
Survey of Agent Based Modelling
and Simulation Tools

RJ Allan

October 2010

 Technical Report
DL-TR-2010-007

©2010 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Chadwick Library
Science and Technology Facilities Council
Daresbury Laboratory
Daresbury Science and Innovation Campus
Warrington
WA4 4AD

Tel: +44(0)1925 603397
Fax: +44(0)1925 603779
email: library@dl.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk/

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:library@dl.ac.uk
http://epubs.cclrc.ac.uk/

Survey of Agent Based Modelling and Simulation Tools

Rob Allan
Computational Science and Engineering Department,

STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD

Contact e-Mail: robert.allan@stfc.ac.uk

October 7, 2010

Abstract

Agent Based Modelling and Simulation is a computationally demanding technique having its
origins in discrete event simulation, genetic algorithms and cellular automata. It is a powerful
technique for simulating dynamic complex systems and observing “emergent” behaviour.

There is currently a lot of interest in developing ABMs as a general computational technique
applicable to the study of large scale systems. ABMs has been adapted to run on novel architectures
such as GPGPU, e.g. nVidia hardware using the CUDA programming language. Argonne National
Laboratory have a Web site on Exascale ABMs and have run models on the IBM BlueGene with
funding from the SciDAC Programme.

The most common uses of ABMs are in social simulation and optimisation problems, such as
crowd behaviour, urban simulation, traffic flow and supply chains. We will investigate other uses
in computational science, particularly in engineering and systems biology.

c© Science and Technology Facilities Council 2008-10. Neither the Council nor the Laboratory
accept any responsibility for loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or investigations.

i

mailto:robert.allan@stfc.ac.uk
robert.allan@stfc.ac.uk

CONTENTS ii

Contents

1 Introduction 1

1.1 Terminology . 1

1.2 Comments on Object Oriented Modelling . 2

1.3 Petri Net Representation . 3

1.4 Comments on Random Number Generation . 5

2 ABMS Software Packages 5

2.1 AgentSheets . 6

2.2 AndroMeta . 6

2.3 AnyLogic . 7

2.4 Ascape . 7

2.5 Breve . 8

2.6 Cormas . 8

2.7 DEVS: Discrete Event System Specification . 8

2.8 EcoLab . 8

2.9 FLAME: FLexible Agent Modelling Environment . 9

2.10 JAS: Java Agent Based Simulation Library . 10

2.11 LSD: Laboratory for Simulation Development . 11

2.12 MAML: Multi-Agent Modelling Language . 11

2.13 MATSim . 12

2.14 MASON: Multi-Agent Simulation of Neighbourhoods 12

2.15 MASS: Multi-Agent Simulation Suite . 12

2.16 MetaABM . 13

2.17 MIMOSE . 13

2.18 MobiDyc: Modélisation Basée sur les Individus pour la Dynamique des Communautés 14

2.19 Modelling4all . 14

CONTENTS iii

2.20 NetLogo . 14

2.21 Open StarLogo . 15

2.22 RePast: Recursive Porous Agent Simulation Toolkit 15

2.23 Repast Simphony . 15

2.24 SimPack . 16

2.25 SimPy . 17

2.26 SOARS: Spot Oriented Agent Role Simulator . 17

2.27 StarLogo . 17

2.28 SugarScape . 18

2.29 Swarm . 18

2.30 VisualBots . 20

2.31 Xholon . 20

3 Other Multi-Agent Systems 20

3.1 A-globe . 21

3.2 ABLE: Agent Building and Learning Environment . 21

3.3 Cougaar: Cognitive Agent Architecture . 21

3.4 FIPA: Foundation for Physical Intelligent Agents . 21

3.5 JADE: Java Agent Development Framework . 22

3.6 Jason . 22

3.7 MadKit . 23

3.8 MAGSY . 23

3.9 MASIF . 23

3.10 SDML: Strictly Declarative Modelling Language . 23

3.11 SeSAm: Shell for Simulated Agent Systems . 24

3.12 SimAgent . 24

3.13 Zeus . 24

CONTENTS iv

4 ABMS Applications 25

4.1 Biology and Medicine . 27

4.2 Physics and Chemistry . 30

4.3 Security . 30

4.4 Cyber Security . 31

4.5 The Environment . 31

4.6 Social and Economic Modelling . 31

4.7 Supply Network and Transport Optimisation . 32

5 ABMS on HPC 32

5.1 HPC Clusters . 33

5.2 BlueGene . 33

5.3 GPGPU . 33

5.4 Cell . 34

6 ABMS Community and Research 34

6.1 Future Research Challenges . 35

1 INTRODUCTION 1

1 Introduction

Agent based modelling and simulation can be accomplished by using a desktop computer, comput-
ing clusters, or clusters on computational Grids depending on the number of interacting agents and
complexity of the model. Typically, desktop agent based models do not scale to what is required for
extremely large applications in the study of realistic complex systems. Argonne’s exascale computing
programme is for instance working to make this possible.

Agent based modelling packages which do anything beyond trial examples also tend to be hard for a
novice to understand. This is partly because the frameworks and (mostly object oriented) languages
are complicated and, in many cases, the packages do not have simple APIs, GUIs or IDEs and partly
because each has its own non-intuitive terminology. This is especially true if one is not accustomed
to thinking in terms of individual interacting agents (objects) being part of a complex system – a
systems based approach.

An introduction to Agent Based Modelling is given on Scholarpedia: http://www.scholarpedia.
org/article/Agent_based_modeling. For a long list of related software, some highly specialised,
see Leigh Tesfatsion’s Web site http://www.econ.iastate.edu/tesfatsi/acecode.htm. An even
longer list of references was compiled by the AgentLink EU project, http://eprints.agentlink.
org/view/type/software.html. We have chosen the ones we currently believe to be of partic-
ular relevance to scientific modelling and simulation. A review of eight ABMs packages relevant
for geo-spatial analysis is presented here http://www.spatialanalysisonline.com/output/html/
Simulationmodellingsmsystemsforagent-basedmodelling.html. There is another list here http:
//www.idsia.ch/~andrea/sim/simagent.html.

Basic documentation for most of the packages reviewed is largely incomplete. As an example, the
Swarm community have a Web site and Wiki which contains a lot of information but is hard to
navigate. The Repast development programme is tremendously productive and helpful to the scientific
community and none of these problems are severe, but tidying up and fully documenting all the
packages in their current form would be useful. Our experience has shown that, to make matters
worse, the packages do not all install in a straightforward way and not all the test cases could be
made to work, for instance StupidModel in EcoLab would not execute all cases at the time we tried
it. Model data from one version may not work in a later version. They may also use obscure object
oriented programming constructs which may push them closer to computer science research than to
actual computational science modelling tools.

