Towards an Agreeable Model of Type Inheritance

Object Identifiers and Inheritance Don't Mix!

Hugh Darwen

Abstract 1 We (the authors of [3]) contend that, to be agreeable, a model of type inheritance must embrace the concept of
specialization by constraint. | describe how we came to this conclusion and explain how we think a truly relational system can
incorporate such a model, by avoiding the use of object identifiers.

Index Terms O Inheritance, Types, Relational Model, Object Identifiers

1 INTRODUCTION e To elaborate on the "domain" aspect of Codd's

hapter 3,The Third Manifestp of [3] is our proposed model, in a theory of types formulated as rigorously
restatement of the Relational Model of Data ([2]). It as the theory of relations.

includes the following point in its final section, headed "ooThese two aims in particular, we thought, justified the
VERY STRONG SUGGESTIONS": occurrence of the term "Object/Relational” in the book's title,

1. Some form oftype inheritance should be supported (in for support for types of arbitrary complexity and support for

which case, see OO Prescriptions 2 and 3). In keeping wittype inheritance were the two features commonly found in
this suggestion,D should not supportcoercions (i.e., object oriented languages that we strongly wished to include.

implicit type conversions). o _ ~We were running with the tide, of course, because those two
The two referenced "OO Prescriptions” are given a littigeatures now constitute perhaps the biggest distinction
earlier in the same chapter: between SQL:1999 ([6]) and its predecessor, SQL:1992 ([5]);

2. If D permits some typd" to be defined as aubtype of and of course they feature strongly in the ODMG standard
some supertype T, then such a capability shall be in 117y |ndeed, SQL:1999 is sometimes seen as SQL with
accordance with some clearly defined and generally agre ded "object” features, while the ODMG standard might be

model. . . - .
3. If D permits some typd" to be defined as a subtype of considered to be about object oriented databases with added

some other typeT, then T' shall not be prevented from relational” features (i.e., OQL). _ _
additionally being defined as a subtype of some other type ~ Early published versions ofThe Third Manifesto
that is neitherT nor any supertype oflT (unless the elaborated a little on that "generally agreed model" in point 2,

requirements of OO Prescription 2 preclude such as follows:

possibility). . ")
Taken out of context as they are here, these points need LS our hope that such a "clearly defined and generally agreed
model" will indeed someday be found. The term "generally

some explanation. D" is a generic name for any database Wi ; ;

langua epthat conforms togour model "Presc?/i tions" are agreed” is intended to imply that the authors of tManifestq
guag) : escripl among others, shall be in support of the model in question. Such

mandatory requirements. They are subdivided into RM gypport shall not be unreasonably withheld.

Prescriptions, being those derived from the Relational Model,

and OO Prescriptions, where OO stands for Other Orthogorfafcause these remarks, not intended to be taken too seriously,
and coincidentally includes prescriptions derived from object/€ré much misunderstood, we decided not to include them in
orientation. Very Strong Suggestions, also subdivided int® book. However, they were based on an observation that
RM and OO sections, are points that we think are good ide¥¢s generally agreed at the time, namely, that no generally
but not essential for conformance. The word Very is includeg9réed model of type inheritance existed.
to emphasize that such sections are not intended to provide a Rather boldly, perhaps, we decided to attempt to
compendium ofll relevant ideas we think are good ones. ~ formulate a model of type inheritance, with the idea of
It should now be clear that we think it highly desirable,Présenting itas a "strawman proposal" for the generally agreed

though not essential, for a relational DBMS to support typ@n€ being sought. Our model made its first appearance in the
inheritance (point 1), but only if it does so in accordance witfiorm of some preliminary proposals constituting an appendix

a generally agreed model (point 2) that includes what i§ @n early version offhe Third Manifesto.By the time the
commonly called "multiple inheritance” (point 3). book ([3]) was being prepared for publication, we decided that

Our restatement of the Relational Model has the followin@Ur model had matured sufficiently to appear as Part IV,
aims, among others: ubtyping and Inheritance, in the main body of the book.

« To clarify or remove certain points about the _ HOWwever, when we reflected on our completed work—
Relational Model that we feel were not clear in 197dntended as a rigorous definition of a certain model of type
and have remained unclear since then. For exampii@heritance—we decided that it didot meet that originally
we no longer have any reference to the uncled?Ub“_Shed criterion of acceptal_)mty to "the authors of this
concept ofatomicityof values that was part of Codd's Manifestd! Our reasons for rejecting our own proposal are

definition of First Normal Form of relations. given in Appendix C of the book, which is titled, highly
significantly, Specialization by Constraint

Appendix C starts to point to a possible way of enhancingomponents of XY_POINT. Thus, the invocation XY_POINT
our model to make it acceptable to us. We are currently 0, 0) returns the point that is the origin. We call this
working on a revision and are cautiously optimistic about it. operator the XY_POINT selector for values of type POINT.

