua of n not used in this call
jobtag= 1 call waitchild{n)
gtat= 3

28 29

c= ¢l + c2
ond

sumsqrt.fn:

subroutine user{a,b,c,dum)
double precision a,b,c,dum
writa{6,’(’’' in sumsqrt ’',3g12.5)")a,b,c
¢= 0.0
ia=int(a)
ibsint(b)
do i=ia,ib
c= sqrt(float{i}) + ¢
end do
end

30

D. Interface between tha Tools; Execution and Location of Files
on the Daresbury Network.

I. Fortnat and ipcv3.

The interface between Fortnet and ipcvd is straightforward. The
implementation at Daresbury now allows calle to both sets of
routines in the library file fortnet.a, although one should bae
careful about mixing them. This library should be linked to an
application which does message passing, and there is a copy on most
of the Daresbury computers.

The reason for the proviso is because Fortnet needs to assign
message types internally (as it does on all the strongly typed
systems, such as the Intal, and also Express) and it does it in a
cyclic manner reserving message types of (iproc+1)#1000+2 up to
(iproc+2)»1000+2 for messages sent from node iproc to another noda.
Lower numbers wuwill be used by the Schedule software and have
therefore been avoided, likewise negative types are for system usa
on most machines. Fortnet has its own typing schema as detailed in
tha original documentation. This has been eomewhat extended for the
wider useage described here, but a discussion is not relevant.

Somae routines may be mixed, such as most of the informational
routines. If using Fortnet you should not call the ipev3 routines
pbeginf () or pend() which are already included in the worker program
and Fortnet routine stop(). The shared file sarvice of Fortnet is
available as normal through the server program, which must be placed
as the first single entry in the ipcv3 configuration file. Note that
it ie distinct from the ipcv3 parallel server, and may be run on
another machine in the network (this might pose preoblems if you want
to do ifo however, alvays a critical issue !). A master program may
or may not be used at the programmer’'s discretion, but its existence
is not acknowladged in the call to nslaves which only counts from
process 2 up to nnode-1. Thus the Fortnet call

n=numslaves{) and the ipvecd call

m=nnedes() yield numbere related by n=m-2

Implementation of Fortnet within ipev3 allouws portabilty to a
vider range of machines than previously available, and also to
networked resources. It also gives ipcv3 the ability to use the
Schadul-trace analyeis and Fortnet profiler. A further extension
which evolved during the merging of the two systems was the means to
transfer messages between machines with a differemt data
representation using the standard xdr routines. Strong typing is
thus enforced, partly as described in the ipcv3 section B, and
through calling the Fortnet routines with prefix

. —= type of any

31

a -- type of character

1 -~ type of logical

i -- type of int

d -- type of double precision (realss)
T -- type of realw=4

c -~ typa of complex+g

@c - type of complex*lé

Tuo modes of debugging an application are available within the
combined system. One is the Fortnet debug{’ON’) option, which dumps
data to the Trace file fortnet.graph for conversion to Trace format
in trace.graph by the utility pretrace.c. The other is the setdbg(1)
call from the ipev3d harnees which produces very detailed screaen

diagnostics of the internal ipcv3 and socket calls. Knowledge of the
ipcv3 harness workings are needed to interpret this ountput!

The combined ipcv3 and Fortnet harnese is contained in tha
following directoriaes:

cxa [/priv3/rja/hybrid/ipcv3

cxa /priv3d/arcgl/?

tcsm fhome/rja/hybrid/ipeva

tcsm /home/arcgl/?

i860a /usr/user/rja/hybrid/ipcv3

dlall /user/rja/hybrid/ipcv3

dlall /user/arcg1/?

titan fuser/rja/hybrid/ipcv3

titan /user/arcgl/?

irie2 /fusri/rja/hybrid/ipcv3

ipsc /fusr/user/rja/hybrid/ipcv3

cray /1/mfg

The library file fortnet.a should be linked with the application
which is then invoked by the parallel command through the
configuration file <application>.p. Note that Fortnet also requires
the application program on each node to be driven by a main program
called 'worker’, and this now extends to ip¢vd and also Schedule
(vhich in the original document used a main program called 'dmain’).
4 sample makefile for the Intel hypercube is as follows:
all: sarver.out master.out slave.out
Berver.out:
£77 -o sarver.ocut -i860 server.f fortnet.a -node
master.out:
77 -0 master.out -i860 verker.c master.f fortnet.a -node
slave.out:
£77 -o elave.out -iB60 worker.o slave.f fortnet.a -node

The execution can be invoked from a configuration file called
fortnet.p such as:

32

rja iB60a 1 server.out .
rja iB860a 1 master.out .
rja i860a 14 slave.ocut .

with tha command
parallel fortomet

which grabs 16 processors and runs the task.
II. Portnet and Trace.