There are indeed a number of challenges which must be faced in order to make ABMs a mainstream
computational science technology. These are described in Section 6.

1.1 Terminology

The following table taken from [55] shows terminology differences among the most popular platforms.

http://www.scholarpedia.org/article/Agent_based_modeling
http://www.scholarpedia.org/article/Agent_based_modeling
http://www.scholarpedia.org/article/Agent_based_modeling
http://www.scholarpedia.org/article/Agent_based_modeling
http://www.econ.iastate.edu/tesfatsi/acecode.htm
http://www.econ.iastate.edu/tesfatsi/acecode.htm
http://eprints.agentlink.org/view/type/software.html
http://eprints.agentlink.org/view/type/software.html
http://eprints.agentlink.org/view/type/software.html
http://eprints.agentlink.org/view/type/software.html
http://www.spatialanalysisonline.com/output/html/Simulationmodellingsmsystemsforagent-basedmodelling.html
http://www.spatialanalysisonline.com/output/html/Simulationmodellingsmsystemsforagent-basedmodelling.html
http://www.spatialanalysisonline.com/output/html/Simulationmodellingsmsystemsforagent-basedmodelling.html
http://www.spatialanalysisonline.com/output/html/Simulationmodellingsmsystemsforagent-basedmodelling.html
http://www.idsia.ch/~andrea/sim/simagent.html
http://www.idsia.ch/~andrea/sim/simagent.html
http://www.idsia.ch/~andrea/sim/simagent.html
http://www.idsia.ch/~andrea/sim/simagent.html

1 INTRODUCTION 2

Concept/ Term MASON NetLogo Repast Swarm
Object that builds and controls
simulation objects

model observer model modelswarm

Object that builds and controls
screen graphics

model withUI interface (none) observer swarm

Object that represents space and
agent locations

field world space space

Graphical display of spatial in-
formation

portrayal view display display

User-opened display of an agent’s
state

inspector monitor probe probe display

An agent behaviour or event to
be executed

steppable procedure action action

Queue of events executed repeat-
edly

schedule forever procedure schedule schedule

Another use of terminology is extremely confusing. There is a fine line between agent based simulation
and modelling (AMBS) and multi-agent systems (MAS). The former are used to simulate complex
systems such as social networks and biology which exhibit emergent behaviours. The latter can also be
used to simulate complex environments, such as supply chains. These could be referred to as “smart”
applications and components are called “intelligent agents”. We attempt to distinguish beteen the
two and, whilst this report focusses on the former and appropriate packages are identified in Section 2,
we have included some packages from the latter category in Section 3.

1.2 Comments on Object Oriented Modelling

Object Orientated Programming (OOP) is widely adopted as the most common paradigm for ABM
frameworks. OOP offers a natural and simple technique for modelling which is easily understood by
software engineers who are familiar with object orientated design patterns. Agents can be considered
to be self directed objects with the capability of choosing actions autonomously based on their en-
vironment. It is natural to use classes and methods to represent agents and agent behaviours. The
majority of popular ABM frameworks are therefore based on OO principles, some even use concepts
such as UML for high level agent and system specification. Some are accessible through an Application
Programming Interface (or API) and application layer. The API then provides a tool for building
and describing models, whilst the application framework implements common routines such as agent
communication and scheduling of agent behaviour and interactions.

C.R. Shalizi [67] comments that Fundamentally, I’m not sure that agent based modeling amounts to
anything other than object oriented programming for dis-aggregated simulations – which is a very useful
thing, of course.

Peter McBurney on 18/3/2007 noted: While object oriented programming techniques can be used
to design and build sofware agent systems, the technologies are fundamentally different. Software
objects are encapsulated (and usually named) pieces of software code. Software agents are software
objects with, additionally, some degree of control over their own state and their own execution. Thus,
software objects are fixed, always execute when invoked, always execute as predicted, and have static
relationships with one another. Software agents are dynamic, are requested (not invoked), may not

1 INTRODUCTION 3

necessarily execute when requested, may not execute as predicted, and may not have fixed relationships
with one another. See also the AgentLink Roadmap [35].

In a presentation at the Leeds workshop on 15/6/2010, Salem Adra provided some more definitions.
He first noted a comment from a paper by Jennings et al. [28] object oriented programmers often fail to
see anything novel or new in the idea of agents. ... While there are obvious similarities, there are also
significant differences between agents and objects. Note however that this paper is really discussing
multi-agent systems (MAS) for smart distributed applications rather than ABMS.

He went on to illustrate this as follows. First from the evoluation of programming approaches, after [47,
52].

Monolithic Pro-
gramming

Modular Pro-
gramming

Object Oriented
Programming

Agent Program-
ming

Unit Behaviour Non-modular Modular Modular Modular
Unit State External External Internal Internal
Unit Invocation External External (called) External (mes-

sage)
Internal (rules,
goals)

Secondly showing the main differences between objects and agents. The latter are characterised by
autonomy and flexibility.

Objects Agents
Behaviour controlled by external entities Self goverened (rules and goals)
Always says “yes” (“no” is an error) Allowed to say “no”
Predictable behaviour (static functionality
which facilitates inheritance)

Un-predictable. Behaves differently in different
scenarios (can learn from experience and evolve)

By contrast, FLAME (see Section 2.9) adopts the use of a formal technique for model specification
called the X-Machine [13]. Formal methods are advantageous as they provide a technique for both
specification and validation. Whilst formal specification is useful in the generation of system imple-
mentations, validation is invaluable as it allows automatic verification and error checking of systems. In
the case of high integrity or mission critical systems the guarantee of reliability and correct behaviour
is not only advantageous, but essential.

1.3 Petri Net Representation

There is some discussion that ABMs can be represented as Petri Nets. For a definition of the latter
see Wikipedia: http://en.wikipedia.org/wiki/Petri_net. Petri nets are particularly good for
describing finite state machines, see http://en.wikipedia.org/wiki/Finite-state_machine.

This is particularly clear in FLAME with its state graph output showing states and transitions in
each agent cycle. Figure 1 is the full state net for the Keratinocyte model encoded using FLAME by
Sun, McMinn et al. [71]. Transitions are shown by labels on the arrows and cell states (“places” in
the usual Petri net vocabulary) are shown as circles.

http://en.wikipedia.org/wiki/Petri_net
http://en.wikipedia.org/wiki/Petri_net
http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Finite-state_machine

1 INTRODUCTION 4

Figure 1: Petri Net like Representation of Keratinocyte Cell Cycle.