The purpose of this informal article is to explain: THE_X, THE_Y and XY_POINT are examples of what
» some of the basics that are common to our originalve callread-only operators A read-only operator is one that,
model and the revision that is in progress; when invoked, operates on zero or more given values
« what drove us to formulate a rigorous model that wéarguments) and returns a value.
would eventually have to reject; In contrast to read-only operators, we haupdate
« why we rejected it; operators An update operator, when invoked, operates on at

« the salient features of what will be our revised model/east onevariableand zero or more values, and does not return
« why we think SQL:1999, Java™ and ODMG do notdnything. o _
support this model. The definition of XY_POINT implies the existence of two
update operators. One of these, given a variaple, of
2 BASICS declared type POINT and a numbex, assigns the value
. . Y _POINT (x, THE_Y (pv)) to pv;, the other, given the
Before you can have type inheritance, you need types. dime variable and a numbgr,assigns the value XY_POINT

order to have whatever types are desired, you need not only . .
judiciously chosen set of built-in types, but also a facility to(?‘HE—X (pv),y)topv. Rather than give specific names for

allow users to define additional types of arbitrary complexity. thses?enr(:]peenrtators, we treat them merely as special forms of
A type is a defined finite set of values and associated>>'d ' . S o .
: : ' The type constraint which, in combination with possrep
operators. The associated operators consist of those define RP

: POINT, defines POINT, is merelyue.? From this it can
operate on values or variables of that type and those that, — ' ’ i
when invoked, return values of that type. e seen that ifandh are the lowest and highest values of type

A type is defined by a namegossible representation NUMERIC, then every point within a certain square of side

(possrepfor short) and aype constraint. We stress that there E;J-rlxsltistuigsrtisee?tagliglrll\?'ly' mﬁrﬁzdﬁri;hes f’ne; tgfa?]ui(r:‘:: gggﬁs
is no prescribed relationship between possible representations yp : 9 b

.) i . aspect of our model: given a possié@nd a constrain€, for
(defined in the model) and actual representations (defined {gppeT then every val%e i tygé’ can%e expressed by some

the I,rb\nrgggerlgga?:%%ists of one or more named Componen'nvocation o_f the selectddimplied byP, z?\nd every invocati_on
each having, as well as a namajetlared type of Sth_at satlsflesc_ returns some valu_e im. It follows that if
For exa’mple suppose type POINT consists of valu there is Sl_Jch_a thing as a colore(_JI point (to cite an e_xample the
’ Sike of which is commonly found in object oriented literature),

representing points in the Euclldgan plane. Then the possrcezgnsisting of a point and a color, then that thing is not a value
XY_POINT might be defined thus: . .
of type POINT. In other words, our model puts a big question

POSSREP XY_POINT { X NUMERIC, mark on the concept of defining a subtype by extension of
Y NUMERIC } representations defined for the supertype (i.e., "adding an
attribute").

where NUMERIC is some previously defined (possibly built- In case the reader is wondering, we do not insist on

in) type. A particular POINT value can therefore be ; ; -

; ; exactly one possrep/constraint pair per type definition, though
considered to consist of an X component and a Y component L ; :
both numbers the point is not germane to this article.

A possrep definition implies the existence of certai Our model requires, in addition to the operators implied

r’b}s‘possrep definitions, several further operators to be available
operators. These operators are our proposed counterparts ; . ; : . ,
In~ connection with every type—in particular, "equals

what are sometimes referred to (e.g., in SQL:1999) as . . .)
comparison and assignment. We require that i y, thenx
observers, mutatorand constructors(terms we do not use, T T
, : . nd y are indistinguishable—really are the same value—
partly because they have different meanings in, for EXamP&, plying that for every read-only operatbdefined for values
SQL:1999 and Java™). plying y yop

Analogous to SOL:1999 "observer methods" are th8fthe type ofx andy, f (...x...) =f (...y...)s true. We further

operators, implied by XY_POINT, called THE_X and Lequir(ra] theﬁeffe(r:]t O_f a§signtr)nent of ? valudo a targett to

THE_Y.! Given a valuep, of type POINT, the invocations ave the effect that= v is subsequentlyrue.

THE_X (p) and THE_Y (p) return the X and Y coordinate,

respectively, op. 3 MOTIVATION AND BASIS FOR A MODEL OF

Our counterpart of Java™ "constructor functions" is a TYPE INHERITANCE

class of operators we cadelectors The selector implied by Quite simply, our motivation was that something called type

XY_POINT is the operator of that name with two parameterspheritance was commonly deemed to be a characteristic

both of declared type NUMERIC, corresponding to the twdeature of object-oriented systems and was much talked about
as a strongly desired addition to relational systems. And yet,

1 All concrete syntax is offered for purposes of illustration and
exposition only. We do not prescribe syntax to be used in 2 An example of a type requiring a non-trivial constraint might be
implementations ANGLE, being represented by numbers in the range O:to 2

time and again we encountered articles in the literaturg SyUBSTITUTABILITY

bemoaning the lack of a commonly agreed model, and evefypgiitytability is sometimes expressed in terms of
the lack of agreement on what is meant by a statement of thgstances”. For example, you might find in the literature a
form "everyyis anx". _ statement such as this: TR is a subtype off1, then it is the
We decided very early on that to say that typ2is a cage that everywhere an instancd tfis expected, an instance

subtype of typel'Lis to assert that every value W2 is avalue 4 T2 js permitted. But our model has to be a possible basis
inT1. We further decided that a crystal-clear example is thap, 4 computer language. In such a language, the "instances"
of CIRCLE, being a subtype of ELLIPSE, meaning that every, question are represented by expressions denoting operands.
value of type CIRCLE is a value of type ELLIPSE or, ingome expressions denotelues others denotevariables
everyday parlance, every circle is an ellipse, though not evesy,is particular distinction perhaps seems trite, but very early
ellipse is a circle. We say that CIRCLE iswore specifidype on we were struck by (a) its fundamental importance and (b)

than ELLIPSE, and that if a valuel has, for example, types an apparent failure to observe it, by some of those who like to
CIRCLE, ELLIPSE, PLANE_FIGURE (being a supertype Ofreferjust to "instances".