Verpion 2.2 (trace) adds to the basic Fortnet system a
sophisticataed graphical post-execution trace and playback facility.
This ia in the form of an interface to the Schedule Trace package
developed by Dongarra and Soremsen of Argonne MNational Lab [15]. &
display on the SUN screen shows, in pseudo-real time or in event
tima, the state of execution and communication events 1in a real
network of communicating processes. The data dependency tree for the
processes is constructed from the run-time dump by a C pra-processor
called pretraca.c. By this means parallel FORTRAN programe can be
visually debugged and optimised since tha cause of deadlocks and
bottlenecks can be spotted.

To use the graphic display of sched trace files you need to do

gched.trace

and follow the instructions of section C.

The informatien in the trace files has the fellowing meaning
from SCHED.

- static node <id, # child, # parents, [parent idsl>
- start execution <id>

- gtop exacution <id> timing infe

create dyn node <owner id, id>

- start dyn nede <owmer id, id> timing info

= stop execution dyn node <owner id, id> timing info

0 WO
1

To compile the diractory on the SUN, /home/rja/schedule/trace,
do
make sched.trace

The trace facility hag been interfaced to the Fortnat v3.0
{trace) Tharness to produce graphical interpretation of a FORTRAN
program running on varjous hardware platforms. We could for instance
run the above application on the Intel, with debug mode 'ON' in the

routines we want to see. When execution has finished a file

fortnet.graph will be present. This is true of all Fortnat versions

accessad through a 1library file called trace.a, trace.o or
33

forthat.a. This graph file must be passed through the preprocessor
praetrace.c by running
preirace.out

in the directory, with no arguments, which creates the fils
trace.graph for input to the Trace program exactly as in the
references to the original work. The graphical tool must be invoked
on the a SUN or I-window worketation to Be¢ the result (we do not
yot have I installed on the Intel).

Meaning of the information in the file fortmat.graph

- check called <taddr> <faddr> timing info

- end of check <taddr> <faddr> timing info

~ wait called <taddr> <faddr> timing info

9 - end of wait <taddr> <faddr> timing info

10 - send called <taddr> <faddr> timing infe
11 - end of send <taddr> <faddr> timing info
12 - recova called <taddr> <faddr> timing info
13 - and of racevae <taddr> <faddr> timing infe
14 - dabug on 0 <inode> timing info

16 - debug off 0 <inode> tiwing info

16 - debug toggle 0 <inode> timing info

17 - stop active O <inode> timing info

18 - stop terminate 0 <inode> timing info

L I]

II1. Interface of Schedule and the message-passing utilities.

The message-passing harness which isp the combined result of
Fortnat and ipcvd may nov be usaed in a task which has its major
modulas controlled by the Schedule software. We have anforced tha
rule that only jobs scheduled on the sama level of data dependency
may communicate using the message-passing primitives. It thie ie not

dona the coding becomes unnacessarily complicated. 4ny such
deviation is construed to be a user error, and there is ne
protection.

The interface may be driven through a configuration file which
is an extension of the ipcvd and Schedule notation as shown balow.
The ‘parallel’ sarver program interprets this file as a stream of

jobs to be 8cheduled, in which the execution trea allows
communication between branches at a similar height. Furthermore
several taske may be specified in the configuration file, to allov a
rudimentary batch processor to be inplemented. A certain amount of
ragource Jload balancing can be expected during the course of
exg¢cution.