2 ABMS SOFTWARE PACKAGES 5

1.4 Comments on Random Number Generation

Most of the packages use the “Mersenne twister” random number generator [40] and optionally allow
users to provide their own seed so the sequence of pseudo-random numbers can be repeated. Swarm
includes a variety of alternative generators.

We note that for parallel random number generation great care must be excercised. We have previously
used Marsaglia’s uniform random number generator [39] which is available coded in a number of
languages. We have included this in the FLAME models that have been evaluated.

2 ABMS Software Packages

This section outlines some existing packages and gives their status. Input is taken from information
found on-line plus some personal experiences.

Most of the commonly used ABM platforms follow the “framework and library” paradigm, providing
a framework, a set of standard concepts for designing and describing ABMs, along with a library of
software implementing the framework and providing simulation tools. The first of these was Swarm,
the libraries of which were written in Objective-C. Java Swarm is a set of simple Java classes that allow
use of Swarm’s Objective-C library from Java. Repast started as a Java implementation of Swarm but
has since diverged significantly from Swarm. More recently, MASON has been developed as a new
Java platform and EcoLab as a C++ platform. Others like metaABM aim to provide a meta-level
visual design studio for agent based modelling.

These platforms have succeeded to a large extent because they provide standardised software designs
and tools without limiting the kind or complexity of models that can be implemented, but they also
have well known limitations. A recent review of Java Swarm and Repast (along with two less used
platforms) ranked them numerically according to well defined criteria [72]. Criteria were evaluated
from documentation and other information about each platform. The review indicated important
weaknesses including: difficulty of use; insufficient tools for building models, especially tools for rep-
resenting space; insufficient tools for executing and observing simulation experiments; and a lack of
tools for documenting and communicating software.

The review by Railsback et al. [55] lists five ABMS platforms: Mason, NetLogo, Repast and Swarm
in its Objective-C and Java flavours. They included NetLogo, despite the fact that it is not open
source, because it has been used for some significant models in addition to its purpose as a teaching
tool. Their conclusions were based on the outcome of implementing a series of models in each package,
thus from the user rather than the developer perspective. This work effectively sets a benchmark for
ABMS packages based on 16 flavours of what the authors called StupidModel, see http://condor.
depaul.edu/~slytinen/abm/StupidModel.

We have added some information found in previous on-line reviews and outcomes of practical expe-
rience. The rest of this section simply comments on a number of existing packages in alphabetical
order.

http://condor.depaul.edu/~slytinen/abm/StupidModel
http://condor.depaul.edu/~slytinen/abm/StupidModel
http://condor.depaul.edu/~slytinen/abm/StupidModel
http://condor.depaul.edu/~slytinen/abm/StupidModel

2 ABMS SOFTWARE PACKAGES 6

2.1 AgentSheets

AgentSheets is a proprietary ABMS tool which is based on a spreadsheet approach. Instead of the
cells of the spreadsheet mesh being occupied by numbers they are instead occupied by agents. The
simulations then take place on the mesh on which the agents live.

AgentSheets is specifically aimed at non-programmers and as a consequence it is very simple to use.
It has been used for teaching in social studies, mathematics, sciences and social sciences. It uses a
visual programming paradigm so that there is no text based coding and all development is done via
a graphical interface, dragging and dropping elements from tool boxes, etc. Agents are created in a
window called a “gallery” and have an associated behaviour specified by sets of rules (called methods)
and events. Indeed, the ease of use of AgentSheets is its greatest advantage.

The fact that AgentSheets is intuitively easy to understand makes it very quick to develop simple
simulations. For this reason, it is widely used for teaching the principles of simulation. However,
once the simulation models become more sophisticated, the weaknesses are apparent. With regard to
simulation in the social sciences, two particular limitations of AgentSheets may cause problems: an
agent cannot send information to another agent (this would be problematic if we wanted to model
the communication of information between human agents in a simulation); an agent cannot change
the attribute of another agent (this could be problematic if we wanted to model a situation were
one human influences another human). There may be ways to work around these problems, but if
such situations are met frequently in simulations, it would make AgentSheets too complicated and
inefficient to use. In addition, there is no “long distance” vision making it impossible to examine the
status of an agent elsewhere on the mesh. AgentSheets-3 now runs on both Mac and Windows and
has introduced the “Conversational Programming” environment.

In addition to its ease of use the other main advantage is that AgentSheets very easily generates Java
Applets and Beans which allow the simulation models to be run interactively through a Web browser.

A number of demonstration models and games are available from the AgentSheets Web site along with
the source code although the applications appear to be limited, see http://www.agentsheets.com.

2.2 AndroMeta

AndroMeta, formerly DeX, Dynamic Experimentation Toolkit, is an object oriented C++ framework
for developing, analysing and visualising dynamic agent based and multi-body simulations. DeX is
a discrete event simulation system built on top of a high performance simulation engine designed
to handle a large number of entities with high levels of event communication. DeX includes tools
for batch execution, optimisation, distributed job execution, GUI controls and real time plotting
and 3D visualisation using OpenGL. AndroMeta also includes a high level meta-modelling language
interface. The software is available for free download and runs under Linux and Mac OS, see http:
//dextk.org/dex which now re-directs to http://andrometa.net since 2009.

http://www.agentsheets.com
http://www.agentsheets.com
http://dextk.org/dex
http://dextk.org/dex
http://dextk.org/dex
http://dextk.org/dex
http://andrometa.net
http://andrometa.net

2 ABMS SOFTWARE PACKAGES 7

2.3 AnyLogic

AnyLogic-6.5 is a proprietary offering that incorporates a range of functionality (discrete event, system
dynamics and agent based) for the development of agent based models. For example, models can
dynamically read and write data to spreadsheets or databases during a simulation run, as well as
charting model output dynamically. Furthermore, external programs can be initiated from within
an AnyLogic model for dynamic communication of information, and vice versa. AnyLogic models
can only be created on Microsoft operating systems, although a simulation can be run on any Java
enabled operating system once compiled. The AnyLogic Web site http://www.xjtek.com shows
many examples of models that have been developed for a diverse range of applications including: the
study of social, urban and ecosystem dynamics (e.g. a predator prey system); planning of healthcare
schemes (e.g. the impact of safe syringe usage on HIV diffusion); computer and telecommunication
networks (e.g. the placement of cellular phone base stations); the location of emergency services and
call centres; and pedestrian dynamics. There are also on-line video tutorials. However, the source
code of these examples and/ or documentation of these models is not available.

2.4 Ascape

Ascape is a framework for developing and analysing agent based models which was developed by Miles
Parker of the Brookings Institute Center on Social and Economics Dynamics where the well known
SugarScape model was also developed.