ELLIPSE) and no other, then CIRCLE is thmost specific We therefore discussed two distinct conceptsilue

typeof el. The most specific type of a value having only thegpstitutability and variable substitutability. We quickly
types ELLIPSE and PLANE_FIGURE is ELLIPSE. realized that value substitutability is essential. For example,
_ Because the ftruth of that statement about circles angi AREA be an operator defined for ellipses such that if "E" is
ellipses is, like other similar statements concerning, expression denoting some ellipse, then the expression
geometrical plane figures, so crystal-clear to us, we VEmp\REA (E)" is an expression denoting the value of type
deliberately chose to develop our model around the study @fReA that is the area of E. Now, if "C" is an expression
such examples, rather than certain examples of a SUb@Dénoting a circle, then the expression "AREA(C)" is

different kind that we found in much of the object orientedmjicitly valid and denotes the area of vy emphasis is to

literature. | am referring here to examples such aggicate that we attach importance to the concept that the
MANAGER Dbeing a subtype of EMPLOYEE, sperator on ellipses is not only "inherited" by circles, but also
TOLL_HIGHWAY of HIGHWAY and has the same meaning for circles as it does for ellipses.

COLOURED_CIRCLE of CIRCLE, where a manager is an ya|ue substitutability applies not only to invocations of
employee with a budget, a toll highway a highway with tolls, gea4-only operators, such as AREA, but also to those
colered circle a circle that has a color; emplolyees in generghameters of an update operator that are not subject to update.
don't have budgets, highways in general don't have tolls argy ¢|arify what | mean here, consider ordinary assignment,
circles in general don't have colors. We did not at the outsgf,cpy as "X := Y + 2". | consider the ":=" operator to have two
have any intention to o_utlaw suc.h examples; we merelMarameters, which we might refer to as #wurce(Y + 2 in
regarded them as "fuzzy" in comparison with our crystal—cleq,g1y example) and thearget (X in the example). The target is
spatial ones and we wanted to avoid any possibility of beingubject to update, whereas the source is not. Value
beguiled by the fuzziness into unwise decisions regarding thepstitutability clearly applies to the source. If E is a variable
definition of our model. , _ of type ELLIPSE and "C" is an expression denoting a circle,

To complete our basis, we had to decide what importaifen “g := C" is a valid assignment. The question now arises
consequences would arise from CIRCLE being a subtype g§ o whether substitutability applies to parameters that are
ELLIPSE. We studied [8] and discussed this text with Sever%lubject to update.

people. In connection with type inheritance, the authors of [8] ~ap argument substituted for a parameter that is subject to
posit four desiderata: substitutability, static type checkmghpdme must be a variable. To decide whetheriable
mutability, and "specialization via constraints”. Theygypstitutabilitywas a concept to be embraced, we considered

conjecture that it is not possible to build a computer systeppe simplest of all update operators, namely, assignment
that embraces all four of these concepts, though jtossible involving a single target, that being denoted by a simple

to build one that embraces any three of them. We were VeQ4riaple name. It then became transparently obvious that

interested in this conjecture, for we certainly did not want tQariaple substitutability does not in general make good sense.
propose a model that could not be implemented! For consider:

To understand the conjecture, we first of all had to
understand very precisely the four concepts in question—for (1) TYPE ELLIPSE POSSREP (A LENGTH,

we imagined that we would have to decide which one to B LENGTH,
exclude fromour model. Acquiring this understanding turned C POINT);
out to be remarkably difficult, which is one reason why [3] (2) TYPE CIRCLE POSSREP (R LENGTH,
includes six pages of discussion under the heading THE "3 C POINT)
OUT OF 4" RULE. | will now discuss each of the cited SUBTYPE_OF (ELLIPSE) ;
desiderata and present our conclusion in each case as to N

whether it should belong in our model. (3) VAR E ELLIPSE ;

(4) VAR C CIRCLE ;

(5) E := ELLIPSE (LENGT H (5),
LENGH (4),

XY _POINT (0, 0) In view of this observation, we discarded any notion that

) a concept of variable substitutability is generally applicable.
— But typical object oriented languages do seem topsut
(6) C := CIRCLE (LENGT H (5), variable substitutability of a sort. Consider the following
XY_POINT (0, 0) .)
) further assignments:
(7) E := CIRCLE (LENGT H (5), (11) EA = LENGT H (6) ;
XY_POINT (0, 0) (12) C.A = LENGT H (6) ;
) The effect of (11) is, loosely speaking, to update the A
(8) C := ELLIPSE (LENGT H (5), component of the value assigned to E.
LENGH (4), (12) is permitted in SQL:1999, ODMG and Java™
XY_POINT (0, 0) (henceforth referred to collectively as SQL:198eterd), as
) a consequence of the legality of (11). Contrast this with the

(1) defines a type called ELLIPSE and (2) defines CIRCLE allegality of _(8) In SQI__:19999t cetera Accordlng to our

a subtype of ELLIPSE. The constraints for these types afgodel, (12) isnot permittechecause there is no possrep in the

bothtrue by default. type definition of CIRCLE that has a component named A.
The possrep given for ELLIPSE consists of componenﬂé‘owever' the read-only operator, T.HE—A’ implied by_ Fhe A

representing the major semiaxis (A), the minor semiaxis (omponent of the Possrep given in tth type deflmtlon of

and the center (C). Because no name is explicitly given f LLIPSE, most def|n|tglys |r!her|ted by. C'rdes’ as IS every

this possrep, its name is by default the type name, ELLIPSE‘?""d'Only opera_ltor.that IS deﬁned for ellipsasgeneral.