This full implementation is in somewhat early daye and may not
alvays work as expacted. Any bugs should be reported and I will try

34

to sort them out!
IITI.1 Fortnet version of Schedule

Tha currently working version of Schedule on the Intel
hypercube incorporates the Fortnet message-passing harness. This has
been passible wvithout great difficulty, but did require the addition
of a message router table to translate achedule job tags (by wuhich
the individual pieces of the application are known to the user) into
Teal procaessor addresses which can be handled by the Fortnet router.
This ie now present also in the generic ipcv3-based versiom, along
with the xdr routine calls. There is a slight overhead in looking up
entries in this table, and a slightly greater overhead in starting a
new job from the Schedule queue, which nacessarily invelves updating
the router table on the server process for forwarding to the jobs at
communication time (only when a call to check or wait is made). If a
job is not schaduled when a message ia addressed to it, or messages
are incorrectly sent, a warning is output to the atandard ocutput
devica. In futurre versions of the software we will try to make such
calls invoke tha scheduler for te required process.

Use of the system is no more complicated than previously
calling the schedule routines but with the posaible addition of
message passing. The Fortnet library is used for this, with strong
typing, and the Schedule job tags muat be used as the logical
address of each process. The server is still loaded on node zero by
the Schedule system (it must have the name ’server.out’) and acts as
a shared device to support i/o and router table manipulation from a
tized point. This coumbined system offers the possibility to use
objact-oriented programming and alec a mescaga-passing style within
one package, and ie one of the only message-passing schemes to have
dynamic configuration (anether is Linda).

Consider reworking the Intel example given abovwe for a simple
tree satructure in which masterl sets up data, a number of s5lave
routines work on it, and master2 collecte the results.

all: host.out server.out masteri.out slave.out master2.out

host.out:

£77 -0 host.out host.f schad.a iesup.a -host
8erver.out:
177 -o sorver.out -iB6C sarver.f fortnet.a sched.an -node
master.out:
177 -o masterl.out -i860 worker.o masterl.f fortner.a
sched.an -nodse
slave.out:
£77 -0 master2.out -iB60 workaer.o master2.f fortnet.a
sched.an -node

5lave.out:

77 -0 slave.out -iB60 worker.o slave.f fortnet.a

35

sched.an -node

Execution is invoked by starting the host program with
host.out

which loads the cube. The data dependency graph might be described
in a configuration file as follows, and the host program (shown
next) will try to read this file to set up tha task if it is of tha
standard form:

program main

integer dumi, dum2?, dum3, dum4, 1(4)

data n/4/,1/4»0/

nprocs=4

call schad(nprocs,parconfig.n,l,dumi,dun2,dun3,dund)

end

The routine parconfig reads the configuration file shosn below and
makes calls to DEP and PUTQ after allocating the Fortnet distributed
data scheme, and aseigna memory for each of the variables used as
shown in section A.

A configuration file, modified from the ipcvd form to include
Schedule functionality (the second line is currently unused) might
be as shown next. Note that at present all subroutine argumenta are
double precision variables. This can Boon ba relaxed since strong
typing of variables is implemented. {c.f. section B and above on the
xdr implementation)

TASK

nprocs, jdf, priority, submit time, run time requested

rja ig60a 1 masterl.out .

masteri{a,b,c,d)

icango=0 nchks=4 myckackn=(2,3,4,5)

rja i860a 4 plave.out .

slava(a)

icango=1 nchks=1 mycheckn=6

slava{b)

icange=1 nchks=1 mycheckn=§

slava(c)

icango=1 nchks=1 mycheckn=6

slave(d)

icango=1 nchks=1 mycheckn=6

rja i860a 1 master2.out .

master2{a,b,c,d)

icango=4 nchks=0

END TASK

IV. Networked version of Schedule with ipcvd and Fortnet

36

The combined Fortnet and Schedule interface is not portable at
present, but vill be sc in the near future. To achieve this it is
necassary to include A& higher lavel of message passing in the
Schedule scheme, across a network withim the ipcv3 harness, and then
also the additional uger interface as at present. Full addition of
strong typing of data and xdr tranelation has begun. dn axtension of
ipcvd must be made which can rsh jebs at any time rather than just
statically at the start of execution, and thies must be driven by the
present host program of Schedule.

¥. Final comments

The portable software available at Darasbury Laborateory has
been presented in the current implementation as of November 1990. It
results from original work done in designing a message-passing
harnese and a 1library of high-level numerical operations (describad
separately} combined with concurrent progress at Argonne National
Laboratory. Most of the work on the user interface to the combined

Fartnet and Schedule system is being done by N.Clancy from Bristol
Polytechnic as part of his M.Sc. placement project. It is hoped that
in combining these software rescurces a standard interface may be
established, through its widespread acceptance in physical and
chemical science, which will permit relatively uninterrupted
development of parallel applications on an abstract but low level.