Ascape follows some of the ideas behind Swarm, e.g. agents existing within scapes which can them-
selves be treated as an agent. However, it is somewhat easier to develop models with Ascape than with
Swarm. Indeed, it is intended to allow people with only a little programming experience to develop
quite complex simulations by providing a range of end user tools, e.g. facilities to gather statistics of
the running simulation, tools for creating graphs, etc.

Ascape is implemented in Java and developers of simulation models in Ascape would require some
ability to program in Java together with understanding of the object orientation philosophy. For
practical development, it would be useful to download and use a JDK. In addition, models which have
been developed can be published on the Web and there is also a facility within Ascape (a “camera
button”) to create movies of running models.

In terms of Ascape’s applicability to simulation in the social sciences, there would be no problem with
implementing quite complex social mechanisms. Like Swarm, the only restriction would be finding a
programmer with sufficient skills to code the model.

The current version is Ascape-5. In terms of background support, there is a mailing list, but little
written user documentation. See http://ascape.sourceforge.net and http://www.brook.edu/
es/dynamics/models/ascape. Whilst some biological and anthropological models are available, the
majority of models seem to be concerned with economic and market modelling.

http://www.xjtek.com
http://www.xjtek.com
http://ascape.sourceforge.net
http://ascape.sourceforge.net
http://www.brook.edu/es/dynamics/models/ascape
http://www.brook.edu/es/dynamics/models/ascape
http://www.brook.edu/es/dynamics/models/ascape
http://www.brook.edu/es/dynamics/models/ascape

2 ABMS SOFTWARE PACKAGES 8

2.5 Breve

Breve-2.7.2 is a free software package used as a teaching tool that provides a 3D environment for the
simulation of de-centralised systems and artificial life. Users define the behaviours of agents in a 3D
world and observe how they interact. Breve includes a Python based scripting language, physical
simulation and collision detection for the simulation of realistic “creatures”, and an OpenGL display
engine so that users can visualise their simulated worlds. It is available for Mac, Linux, and Windows
platforms. See http://www.spiderland.org.

2.6 Cormas

Cormas is a simulation platform based on the VisualWorks programming environment which allows
the development of applications in the Smalltalk object oriented language. Cormas pre-defined entities
are represented as Smalltalk generic classes from which, by specialisation and refinement, users can
create specific entities for their own model. See http://cormas.cirad.fr.

Cormas has mostly been applied to management of natural resources, namely studying the interaction
of human societies with the Earth’s eco-system.

The development team are also working on a new generation of meta-modelling and simulation plat-
form, Mimosa, that will provide the means to specify any kind of modelling and simulation formalisms
and to compose and run any models written in these formalism. This is not the same as the MIMOSE
project described below.

2.7 DEVS: Discrete Event System Specification

DEVS is a formalism from B.P. Zeigler of the Arizona Center for Integrative Modeling and Simulation.
It is claimed (http://en.wikipedia.org/wiki/DEVS) that DEVS is an extension of the Moore finite
state machine. A number of tools from various authors have been designed using DEVS. See also
http://www.acims.arizona.edu/SOFTWARE/software.shtml. The DEVS formalism and its varia-
tions have been used in many application of engineering, such as hardware design, hardware and
software co-design, communications systems, manufacturing systems and science such as biology and
sociology. The latest software package is CoSMoS which includes several previous applications as
components (requires Java JDK-1.5.

2.8 EcoLab

EcoLab is an object oriented simulation environment that implements an experiment oriented metaphor.
It provides a series of instruments that can be coupled together with the user’s model, written in C++,
at run time in order to visualise the model, as well as support for distributing agents over an arbitrary
topology graph, partitioned over multiple processors plus checkpoint and restart support. EcoLab was
originally developed to simulate a particular model – the EcoLab model of an abstract ecology. How-
ever, several other quite different models have been implemented using the software, demonstrating
its general purpose nature.

http://www.spiderland.org
http://www.spiderland.org
http://cormas.cirad.fr
http://cormas.cirad.fr
http://en.wikipedia.org/wiki/DEVS
http://en.wikipedia.org/wiki/DEVS
http://www.acims.arizona.edu/SOFTWARE/software.shtml
http://www.acims.arizona.edu/SOFTWARE/software.shtml

2 ABMS SOFTWARE PACKAGES 9

EcoLab is written and maintained by Russell Standish at University of Sydney, Australia, see http:
//ecolab.sourceforge.net. It is Swarm-like, but entirely written in C++ rather than Objective-C.
There are documented conversions between the two languages. The computation is invoked from a
TCL script and can be run in parallel on systems supporting MPI.

Two powerful components of the EcoLab programming system are ClassDesc and GraphCode.

ClassDesc

The basic concept behind ClassDesc is the ability to know rather arbitrary aspects of an object’s type
at run time, long after the compiler has thrown that information away. Other object oriented systems,
for example Objective-C, use dynamic type binding in the form of an “isa” pointer that points to a
compiler generated object representing the class of that object. This technology can also be referred
to as class description, as one only needs to generate a description of the object’s class, then ensure
the object is bound to that description, hence the name ClassDesc.

GraphCode

GraphCode provides an abstraction of objects moving on a distributed graph. A graph is a container
of references to objects that may be linked to an arbitrary number of other objects. The objects
themselves may be located on other processors, i.e. the graph may be distributed. Objects are
polymorphic – the only properties a graph needs to know is how to create, copy and serialise them,
as well as what other objects they are linked to.

Because the objects are polymorphic, it is possible to create hypergraphs. Simply have two types of
object in the graph – pins and wires, say. A pin may be connected to multiple wire objects, just as
wires may be connected to multiple pins.

We have implemented EcoLab-4.D29 on a Gentoo Linux system for evaluation purposes. It was found
that not all the examples could be made to run, for a variety of reasons. Current version from June
2010 is v4.D37.

2.9 FLAME: FLexible Agent Modelling Environment

FLAME is being developed primarily at the University of Sheffield, see http://www.flame.ac.uk and
http://www.flamegpu.com with collaborators at STFC. FLAME has been developed to allow a wide
range of agent and non-agent models to be brought together within one simulation environment. It
is aimed principally at the medical and biological domains, for example studies of tissue cultures and
signalling pathways. It was used in the EU funded EURACE project for financial modelling.

FLAME provides specifications in the form of a formal framework which can be used by developers
to create models and software tools that are compatible with one another. New models, adhering
to the specifications, may be easily incorporated into existing, or new, simulations with little effort.
Parallelisation methods using MPI and testing techniques, allow the development of large multi-
processor simulations with feedback provided on the functionality of written code.