For simplicity we assume that all the ellipses we want to "talk We gasﬂy JUSt'fy_th'S d|ffere_nce bet.ween the [ﬁl model

about" are ones whose major axis is parallel to the X axis. and the |mplement§thns found_m SQL._19§9 cetera’ TO.
The possrep given for CIRCLE consists of Componentgpdate the A semiaxis of a circle variable, even if circle

representing the radius (R) and the center (C). The implicitl riables are c_onsidered_to ha!"e SUCh. a component, Is very
defined name of this possrep is CIRCLE Ikely to result in the variable in question being assigned a
' value that is not a circle. We further observe that in SQL:1999

(3) declares a variable, E, to be of type ELLIPSE (we sa O .
that ELLIPSE is thedeclared typeof E) and (4) declares a Xt cetera it is indeed possible for (12) to have the effect of

variable, C, to be of type CIRCLE. assigning to C a value such that THE_A (@ JHE_B (C)

(5) is permitted and assigns a certain ellipse to E. (6) {@nd who knows what the value of THE R (C) might then
likewise permitted and assigns a certain circle to C. be?). We are well aware that it is commonly observed that

(7) is permitted under value substitutability and assigns %QL31?99‘“ ceteraare just not suitable for the "elllpses and
certain ellipse (in fact, a certain circle) to E. circles" example; rather, they are much better suited to the

(8) is not permitted. It is attempting to assign to a circle €MPloyees and managers” example. But we want a language

variable a value that is not a circle. Such an attempt is afhat is suit_ed to crys'_ce_ll-clear cases, even if to have such a
example of aype error anguage is to sacrifice support for the fuzzy cases of

That (8) is a type error is common to many languages W%ubtyping. . . . S .
are aware of that support the concept of type inheritance, Our CODCIUS'QD regarding SubSt'tUtab'“ty is that \.N'thOUt
including those specified in SQL:1999, ODMG and Java™Valué substitutability a system simply cannot be said to be
We concluded that it cannot in general be the case thezig SUPPOrting type inheritance in any agreeable way.
a subtype off'1, then wherever a variable of declared tyfi Uncqndltlonal varlable_subst_ltutablllty,_ however, even in the
is expected, a variable of declared tyF@ is permitted. restricted sense in which it is found in SQL:1989 cetera
Looking at simple assignment, it might be thought that th§8€MS not to make much sense.
inverse is the case: wherever a variable of declared T@is
expected, a variable of declared typgis permitted. But this S. STATIC TYPE CHECKING

is not so in general, either. For consider: Static type checking refers to the property of a language
whereby all type checking occurs at "compile time", meaning

©) CR = LENGT H (6) ; that all type errors can be discovered merely by inspection of
(10) E.R := LENGT H (6) ; program text. If static type checking is fully supported,

))]] possibly expensive run-time checks are not needed. Further,

(9) is of a form commonly found in object oriented languagesappjications are less likely to fail at run-time than they might
It is a realization of invoking the update operator implied bysiherwise be.
the declaration of the R component of CIRCLE's possrep.
This operator, recall, given a variabley of declared type
CIRCLE and a length, has the effect of assigning CIRCLE
(1, THE_C (cv)) tocv. 3 To be precise, we mean every read-only operator that has a

(10) is not permitted. The ELLIPSE possrep doesn't hayg&rameter whose declared type is some supertype of ELLIPSE

an R component. (possibly ELLIPSE itself).
P *These implementations do not appear to be based on any clearly

defined model.

We think that static type checking is a strong desideraturroncerns both specialization and generalization and the term

for industry-strength database languages. We hawee have chosen for it is not quite as apt as we would like.
encountered much support for this position in the database Suppose that variable E is currently assigned a value
community at large, and no significant opposition to it. whose most specific type is ELLIPSE. Clearly, assigning to E

Our model is very similar to SQL:1999's with respect tahe result of invoking the CIRCLE selector would now cause
static type checking. We have static type checking except the most specific type of E to change to something more
one specific place in the language, which | will now explain. specific than ELLIPSE. Under the principle of value

Consider again statement (7), in which ellipse variable Bubstitutability, the most specific type of a variabb&an
is assigned a circle. Under certain circumstances we migbhange from time to time. The question is, can it change as
want to compute the radius of this circle. However, thehe result of an assignment of an expression that does not
following expression "THE_R (E)" isot permitted as explicitly specify a value of some proper subtype of
THE_R is not defined for ellipses in general. To get aroun&LLIPSE? For example, consider this assignment:
this problem we advocate the provision of a generic operator —
which we call TREAT_DOWN_AST, where T is a type (14) E = ELLIPSE (LENGT H (15,

i g LENGH (5),
name. (SQL:1999 has a similar operator, called TREAT.) For
. L H oo XY_POINT (0, 0)
example, the following expression is permitted:)

(13) THE_R (| TREAT_DOWN_AS_CIRCE (E) The declared type of the source of this assignment is clearly
When the value of the operand of ELLIPSE, and by definition ELLIPSE is also the most specific
TREAT_DOWN_AS _CIRCLE happens to have typetype of the value yielded by an invocation of the ELLIPSE
CIRCLE, then the result of the invocation is that valueselector. Under specialization by constraint, we thought, the
otherwise the result of the invocation is an exception—a runmost specific type of this result would nevertheless be
time type error. Because every successful evaluation &IRCLE (more precisely, some subtype of CIRCLE, possibly
TREAT_DOWN_AS_CIRCLE (E) is guaranteed to yield aCIRCLE itself), assuming that type CIRCLE is somehow
circle, the declared type of that expression is CIRCLE and stefined by a constraint meaning th@is a circleif and only if
the expression is permitted as an argument to an invocation ®HE_A (C) = THE_B (C). A careful reading of [8],
THE_R. however, reveals that the authors there were referring merely

In our view, the provision of TREAT _DOWN_Ag is to what we would calltype constraint enforcemenunder
an inevitable consequence of substitutability alone. Evenhich if Cis a circle, then THE_A C) = THE_B (C), but if
though it can cause run-time type errors, it does so in BHE_A (C)=THE_B (C), thenC s not necessarily a circle.
controlled manner that allows applications to defendVe prefer our interpretation of the phrase.
themselves against those errors as easily as they can against Specialization by constraint appeals so strongly to our
run-time errors in general. | will later describe an intolerabl@ormal intuition as to make it apparently sine qua non
kind of run-time type error that definitely cannot occur in ourHuman beings understand this concept so Rnelat, surely,

model. we thought, a model of type inheritance should be judged by
the extent to which it embraces it.

