
Inheritance Hierarchies and View Hierarchies

|Position Paper|

Werner Nutt

Department of Computing and Electrical Engineering
Heriot-Watt University, Edinburgh EH14 4AS

nutt@cee.hw.ac.uk

1 Introduction

In many areas of computing, such as programming languages, databases, con-
ceptual modeling, and knowledge representation we encounter formalisms that
allow one to group objects into classes and to organize the classes into hierar-
chies. The intuitive understanding is that classes further down in the hierarchy
are subsets of the classes further up. The following are examples for such class
hierarchies.

Programming Languages: data types in a subtype/supertype relationship
(e.g., positive integers as a subtype of integers, or nonempty lists as a subtype
of all lists) and classes in object oriented programming;

Databases: queries contained in other queries (e.g., the set of employees with
a salary above GBP 30,000 contained in the set of employees with a salary
above GBP 20,000) and classes in object-oriented databases;

Conceptual Modeling: entity sets in ER-modeling or classes in object-oriented
modeling related to each other by is-a relationships;

Knowledge Representation: frames or \concepts" in description logics with
is-a relationships.

We argue that, in spite of the apparent similarity of all these formalisms, there
are two essentially di�erent ways in which such class hierarchies are employed
(see also [BDNS98]).

1.1 Class Hierarchies for Inheritance

One way is to use the hierarchy as a structure along which to organize inher-
itance, for instance of class attributes, methods, or frame slots. The goal is to
avoid duplication of code and thus to create more abstract and modular soft-
ware. Examples for this �rst kind of usage are class hierarchies in object-oriented
(oo) programming languages or oo databases, hierarchies in conceptual model-
ing and is-a relationships between so-called \primitive" frames and concepts in
knowledge representation.

1.2 Hierarchies of Classes De�ned as Views

The second kind of usage is to start with some primitive classes and there prop-
erties and then to specialize them to yield new classes by imposing constraints
upon the elements of the primitive classes. An example would be to de�ne,
based on the primitive class \employee," the class of \well-paid employees" by
constraining the attribute salary to values � 30; 000. This approach is similar
to de�ning a new relation as a view on top of base relations. Among the reasons
for introducing such classes are all the classical ones for introducing views in
relational databases.

Once a collection of such view classes is de�ned, it is natural to ask whether
the de�nition of one class, say C1, is more general than the de�nition of another
one, say C2. For instance, if the class of \medium-paid employees" were de�ned
by imposing the constraint salary � 20; 000 on employees, this de�nition would
be more general than the one of \well-paid employees." Whenever the primitive
classes are populated by objects, the view class C1, due to its more general
de�nition, will be a superset of the view class C2. The more general/less general
relationship based on de�nitions has been studied in several areas of computer
science, most notably in databases, where it is called containment [CM77], and
in description logics, a branch of knowledge representation, where it is called
subsumption [DLNS96]. A major motivation behind this work is that knowledge
about containment and subsumption can be exploited to optimize the execution
of queries.

Clearly, what cannot be achieved by introducing views is inheritance of prop-
erties. Here, the superclass/subclass relationship is a consequence of the proper-
ties of classes. In the case of inheritance, it is a precondition.

In the rest of the paper, we illustrate the di�erences between the two kinds
using class hierarchies by way of examples from the area of programming. We
will argue that specialization by constraint does not support inheritance and
discuss diÆculties in updating instances of view classes.

2 Class Hierarchies and Inheritance in Programming

A premier motivation for introducing class hierarchies in programming is to
support the writing of more abstract and therefore more easily reusable code.

Suppose we have the class of objects of type person, where every person
has an attribute dob for their date of birth. For such persons we can write a
method age that computes their current age from their dob and the actual date.
In an application, there may be many person objects around, e.g., employees,
managers, and customers. If they have a dob, we can apply our method age to
them as well.

How can we �nd out whether they have a dob? One way would be to look
up their de�nition: whenever there is an attribute dob, we happily compute the
age using age. However, what if there is a class gradStudent with an attribute

dob standing for the date at which they graduated with their Bachelor's degree?
Obviously, it makes little sense to apply the age method to this class.

The approach in programming is therefore not to decide subclass relation-
ships according to the properties by which classes are de�ned, but, conversely,
to postulate subclass relationships and to let the subclasses inherit properties
(and methods) from their superclasses.

This is in principle a simple and straightforward mechanism. DiÆculties arise
only if the subtype relationship becomes complex, or if the inheritance is com-
plicated. For instance, if a class is the direct subclass of two classes, and the two
classes have two methods with the same name, then it is not clear a priori which
of the two methods is to be inherited, and a protocol for multiple inheritance
is needed. In other situations, a programmer may even want to preempt the
inheritance of a certain attribute or method.

3 Specialization by Constraint

Subclasses inherit from superclasses, e.g., in a natural company hierarchy, man-
ager inherits from employee and employee from person.