The FLAME methodology is based on the definition of agents as X-Machines which are extended
communicating finite state machines with the addition of memory. These read data from a message

http://ecolab.sourceforge.net
http://ecolab.sourceforge.net
http://ecolab.sourceforge.net
http://ecolab.sourceforge.net
http://www.flame.ac.uk
http://www.flame.ac.uk
http://www.flamegpu.com
http://www.flamegpu.com

2 ABMS SOFTWARE PACKAGES 10

board and change state according to rules encoded in associated functions.

There are no restrictions on the type of simulations which can be coupled together. Although the
framework is designed around agent based modelling, it is not a requirement for agents to be included
within a simulation. Commercial or in house software tools can be incorporated into FLAME, allowing
developers to spend time developing models and not re-inventing tools.

We note that the parallel implementation of FLAME uses message board technology for communica-
tion between agents. This is based on libmboard, see http://www.softeng.rl.ac.uk/st/projects/
libmboard.

FLAME is not a simulator in itself, but tools developed adhering to the specifications will create the
required simulation packages through a compilation process.

Key points to FLAME are as follows.

FLAME is a modelling environment allowing high performance agent based modelling on parallel
architectures.

Modellers do not require specialist knowledge of the underlying architecture used for simulation, as
models are designed using formal specification techniques.

Efficient algorithms for inter-agent communication and birth and death allocation ensure maximum
simulation performance.

The system is based on a simple XML syntax which is easily extendable.

Performance of complex cellular tissue models has been increased drastically.

The Web site provides information on how to use FLAME based on a couple of examples and also
gives access to many FLAME compliant simulation tools. Models suitable for use within this coupled
framework can be downloaded, modified and used. The basic xparser converts an XML file containing
the FLAME model specification using templates into C code which can be compiled using the makefiles
provided. Functional dependency is represented through graphs.

The Web site also brings together people who want to share ideas and work together. FLAME has
a growing user group and the developers say they would like it to be more beneficial to the rest of
the scientific community. It has been suggested that it could be the basis of a UK flagship effort to
develop an ABM platform for a Collaborative Computational Project [98].

2.10 JAS: Java Agent Based Simulation Library

JAS is an Italian project to develop a simulation toolkit specifically designed for agent based simulation
and modelling. JAS is a Java clone of the Swarm library. The core of the JAS toolkit is its simulation
engine based on discrete event simulation, which allows time to be managed with high precision and
from a multi-scale perspective. Many features of JAS are based on open source third party libraries.
JAS is freely available from http://jaslibrary.sourceforge.net. The last version available seems
to be v1.2.1 from March 2006.

http://www.softeng.rl.ac.uk/st/projects/libmboard
http://www.softeng.rl.ac.uk/st/projects/libmboard
http://www.softeng.rl.ac.uk/st/projects/libmboard
http://www.softeng.rl.ac.uk/st/projects/libmboard
http://jaslibrary.sourceforge.net
http://jaslibrary.sourceforge.net

2 ABMS SOFTWARE PACKAGES 11

2.11 LSD: Laboratory for Simulation Development

This is annother new and active Italian project with a framework written by Marco Valente of Uni-
versity of l’Aquila in C++ [74]. See http://www.labsimdev.org/Joomla_1-3. It has a focus on
economic models and social science. Tesfatsion notes that LSD applications take a systems dynam-
ics (difference or differential equations) approach using replicator dynamics rather than a bottom up
agent based approach, but the underlying use of C++ suggests that a more agent based approach
might also be possible.

2.12 MAML: Multi-Agent Modelling Language

The MAML language and xmc compiler were developed at the Complex Adaptive Systems Labo-
ratory of the Central European University in Hungary between 1998 and 1999. Since then further
improvements and patches were programmed at Agent Lab Intelligent Systems, Research, Design, De-
velopment and Consulting Ltd. http://www.aitia.ai/eng. I could not find any reference to MAML
on this new site. The older downloadable software is under the GNU public licence.

The aspect oriented language was initially developed to help social science students with limited
programming experience create agent based models quickly. The ultimate goal of the project was to
develop an easy to use environment, complete with a graphical interface. However, the present version
of MAML is, as the name suggests, a programming language and not an environment.

MAML actually sits on top of Swarm and is intended to make Swarm easier to use by providing
macro keywords that define the structure of the simulator and access the Swarm libraries. MAML
works at a higher level of abstraction than Swarm with clearer constructs. However, in addition to
learning MAML, the developer would need to know Objective-C and also Swarm. This point limits
MAML’s usefulness for inexperienced programmers. Indeed, experienced programmers may actually
prefer the added functionality of Swarm and the additional resources available. Programming using
MAML requires the developer to create text files using an editor since there is no graphical interface.
Since MAML accesses the Swarm libraries, the interface of the developed simulation model is very
similar as to what would appear if Swarm were used.

The code written using MAML is converted into a Swarm application by the MAML compiler (called
xmc). The resulting application is then compiled in the same way as normal Swarm code by gcc.
Currently xmc only runs on a Linux system, running the compiler on a Mac and PC with Windows
is untested. This project does not seem to have evolved since 2000 with MAML-0.03 and xmc-0.03.2
both in alpha release – xmc only compiles for Swarm-2.1.1 at latest.

Some background documentation on MAML is provided: a tutorial with source code, reference manual
and a technical manual, but prior knowledge of Swarm is needed. The MAML home page contains
some fairly simple examples of common simulations. Unfortunately, outside of the home page there
are very few examples of simulations using MAML.

With respect to MAML’s suitability for social science simulations, most of the development effort
has been devoted to simplifying the programming rather than providing facilities specifically geared
towards modelling.

http://www.labsimdev.org/Joomla_1-3
http://www.labsimdev.org/Joomla_1-3
http://www.aitia.ai/eng
http://www.aitia.ai/eng

2 ABMS SOFTWARE PACKAGES 12

The xmc compiler appears to work and can convert MAML input files into Swarm files. No attempt
has yet been made to test that these will run.

2.13 MATSim

MATSim is a multi-agent transport simulation toolkit developed at TU Berlin and EHT Zürich. It
is aimed at large and fast simulations for traffic flow management and urban planning purposes. It
has also been used for evacuation scenarios. MATSim uses a modular approach making it easily
customisable. There is active development with a release in Spring 2010 and a user meeting in June
2010. There is also a tutorial, user guide, FAQ and mailing lists and there is some support for multi-
core systems, see http://www.matsim.org. Java-1.6 is required for the latest release (v0.1.1) which
is available from SourceForge, see http://sourceforge.net/projects/matsim/files.