6. MUTABILITY Now, [8] gives a certain example, to which the following

This desideratum, as far as we can see, refers to nothing mésdsomorphic, assuming statements (1) to (6) to be in effect:

than what we call update operators_—primqrily, assignr_nent. (15) E:=C:

We have no reason to be opposed in principle to functional

programming languages, which manage without variables and (16) E.A = LENGT H (6) ;

assignment, but we felt that departure from the imperativghe authors claim that if specialization by constraint is in
styl_e would have created too much of a diversion from OUkffect, then (16) gives a run-time type error. This is because
main purpose. We do, therefore, support operators that upd@ig most specific type of E is CIRCLE, but the assignment in

the database, though, like [2], we restrict such operators {9g) would cause it to acquire a value that is inconsistent with
those that updateelation variables This restriction does not being a circle.

apply to operators for use on local variables in application Now, the reader might well be a little puzzled at this

programs. stage, as we were when we first encountered [8] and as we
remained even after a considerable amount of face to face
7. SPECIALIZATION BY CONSTRAINT discussion with various experts. Why, we might ask, isn't (16)

When we encountered this concept, we took it to refer to thequivalent to "E := ELLIPSE (LENGTH (6), THE_B (E),
idea that the most specific type of the value assigned toBHE_C (E)), as in (11)? Be that as it may, to cut a long
variable might change as the result of some update operatigfory short, we decided to go with the field, so to speak. Like
on that variable. When the most specific type changes from

ELLIPSE to CIRCLE, we have a case of specialization. When
it changes from CIRCLE to ELLIPSE, we haveSPerhaps | exaggerate. Some maintain that a square isn't a rectangle,

generalization so the concept we are discussing rea”)jaecause increasing the width of a rectangle yields another rectangle,
whereas increasing the width of a square doesn't yield another square

(but rather, | would add, yields another rectangle).

SQL:1999et cetera we decided to reject specialization by
constraint. The most important consequence of this decision,
to us, was that we were eventually to realize that the model of
type inheritance we had proposed in [3] was definitely not an
agreeable one, to us.

It now becomes necessary for me to distinguish between
our first model, that we now reject, and the model we will
propose in our forthcoming second edition of%3] will refer
to these two models as Model 1 and Model 2. As the reader
might have guessed by now, the most important distinguishing
feature between Model 1 and Model 2 is that Model 2
embraces specialization by constraint, whereas Model 1 does

not.

8. FEATURES OF MODEL 1

As

substitutability, static type checking that does not entirely
eliminate run-time type errors, and mutability.
have specialization by constraint but, unlike SQL:1989
ceterg it does have type constraint enforcement.

One small but crucial point that our model has in common
with SQL:1999et ceterais that although a value can be of
more than one type, every value has exactly omest specific
type To recap and rephrase slightly, a most specific type of a
valuev is a type such that no proper subtype of it is a type of
v. (Every type is a subtype of itself. For that reason, we need
the term "proper subtype" to refer to a typehat is a subtype
of T other thanT itself.) Further, we allow the most specific
type of a value to be a type that has one or more proper
subtypes (i.e., a type that is noteaf typg.

The following features of Model 1 are important but not
especially germane to the present discussion:

difficulty. It did have the interesting side effect of
proving that, in relational systems at least, the
provision of support for single inheritance implies the
provision of support for multiple inheritance! The
types TUPLE { E1 CIRCLE, E2 ELLIPSE } and
TUPLE { E1 ELLIPSE, E2 CIRCLE } are manifestly
both supertypes of TUPLE { E1 CIRCLE, E2
CIRCLE }; equally manifestly, neither is a supertype
of the other.

Relation type inheritanceFor every tuple type there
is a corresponding relation type having the same
attribute definitions. Clearly, if tuple typ&T2is a
subtype of tuple typelTl, then the relation type
having the same attribute definitions d§2 is a
subtype of the relation type having the same attribute
definitions asTT1 This observation did raise some
nontrivial questions. For example, consider unary
relationsrl andr2 such that declared type of the only
attribute, E, ofrl is ELLIPSE, while that of the only
attribute, E, ofr2 is CIRCLE. What is the declared
type ofrl JOINr2? At first glance, it appears to be
RELATION { E CIRCLE }, for it can be seen that
for every possibly combination of values fot and

r2, in every tuple of the result the value for E must be
a circle. However, we show in [3] that the declared
type of r1 JOIN r2 has to be RELATION
{EELLIPSE}. The reasoning that leads to this
conclusion is not difficult but is beyond the scope of
this article. We note that SQL:1999 comes to a
similar conclusion.