If you require to usa, or wish to know more about any of the
software described in this document please contact

rja @ uk.ac.dl.cxa on JANET

37

Roeferencaes.

[3] R.J.Allan, E.L.Heck and $.Zureck, "Parallel FORTRAN in
sclentific computing: a new occam harness called Fortnet" Computer
Physics Communications 59 (1990) 326-44

[4] R.J.A1lan and E.L.Heck “Fortnet: & parallel FORTRAN harness
for porting application codes to transputer arrays" in “Applications
of Transputers 1" ed. T.L.Freeman and R.Wait Liverpool (23-26 August
1969)

[8] Intel Corporation "Intael iPSC/2 Programmer’s Reference
Manual" October 1989, ordex number: 311708-002

[6] Intel Corporation "Intel iPSC/2 and iPSC/860 User’s guide"
June 1990, order number: 311532-Q06

[7] Meiko Scientific Ltd. "Computing Surface Reference Manual"
Bristol (March 1989)

[8] 3L Ltd., "Parallel FORTRAN Reference Manual® 3L Ltd., Peel
Housa, Ladywell, Livingston, Edinburgh EHE4 64G

[$] R.J.Allan “PORTRAN-T7 Programming of Parallael Computers.
IV: 3L Parallel FORTRAN" Parallelogram 22 (January 1990)

[10] S.J.Leffler, R.S.Fabry and W.K.Joy "4 4.2BSD Interprocess
Communication Primer" '

[11] Alliant Computer Systams Corperation "Concentrix: System
Reference version 5.0.0" Alliant (Feb. 1990) order number: 301-
02009-4

[12] R.J.Allan "Numerical Algorithm Libraries for
Multicomputers” D.L. Technical Memorandum {1990) in preparation

[13) R.J.k1lan "in Explicit Library Interface for Scientific
programming of Parallel Computers" for submission to Parallel
Computing (1990)

[14} J.Dongarra and D.Sorensen "A Portable Environment for
Developing Parallel Fortran Programe', Parallel Computing, Volums 5,
Numbers 142, July 1987, pp. 175-186 or available as a postscript
document from netlib@argonne, or from rjatdl.dlgm

[15] J.Dongarra and D.Sorensen “Schedule Users’ Guide"
postacript decument avajlable from netlib®argonne, or from
rja@dl.dlgm

[16] "Portable Programs for Parallel Processors”, J. Boyla, R.
Butler, T. Diez, B. Glickfeld, E. Lusk, R. Overbeeok, J. Patterson,
R. Stevens. Holt, Rinehart and Winston, Inc., 1987, ISBN 0-03-
014404-3

[17] R.K.Cooper and R.J.Allan "Fortnet (3L) v1.0,
Implementation and Extensions of a message passing harness for
transputers using 3L Parallel FORTAAN" for submission to Computer
Physica Communications (1990}

[18) Meiko Scientific Ltd., "SUNOS €5-tools" Vols 1 and 2 order
number: 83-009400-02.01 Keiko (1990)

38

{19] L.J.Clarke Ph.D. Thesis, University of Edinburgh (1990)

[20] L.J.Clarke "TINY, Discussion and User’s Guida" Edinburgh
Concurrent Suparcomputer Projact, order number: ECSP-UG-9
University of Edinburgh (7th March, 1990}

[21] M.Surridge “"ECCL: A general communications harness and
configuration languagae" in "Applications of Transputers 2"
preceadings of the second International Conference on the
Application of Transputers, ed. D.J.Pritchard and C.J.Scott.
Southampton (1990)

[22]) N.Carriero and D.Galernter "How to write parallel
programs, a guide to the confused" University of Yale Research
Report, order number: YALEU/DCS/RR-628 (May 1988)

[23]) ParaSoft Corporation “Exprees 3.0 User's Gnide" ParaSoft
(1988, 1989, 1990)

[24] apollo “NCS User Manual"

[25]) I.Foster and S.Taylor "Strand - New concepts in parallel
programming” Strand.88 {Prentice Hall, 1990) ISBN 0-13-859587-1

39