2.14 MASON: Multi-Agent Simulation of Neighbourhoods

MASON was designed as a smaller and faster alternative to Repast, with a clear focus on computation-
ally demanding models with many agents executed over many iterations. Design appears to have been
driven largely by the objectives of maximising execution speed and assuring complete re-producibility
across hardware. MASON’s developers support general rather than domain specific tools. The core
models will run independently of visualisation which can be added. Checkpointing and migration of
models is provided. Indeed, the abilities to detach and re-attach graphical interfaces and to stop a
simulation and move it between computers are considered a priority for long simulations.

In summary, MASON is a fast, easily extendable, discrete event multi-agent simulation toolkit in
Java. It was designed to serve as the basis for a wide range of multi-agent simulation tasks ranging
from swarm robotics to machine learning to social complexity environments. The MASON system, its
motivation and its basic architectural design are described in [36]. Five applications of MASON are
also described.

MASON contains both a model library and an optional suite of visualisation tools in 2D and 3D.
The system is open source and free and is a joint effort of George Mason University’s Computer
Science Department and the George Mason University Center for Social Complexity, hence its name.
MASON is not derived from any other toolkit and the current v14 may be downloaded from http:
//cs.gmu.edu/~eclab/projects/mason. Java-1.3 JDK or higher is required with the Sun Java3D
framework.

2.15 MASS: Multi-Agent Simulation Suite

MASS consists of three applications offering solutions for different aspects of modelling. Each appli-
cation is developed with the intention of providing professional tools for inexperienced programmers.
The software offers user friendly interfaces and wizards for writing models, creating visualisations and
analysing simulation data.

The related Functional Agent Based Language for Simulation, FABLES, is an easy-to-use programming

http://www.matsim.org
http://www.matsim.org
http://sourceforge.net/projects/matsim/files
http://sourceforge.net/projects/matsim/files
http://cs.gmu.edu/~eclab/projects/mason
http://cs.gmu.edu/~eclab/projects/mason
http://cs.gmu.edu/~eclab/projects/mason
http://cs.gmu.edu/~eclab/projects/mason

2 ABMS SOFTWARE PACKAGES 13

language specially designed for creating agent based simulations. It requires minimal programming
skills as it has a whole range of functions intended to make the use of the language easy. In the
first public release of MASS, the simulation core is Repast-J, meaning that all FABLES models are
compiled with Repast-J. NetLogo models can also be run.

The Participatory Extension, PET, is a Web based environment for creating, administrating and
participating in agent based and participatory simulations. The use of PET relies on mechanisms and
practices familiar to users from browsing Web pages.

The Model Exploration Module, MEME, is a tool that enables orchestrating experiments, managing
and analysing results. It allows the user to run simulations in batches with various parameter settings,
to store, manage and analyse the data.

These tools can be downloaded from the Web site and run on a Windows, Linux or Mac system. The
latest release is from April 2009, see http://mass.aitia.ai.

2.16 MetaABM

A model driven ABM system developed in Eclipse, see http://www.metascapeabm.com. MetaABM
defines and supports a high level architecture for designing, executing and sytematically studying
ABM models. It started life as Score, a component of the Repast Simphony system, but its scope is
beyond a single ABM tool. MetaABM is not intended as an ABM engine or runtime environment,
but as an approach that can leverage those environments in multiple ways. Beyond that, metaABM
seeks to provide a common hub that enables developers of ABM tools to avoid duplication of effort
and focus on the value that they can add to the overall software eco-system. The contributors are
committed to an open, developer driven approach and welcome participation from other individuals,
projects and organisations.

2.17 MIMOSE

MIMOSE consists of a model description language and an experimental framework for the simulation
of models. The main purpose of the MIMOSE project has been the development of a language that
considers the special demands of modelling in social science, especially the description of non-linear
quantitative and qualitative relations, stochastic influences, birth and death processes, and micro- and
multi-level models. The aim is that describing models in MIMOSE should not burden the modeller
with a lot of programming and implementation details.

MIMOSE was created by Michael Möhring of University of Koblenz-Landau, Germany. Release 2.0
requires Sun Sparc, SunOS, Solaris, X11R5/6 or Linux. A Java interface is under development and the
current release is usable with Java enabled browsers, given that the server process runs on a SunOS
or Linux machine. See http://www.uni-koblenz.de/~moeh/projekte/mimose.html.

http://mass.aitia.ai
http://mass.aitia.ai
http://www.metascapeabm.com
http://www.metascapeabm.com
http://www.uni-koblenz.de/~moeh/projekte/mimose.html
http://www.uni-koblenz.de/~moeh/projekte/mimose.html

2 ABMS SOFTWARE PACKAGES 14

2.18 MobiDyc: Modélisation Basée sur les Individus pour la Dynamique des Com-
munautés

Mobidyc is a project that aims to promote ABMS in the field of ecology, biology and environment. It
should enable models to be built and run by people with no programming skills. The software itself
is written in Smalltalk. A number of constraints are noted: (1) discrete space and time may limit the
choice of time steps, mesh and communication between agents; (2) numerical precision; and (3) slow
calculations limit the size to around 10,000 cells and 10,000 agents. This suggests that MobiDyc is
appropriate for teaching and initial model building, but of limited use for realistic simulations.

Vincent Ginot, the original author, died in 2007 but other contributors are maintaining the project
under a GPL license for teaching and non-commercial research, see http://w3.avignon.inra.fr/
mobidyc.

2.19 Modelling4all

Modelling4all is a project from University of Oxford supported by Eduserv and JISC. It is possible
to create and run a behavioural model just from a Web browser – this has for instance been used to
teach students the basics of the SugarScape model. It is therefore a useful tool in raising awareness
of the capabilities of ABMS methodology in various domains. Non-experts can compose pre-built
modular components called micro-behaviours thus supporting a middle out constructionist form of
learning. Collaborative model building is also supported. The underlying computational platform is
NetLogo. The BehaviouralComposer [32] is also available as open source under the New BSD license,
see http://modelling4all.nsms.ox.ac.uk.

2.20 NetLogo

NetLogo (originally named StarLogoT) is a high level platform, providing a simple yet powerful pro-
gramming language, built-in graphical interfaces and comprehensive documentation. It is particularly
well suited for modelling complex systems developing over time. It is aimed at deploying models over
the internet. Modellers can give instructions to hundreds or thousands of independent agents all oper-
ating concurrently. This makes it possible to explore the connection between the micro-level behaviour
of individuals and the macro-level patterns that emerge from the interaction of many individuals.

NetLogo clearly reflects its heritage from StarLogo as an educational tool, as its primary design
objective is ease of use. Its programming language includes many high level structures and primitives
that greatly reduce programming effort. The language is based on Logo, a dialect of Lisp, and
contains many but not all the control and structuring capabilities of a standard programming language.
Furthermore, NetLogo was clearly designed with a specific type of model in mind – mobile agents acting
concurrently on a mesh with behaviour dominated by local interactions over short times. Whilst
models of this type are easiest to implement in NetLogo, the platform is by no means limited to them.
NetLogo is said to be by far the most professional platform in its appearance and documentation.