We wondered if the most specific type of a
relation might be a proper subtype of its declared
type. For example, consider again a unary relatibn
whose only attribute, E, is of declared type ELLIPSE.
Might the most specific type ofl be some proper
subtype of RELATION { E ELLIPSE }? We decided
that if in every tuple ofrl E is in fact a circle, then
the most specific type afl must be no less specific
than RELATION {ECIRCLE}. Suddenly the

have already indicated, Model 1 has value

It does not

Multiple inheritance. A type can have more than one
immediate supertype. For example, SQUARE might
be a subtype of both RECTANGLE and RHOMBUS,
neither of which is a supertype of the other (but both
of which are possibly subtypes of
PARALLELOGRAM). We did not turn our minds to
multiple inheritance until we felt we had completely

nailed down all the details of single inheritance. We
then found, contrary to experiences reported orally to
us by several other investigators, that multiple

specter of the empty relation loomed! What is the
most specific type ofl if rl has no tuples at all?
Again, [3] has an answer and again the answer is

beyond the scope of the present article.
A feature of Model 1 that most definitelis germane to

Relational Model, it prescribes the provision type the present discussion is the generic operator we call
generators(as we call them—they are also variouslyTREAT_UP_AST (I have already described
referred to as type constructors, parameterized typdeREAT_DOWN_AST). _ .

and type templates) for tuple and relation types. We Consider again statement (14), whose effect is to assign to
therefore had to consider how type inheritance wouldhe variable E an ellipse with semiaxes of equal length. Also
apply to tuple types and relation types. It Wascon_5|der again statement (6),_Whpse effect is to assign to the
manifestly clear to us that if CIRCLE is a subtype ofvariable C a circle whose radius is of the same length as the
ELLIPSE, then TUPLE { E CIRCLE, C COLOUR} semiaxes of E and whose center is the center of the ellipse
is a subtype of TUPLE { E ELLIPSE, C COLOUR }. assigned to E. Assume these two statements to be in effect.

Embracing this concept presented no significanf N comparison "E = C" is permitted in Model 1 and returns
false To provide for comparison to determine if the value of

inheritance presented no significant extra difficulty.
Tuple type inheritance.Because [3] embraces the

C really is the same ellipse (intuitively) as the value of E, we

® Incidentally, we are proposing to take the unusual step of changindiave to introduce a certain artifice, and TREAT_UP_ASs
the title, in this second edition, to "Foundation for Future Database
SystemsThe Third Manifesta

that artifice. For example, the following expression returns Value substitutability and static type checking are
true under the given circumstances: retained and, in fact, improved. In particular, statement (15)
_ 7 no longer has the effect of making (16) cause a run-time type
E = TREAT_UP_AS_ELLIPE (C) error, even though we retain the fact that update operators that

being equivalent to operate on variables of the supertype are not necessarily
_ inherited by variables of the subtype. Note that E is a variable

E = ELLIPSE (THE F\I; ((C(::))’ of type ELLIPSE, not a variable of type CIRCLE.
EC(C)’) At the present level of discussion, that is all that needs to
be said about Model 2. | hope, though, that the question
The expression immediately arises in the reader's mind as to why (on earth!),

in that case, we didn't go for Model 2 in the first place. The
answer, quite simply, is that we were given to believe it was
also returnstrue, but this latter expression might in othernot feasible. On reflectionye have changed our mirabout
circumstances result in a run-time type error, which th¢hat (and are at odds with [7]).
expression using TREAT_UP_AS_ELLIPSE is guaranteed not | now want to explain why we think Model 2 is, after all,
to. feasible, and why we believe such a model is not supported in
Now consider again statements (15) and (16). (15) i§QL:1999%¢t cetera
permitted in Model 1, as already explained as a consequence
of substitutability. (16), however, might well not be10. WHY MODEL 2 IS FEASIBLE
permitted, while (15) is in effect, though not exactly for thewe consider the feasibility of much of Model 2 to have been
reason given in [8]. For (16) to be permitted in Model 1, thealready demonstrated in implementations to date of SQL:1999
update operator defined for ellipses, that has the effegt cetera Take what is commonly known as "run-time
depicted in (16) as assignment to E.A (not, | hasten to add,binding", for example. It is true that we are slightly more
shorthand that we use in our examples in [3]), would have t@emanding in this respect, than are SQL:1898etera for we
be defined also for circles. Recall that subtypes do not ilo not accept the concept known as "the distinguished
general inherit update operators from their supertypeparameter" (i.e., binding based only on the most specific type
Without going into details, | will just say here thatof the first argument, or "the object to which the message is
TREAT_UP_AST again comes to the rescue here, but itent", as Smalltalk users would have it). Rather, we advocate
leads to the possibly surprising necessity to writthe approach of what we have seen referred to as
TREAT_UP_AS_ELLIPSE (E) as part of the target of an'multifunctions", requiring the matching of the most specific
assignment. In case the reader isn't immediately surprisagpes of all of the arguments to the declared types of
note that the declared type of E is ELLIPSE and yet weorresponding parameters. Early drafts of SQL:1999 had this
apparently have to tell the system that we wish its curreriéature, even though it was ultimately removed. | am reliably
value to be treated as an ellipse. What we are really sayingiiformed that at least one well known DBMS vendor has
that we wish it to be treated as an ellipse, indeed, but agready implemented it.
nothing more special than an ellipse, even if that current value Our concept of possible representations might at first
happens to be, for example, a circle. sight appear to be novel and require proof of feasibility.
We consider the necessity for TREAT_UP_ASIo be a SQL:1999et ceterarequire representation components to be
defect in Model 1. We also consider the effect of statememtherited, whereas [3] does not. However, we regard the
(14) in Model 1 to be a defect—the value being assigned to fepresentations in question in SQL:1960 ceteraas actual
here most definitelys a circle, which the system should be representations, rather than mere possible ones. Actual
able see as clearly as any human being can. We consider thaggresentation is an implementation issue, not a model issue.
defects to militate against acceptance of Model 1 as arhe implementer of our CIRCLE type is free to use an actual
agreeable model of type inheritance. It follows that we alsgepresentation having A and B components instead of the R
reject the type inheritance mechanisms defined in SQL:19%®mponent of our possrep, provided, of course, that the