This makes sense intuitively, since every manager is an employee and every
employee is a person. Still, if we assume that manager objects have additional
slots, e.g., the departments they manage, manager objects are not exactly like
other employee objects, since they di�er in structure.

Orthogonally to managers, we may want to introduce the class of senior
employees, which are employees that are at least 50 years old. Di�erently from
managers, no additional assertion is needed for an employee object to become
a senior employee. All we need to do is to apply the age method and check the
value. Also di�erently from managers, the fact that an employee object is senior
does not entail that it inherits attributes or methods.

Let us consider another example, which has been suggested by Hugh Darwen.
An ellipse has two axes with two lengths. For the sake of simplicity we assume
that we only consider ellipses with axes parallel to the x- and y-axes of the plane,
centered at the origin. (In the general case, we would also need a pair of numbers
to describe the center of the ellipse and an angle to describe the orientation of
the ellipse in the plane.) We can model such ellipses by a class ellipse, which
has two real-valued attributes, say xlength, ylength.

A circle can be seen as a special ellipse where both axes have the same length.
If we are able to de�ne classes by constraints, we can introduce the class circle
as the set of all ellipses that satisfy the constraint

xlength = ylength: (1)

For a circle, it does not make sense to distinguish between two axes. A circle
only has a radius. We therefore would like to suppress the attributes xlength
and ylength and to replace them with a new attribute radius. Di�erently from
the two length attributes of an ellipse, which are the data that constitutes an
ellipse, radius would have to be de�ned in terms of xlength and ylength,

because the radius is derived from the length of the axes. One of the several
possible de�nitions would be radius := xlength.

Now, suppose we have one ellipse object e101 with e101:xlength = 5
and e101:ylength = 5. Then, via specialization by constraint, e101 is also an
instance of circle.

We want to discuss what should be the e�ect of updating e101. We consider
two cases.

{ Updating a length of the ellipse:

e101:xlength := 10: (2)

Then e101 doesn't satisfy any more the constraint de�ning circles, and con-
sequently, e101 fails to be a circle.

{ Updating the radius:

e101:radius := 10: (3)

Here, the question is how to understand the update. If we understand radius
as something like a method, then the update doesn't make sense and has to
be rejected.
If we understand radius as an alias for the attribute xlength, then (3) is
equivalent to (2). Under this interpretation, however, the strange e�ect of
updating the radius of a circle would be that the circle ceases to be a circle.
Alternatively, we may require that updating an ellipse as a circle maintains
the properties that turn it into a circle. Since the de�nition of a circle is un-
usually simple, there is an easy way out. If we update the attribute xlength,
then taking into account the de�ning constraint xlength = ylength, we
have to apply the same update to ylength, so that (3) is equivalent to

e101:xlength := 10

e101:ylength := 10:

The result is again a circle.

In a more general setting, we may allow to update an object in a view class
only, if that update translates unambiguously into an update of the underlying
primitive class. Clearly, whether this is possible or not depends on how the view
class has been de�ned. The question, under which conditions and in which ways
objects in views can be modi�ed has been investigated under the heading of the
\view update problem" [FGM96].

4 Conclusion

Whether a system should support prede�ned class hierarchies or hierarchies com-
puted according to the de�nition of classes (or both) depends on the purpose to
be served.

We have argued, that the main purpose for prede�ned hierarchies is to allow
for inheritance of properties and thus to facilitate better software design. Com-
puted hierarchies occur when classes are de�ned as views. Knowledge about such
a hierarchy can be used to optimize query execution or, more generally, search.

Finding out the hierarchy between classes induced by their de�nition is con-
siderably more diÆcult than keeping track of explicitly given subclass/superclass
relationships. Obviously, if arbitrary relational queries were allowed in de�ni-
tions, then the relationship is undecidable because of the undecidability of en-
tailment in �rst order predicate calculus. If only select-project-join queries are
allowed, then entailment would still be NP-hard. Thus, a language for de�ning
class hierarchies that is both expressive and where computation of hierarchies is
feasible, requires a careful design.

References

[BDNS98] M. Buchheit, F.M. Donini, W. Nutt, and A. Schaerf. A re�ned architec-
ture for terminological systems: Terminology = Schema + Views. Arti�cial
Intelligence, 99(2):209{260, 1998.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive
queries in relational databases. In Proc. 9th Annual ACM Symposium on

Theory of Computing, 1977.
[DLNS96] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in descrip-

tion logics. In G. Brewka, editor, Principles of Knowledge Representation

and Reasoning, Studies in Logic, Language and Information, pages 193{238.
CLSI Publications, 1996.

[FGM96] Jose Alberto Fernandez, John Grant, and Jack Minker. Model theoretic
approach to view updates in deductive databases. J. Automated Reasoning,
17(2):171{197, 1996.