NetLogo has extensive documentation and tutorials. It also comes with a models library, which is a
large collection of pre-written simulations that can be used and modified. These simulations address

http://w3.avignon.inra.fr/mobidyc
http://w3.avignon.inra.fr/mobidyc
http://w3.avignon.inra.fr/mobidyc
http://w3.avignon.inra.fr/mobidyc
http://modelling4all.nsms.ox.ac.uk
http://modelling4all.nsms.ox.ac.uk

2 ABMS SOFTWARE PACKAGES 15

many domain areas in the natural and social sciences, including biology and medicine, physics and
chemistry, mathematics and computer science, economics and social psychology. The current version
is 4.1.1 from August 2010, see http://ccl.northwestern.edu/netlogo.

A new book on individual based modelling featuring NetLogo is in preparation [54].

2.21 Open StarLogo

StarLogo (see below) is an agent based simulation language developed by Resnick, Klopfer and others in
the MIT Media Lab and MIT Teacher Education Program. It is an extension of the Logo programming
language. StarLogo is designed for education and can be used by students to model the behavior of
decentralised systems.

StarLogo is also available in a version called Open StarLogo since June 2006. The source code for
Open StarLogo is available online, although the license under which it is released is not an open
source license according the Open Source Definition, because of restrictions on the commercial use of
the code. See http://education.mit.edu/openstarlogo.

2.22 RePast: Recursive Porous Agent Simulation Toolkit

RePast was developed at the University of Chicago’s Social Science Research Computing Lab specif-
ically for creating agent based simulations in social sciences [44]. It is very Swarm like, both in
philosophy and appearance and similarly provides a library of code for creating, running, display-
ing and collecting data from simulations. It was in fact initially a Java re-coding of Swarm. See
http://repast.sourceforge.net/repast_3.

Repast development appears to have been driven by several objectives. Repast did not adopt all of
Swarm’s design philosophy and does not actually implement swarms. Repast was also clearly intended
to support one domain, social science, in particular and includes tools specific to that domain. The
additional objective of making it easier for inexperienced users to build models has been approached in
several ways by the Repast project. These approaches include a built-in simple model and interfaces
through which menus and Python code can be used to begin model construction.

RePast is Java based and developing a simulation ideally requires the ability to program in Java.
RePast provides a few, well known, demonstration simulation models such as SugarScape, Swarm’s
Heatbugs and MouseTrap models. Unfortunately, there are very few other simulation models generally
available on the internet. However, there is a mailing list which provides users with general support
and discussion.

2.23 Repast Simphony

Since 1994, there has been a steady advancement of the software toolkits and development envi-
ronments that have superseded Swarm. Repast-3 has recently been superseded by a significant de-
velopment named Repast Simphony, or Repast-S. This is a free and open source toolkit developed

http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://education.mit.edu/openstarlogo
http://education.mit.edu/openstarlogo
http://repast.sourceforge.net/repast_3
http://repast.sourceforge.net/repast_3

2 ABMS SOFTWARE PACKAGES 16

at Argonne National Laboratory. It has tools for visual model development, visual model execu-
tion, automated database connectivity, automated output logging, and results visualisation. See
http://repast.sourceforge.net.

Whilst still being maintained, Repast-J, Repast.Net and Repast-Py have now reached maturity and
are no longer being developed. They have been superseded by Repast Simphony (Repast-S) which
provides all the core functionality of Repast-J or Repast.Net, although limited to implementation in
Java. Repast-S was released as an alpha version in late 2006. From the user’s perspective, the main
improvements in Simphony compared to Repast-3 are as follows.

• A new GUI for developing models;

• An improved runtime GUI;

• The addition of contexts and projections.

A context contains a population of agents but doesn’t give agents any concept of space or relationships.
Contexts can be arranged hierarchically and contain sub-contexts. Agents in a sub-context also exist
in the parent context, but the reverse is not necessarily true.

Projections can give the agents a space and can define their relationships. Projections are created for
specific contexts and will automatically contain every agent within the context. Different projects can
be made for different properties.

For a tutorial on Simphony, see the NCeSS portal site: http://portal.ncess.ac.uk/access/wiki/
site/mass/simphonytutorial.html.

Repast-S probably now has the greatest functionality of any AMBS package. It supports a wide range
of external tools for statistical and network analysis, visualisation, data mining, spreadsheets, etc.
Point and click modelling in 2D and 3D is supported. Models can be checkpointed in various formats
including XML. The discrete event scheduler is concurrent and multi-threaded, various numerical
libraries are available, e.g. for random numers and distributed computing is supported using the
Terracotta Enterprise Suite for Java.

2.24 SimPack

Simpack, developed by Paul Fishwick, is a directory of tools designed for teaching and supporting
discrete event simulation, see http://www.cise.ufl.edu/~fishwick/simpack.html. SimPack sup-
ports a wide variety of event scheduling and continuous time simulation models. There are mod-
els of the sort described in his 1995 book [22] and examples using the Processing language, see
http://www.processing.org.

SimPack was originally written in C, and this version is still available but is no longer maintained or
updated – there appears to be nothing since 1997. In the latest version the models are executed using
Java. SimPack is available with a GPL license.

http://repast.sourceforge.net
http://repast.sourceforge.net
http://portal.ncess.ac.uk/access/wiki/site/mass/simphony tutorial.html
http://portal.ncess.ac.uk/access/wiki/site/mass/simphony tutorial.html
http://portal.ncess.ac.uk/access/wiki/site/mass/simphony tutorial.html
http://portal.ncess.ac.uk/access/wiki/site/mass/simphony tutorial.html
http://www.cise.ufl.edu/~fishwick/simpack.html
http://www.cise.ufl.edu/~fishwick/simpack.html
http://www.processing.org
http://www.processing.org

2 ABMS SOFTWARE PACKAGES 17

2.25 SimPy

This is an object oriented Python language toolkit for agent based modelling specifically intended for
social science applications. See http://simpy.sourceforge.net and the SimPy blog http://blog.
gmane.org/gmane.comp.python.simpy.user. There is an active developer and user community with
v2.1.0 released in June 2010 http://pypi.python.org/pypi/SimPy/2.1.0.

2.26 SOARS: Spot Oriented Agent Role Simulator

SOARS from the Tokyo Institute of Technology is a Java project under active development, v3.0.4
was released in Sept’2010, see http://www.soars.jp. Unfortunately, the English language part of
the Web site has a number of broken links and multiple versions of older pages.