TREAT_DOWN_AS_CIREL(E) =

et cetera prescribed consequences of the possrep are honored in the
implementation.
9. FEATURES OF MODEL 2 As for specialization by constraint, which we spurned in

Model 2 is effectively Model 1 plus specialization byModel 1 for fear of infeasibility, we now think this is no real
constraint. In gaining specialization by constraint it losegproblem. To implement it, we must be able to compute the

those features of Model 1 that we found obnoxious. most specific type of the result of evaluating an invocation of
The generic TREAT_UP_AJ operator has gone away a scalar selector, by examination of type constraints. Suppose,
altogether. for example, that type CIRCLE is defined thus (and here | am

giving an airing to syntax we are currently considering for

illustrative examples in our definition of Model 2):
" Actually, if it is possible that the value currently assigned to E is of
some proper subtype of ELLIPSE, TREAT_UP_AS_ELLIPSE would TYPETﬁIER%E :ESI:AI‘_”{DSEELLIP_SE CONSTRAINT
be needed on both comparands: TREAT_UP_AS_ELLIPSE (E) = (A () =
TREAT_UP_AS ELLIPSE (C).

THE_B (ELLIPSE)) } again statements (15) and (16), in the guise in which they

POSSRP { R LENGTH, C POINT } appear in the following Javafragment:
(We use the term ISA to appeal to the notion that every value Ellipse e ;
in the type being definets a value in the specified supertype. Circle c ;
The ISA specification is enclosed in braces to allow for (17) c = new Circl e (5,
multiple inheritance.) new Point (0 , 0)) ;
Now consider again statement (14): (18) e =c;
a (19) e. a=6;
(14) E := ELLIPSE (LENGT H (5),
LENGH (5), There is a subtle difference between on the one hand the pair
XY_POINT (0, 0) of statements (15) and (16) and on the other the pair of
) statements (18) and (19). This difference is crucially

Like every invocation of a read-only operator, the ex ressioirqnportant’ as | will now explain.
y yop ' P Consider (17), ostensibly an assignment of a value of type

on the right-hand side of the assignment operator in (14) h Ircle to a variable of that type. In fact, it is no such thing,

exactly one declared type, in this case ELLIPSE. The mos . . ’ .
y yp ndc is not a variable of typ€ircle ! In Java™ Ellipse

specific type of its result must be some subtype of ELLIPSE? X)
possibly ELLIPSE itself. andCircle would be what are calleteference types This

Our proposed method for determining the most specifif’®ans that (17) in fact assignsdmot a circle, but instead the
type of a valuer yielded by evaluation of an expressiefis as object identifier(oid) of a certaincircle object The Circle
follows. Consider the immediate subtypes of the declare@pject in question comes into existence as a side effect of the
type dt of e, taken in some arbitrary order. Tesfor each of given invocation ohew, which returns the oid of that object.
these subtypes in turn, to see if it satisfies the type constraint Now consider (18). The effect of this is to assigretthe
for that subtype. I satisfies none of these constraints, themid that is the current value af. As a result, we note that
its most specific type islt, otherwise, stop as soon as such andc are bothreferencing or, in jargon of long agopointing
subtypest is found and repeat the process for the immediatgt the same object. Also in jargon of long ago, we would say
subtypes obt that the object in question isshared variablgand so, for that

This algorithm does rely on an assumption that thenatter, is the object created by the invocatiome® Point
defining constraints are consistent with each other and Wi@]ven as the second argument to the invocationnefv
our model. For example, i satisfies the constraint for some cjrcle).
leaf typglt,_ then there is no other Igaf type whose .constraint IS |t's crunch time at last! The specified effect of (19) is to
a!sq satisfied by. Also, if v s_at|sf|es the constraints of two assign the length 6 to tteecomponent of the object pointed at
distinct typest1 and 12, then Its most specific type must be by the oid that is the current value ef If Java" were to
some subtype of thieast specific common subtypétl and S ; .

eimbrace specialization by constraint, then the most specific

t2. Letlscsbhe that common subtype. Then the constraint th .
i) . . ype of that object would now have to be recomputed, and the
defineslscsin terms oftl must be logically equivalent to the :)
system would discover that type to Hellipse . As a

one defining it in terms of2. We are currently considering he "circl iable” . bi
the possibility of allowing these constraints to be implied. Fofonsequence, _t € “circie variable now points to an 0 Ject
that is not a circle. This would have to be a run-time type

example:
P error, and a type error of the very worst kind—the kind against
TYPE SQUARE ISA { RECTANGLE, RHOMBUS } which an application has no self-defense. Note that it is not
POSSREP ... possible to predict the occurrence of such an error merely by
might be sufficient—the constraints IS_RHOMBusexamlnatlon of the text of the statement whose invocation

(RECTANGLE) and 1S _RECTANGLE (RHOMBUS) causes it. Note also that in an object-oriented database, that
where IS RHOMBUS and IS RECTANGLE are truth_vam'eo\/ariable,c, might be a persistent variable anywhere in some
operators implicitly defined for parallelograms in general, arérge and widely distributed database. Unable to defend
implied by the pairing of RHOMBUS and RECTANGLE in themselves against such situations, database applications could
the ISA specification. The meanings of IS_RHOMBUS and'© longer meet the commonly required standards of
IS_RECTANGLE are given by the type constraints that definEPbustnessgiven the possibility that such errors might arise.
RHOMBUS and RECTANGLE, respectively, in terms of And yetin Model 2 we propose to embrace specialization
PARALLELOGRAM. The reader can perhaps easily confirnPy constraint.

that this idea generalizes to the case where three or more OUr reason is simple. There is no concept of object
immediate supertypes are specified. identifier in our model. We have no pointers, no shared

variables. We did not omit these things in order to be able to
11. WHY MODEL 2 s NOT FEASIBLE IN embrace an agreeable model of type inheritance. We omitted
SQL:1999 ET CETERA them simply because we continue to hold to the wisdom

The reason is strongly indicated by the subtitle of this articleexpresseOI in [2]. The reason Codd gave for spurning pointers

"Object Identifiers and Inheritance Don't Mix!". Consider'h. h's Relational Model of Dz_ﬂa was just that pointers are
difficult to understand, confusing. He gave that reason at a

time when type inheritance was not even being thought aboi¥
(in a database context, at least). If Codd was right then, can
we not claim to be even more right now?

12. SUMMARY AND CONCLUSION 4l
I have described our motivation for formulating and proposing
a rigorous type theory, incorporating the concept of typ¢s]
inheritance. | have described in outline the process by which
we arrived at our first attempt, Model 1, published in [3] but
later deprecated. Specifically, | related our close study of [8](§]
"3 out of 4 rule” and our decision to follow others in favor of
rejecting specialization by constraint in favor of keeping value
substitutability, static type checking and mutability. 7

| have described Model 1 in outline and | have given ou¥
reasons for wanting to improve it. | have given notice of our
intention to publish Model 2, which we claim successfullyg]
does embrace specialization by constraint, without, after all,
sacrificing any of the other three desiderata. | have indicated
the respects in which Model 2 will differ from Model 1 and
with what favorable consequences.

We contend that, unlike Model 1 and the model(s) of
SQL:1999, ODMG and Java™, Model 2 is agreeable
model, in that it conforms to normal human intuition about
categorization of objects into types.

We have shown that Model 2 would be broken if the
object identifier concept and its consequences were added
that model. We have recalled that object identifiers, being
pointers of a kind, were shunned by Codd in his Relationa
Model of Data for reasons, not connected with type theory
that we still find to be sufficient reason for shunning them.
We claim that because SQL:1999, ODMG and Java™ d
support object identifiers, they cannot support an agreeab
model of type inheritance, such as Model 2.

We conclude:

C.J. Date and Hugh Darwen: "Foundation for
Object/Relational Databases: The Third Manifesto".
Reading, Mass.: Addison-Wesley (1998). (AY2
edition is to appear in 2000).

James Gosling, Bill Joy, Guy Steele: "The Java
Language Specification". Reading, Mass.: Addison-
Wesley (1996).

International Organization for Standardization (ISO):
Database Language SQL Document ISO/IEC
9075:1992.

Jim Melton (ed.): "ISO Final Draft International
Standard (FDIS) Database Language SQL — Part
2:Foundation (SQL/Foundation)" ISO/IEC FDIS
9075-2:1999.

James Rumbaugh: "A Matter of Intent: How to Define
Superclasses”, Journal of Object-Oriented
Programming(September 1996).

Stanley B. Zdonik and David Maier: "Fundamentals of
Object-Oriented Databases", in Stanley B. Zdonik and
David Maier: Readings in Object-Oriented Database
Systems. San Francisco, Calif.: Morgan Kauffman
(1990).

Hugh Darwen is a database specialist
working in Warwick, England for
IBM United Kingdom Limited, for
whom he has been involved in
software development since 1967. He
has been active in the relational
database arena since 1978, from which
date until 1982 he was one of the chief
architects and developers of an IBM
relational product called Business

System 12—a DBMS that faithfully embraced the principles of

1. that the "3 out of 4" rule might more appropriatelythe relational model. His writings include notable contributions
be replaced by a "4 out of 5" rule, with object!0 Date’s Relational Database Writingsseries tS\Adq{son-
identifiers as the fifth desideratum in the list fromVesley, 1990, 1992/ Guide to the SQL Standad " edition,
which any four but not all five can be chosen; Addison-Wesley, 1997), anBoundation for Object/Relational

2. thatour choice was effectively made for us in 1970; Databases: The Third Manifes{@\ddison-Wesley, 1998). He

3. that if atruly relational database language were to b82S been an active participant in the development of SQL
devised and implemented, then that would be alternational standards since 1988. One of his current special

opportunity for implementation of a well-defined andinterests is in temporal databases. In his spare time he is a
agreeable model of type inheritance. consultant to database course developers at the Open
University, from whom he recently received the honorary

degree of Master of the University, and he is a tutor to students

ACKNOWLEDGMENTS

on these courses. He is a visiting lecturer at several other

My thanks go toTom Pledger of Peace Software, New piqp universities, one of whom, Wolverhampton University,

Zealand, for his careful review and suggestions. Likewise

1998, awarded him the honorary degree of Doctor of

my coauthor, friend and fellow wanderer in RelationlandTechnology. E-mail: Hugh_Darwen@uk.ibm.com.

Chris Date.

REFERENCES

[1] R.G.G. Cattell and Douglas K. Barry (eds.The
Object Database Standard: ODMG 2.0 San
Francisco, Calif.: Morgan Kauffman (1997).

[2] E.F. Codd: "A Relational Model of Data for Large
Shared Data Banks'CACM 13 No. 6 (June 1970).
Republished in "Milestones of ResearciCACM 26
No. 1 (January 1982).