In SOARS a model is composed of agents and “spots”, the latter being a place for interaction and giving
spatial decomposition. Events occur at regular time steps. During each step a series of stages (temporal
decomposition) are performed where behavioural rules are evaluated. A transition within a stage
should be independent of the order of execution of rules within that stage. The environment consists
of principal components including launcher, shell, simulator and animator (viewer). Simulations can
be constructed in the form of games and run on distributed resources. Example applications are a
virtual city, a market model and office activities. SOARS has been applied by Deguchi et al. [18, 3]
to emerging virus protection in the case of SARS and the H5N1 bird flu pandemic, these are based on
the virtual city plus a state transition model for the disease and a model of protection policies.

2.27 StarLogo

StarLogo is a programmable modelling environment specifically aimed at exploring de-centralised
systems via simulation. It is a specialised version of Logo, which was used for teaching. StarLogo
allows the user to create and control the behaviour of “turtles”, a term used in Logo. Turtles move
around a user defined landscape that is made up of “patches”. Patches ares similar to the spots in
SOARS.

Whilst StarLogo can be considered “agent based”, for example a turtle is an agent, its programming
paradigm is procedural as opposed to object oriented. It provides a set of commands which the
programmer uses to create and control the turtles and patches.

In practice, StarLogo is very easy to use. It provides a graphical interface to help to develop simu-
lations. This can be used to create graphs of simulation data and to define buttons and slide bars
which control the simulation and define the input data, e.g. number of turtles. However, whilst it
is easy to graph data in StarLogo there are some problems associated with the graphing facility, for
example whilst many lines may be plotted on the same graph it is not possible to create more than
one graph. With the current v2.2 of StarLogo, it is quite easy to put your simulations on a Web page
as an Applet for viewing. A new version called StarLogoTNG (The Next Generation) was released
in July 2008, currently v1.2 see http://education.mit.edu/projects/starlogo-tng. This in part
uses a gaming heuristic.

There are a lot of examples of StarLogo simulations available on the Internet and there is a very good

http://simpy.sourceforge.net
http://simpy.sourceforge.net
http://blog.gmane.org/gmane.comp.python.simpy.user
http://blog.gmane.org/gmane.comp.python.simpy.user
http://blog.gmane.org/gmane.comp.python.simpy.user
http://blog.gmane.org/gmane.comp.python.simpy.user
http://pypi.python.org/pypi/SimPy/2.1.0
http://pypi.python.org/pypi/SimPy/2.1.0
http://www.soars.jp
http://www.soars.jp
http://education.mit.edu/projects/starlogo-tng
http://education.mit.edu/projects/starlogo-tng

2 ABMS SOFTWARE PACKAGES 18

support mailing help group, see http://www.media.mit.edu/starlogo. One of the main downfalls of
StarLogo however is its inflexibility. The set of commands offered by StarLogo may be quite restrictive
if we are aiming to code complex social mechanisms. It is not impossible to code such things, but it
may be quite challenging to find ways to do exactly what is required with the commands provided.
In addition, whilst it is not necessary to have a lot of programming experience, care must be taken to
avoid writing inefficient code.

2.28 SugarScape

The SugarScape project seeks to provide an interactive model for social science researchers to experi-
ment with an artificial society. This society is currently pre-agricultural and hence nomadic. Agents
or citizens move about and gather food on a two dimensional grid, mate with suitable partners, bear
offspring, barter for goods with other citizens, migrate, die and leave an inheritance for their survivors.

Researchers can use the simulation as a testbed, laying out their theories in terms of initial and
subsequent states of the SugarScape. The source code requires Java-2 SDK and is released under
GPL, see http://sugarscape.sourceforge.net. There is also a Web based version.

2.29 Swarm

Swarm was the first re-usable software tool created for agent based modelling and simulation. It was
developed at the Santa Fe Institute in 1994 and was specifically designed for artificial life applications
and studies of complexity.

Swarm was originally developed for multi-agent simulation of complex adaptive systems. Until recently
the project was still based at the Santa Fe Institute but its development and management is now under
control of the Swarm Development Group which has wider membership to sustain the software, see
http://www.swarm.org.

Swarm was designed as a general language and toolbox for ABMS, intended for widespread use across
scientific domains. The developers started with a general conceptual approach to agent based simu-
lation software. Key to Swarm is the concept that the software must both implement a model and,
separately, provide a virtual laboratory for observing and conducting experiments on the model. An-
other key concept is designing a model as a hierarchy of “swarms”, a swarm being a group of objects
and a schedule of actions that the objects execute. This is similar to the concepts of context and
project now included in Repast Simphony. One swarm can contain lower level swarms whose sched-
ules are integrated into the higher level swarms; simple models have a lower level “model swarm”
within an “observer swarm” that attaches observer tools to the model.

The design philosophy appears to have been to include software that implements Swarm’s modelling
concepts along with general tools likely to be useful for many models, but not to include tools specific
to any particular domain.

Swarm was designed before the emergence of Java as a mature language. One reason for implementing
Swarm in Objective-C was that the lack of strong typing in this language (in contrast for instance
to C++), supports the complex systems philosophy of lack of centralised control. This means that

http://www.media.mit.edu/starlogo
http://www.media.mit.edu/starlogo
http://sugarscape.sourceforge.net
http://sugarscape.sourceforge.net
http://www.swarm.org
http://www.swarm.org

2 ABMS SOFTWARE PACKAGES 19

a model’s schedule can tell a list of objects to execute some action without knowing what types of
object are on the list. Swarm uses its own data structures and memory management to represent
model objects. One consequence is that Swarm is able to fully implement the concept of “probes” –
tools that allow users to monitor and control any simulation object, no matter how protected it is,
from the graphical interface or within the code.

Swarm provides a set of libraries which the developer uses for building models and analysing, displaying
and controlling experiments on those models. Since the libraries are written in Objective-C, until
recently building a simulator meant programming in a mixture of Objective-C and Swarm. However,
it is now possible to use Java with some Swarm library calls. Java Swarm was designed to provide,
with as little change as possible, access to Swarm’s Objective-C library from Java. It was motivated
by a strong demand among Swarm users for the ability to write models in Java, not by the objective
of providing Swarm’s capabilities as cleanly and efficiently as possible in Java. Java Swarm therefore
simply allows Java to pass messages to the Objective-C library with work arounds to accommodate
strong typing in the Java language.

In the Swarm system, the fundamental component that organises the agents of a Swarm model is
a “swarm”. A swarm is a collection of agents with a schedule of events over those agents. The
swarm represents an entire model: it contains the agents as well as the representation of time. Swarm
supports hierarchical modelling whereby an agent can be composed of swarms of other agents in nested
structures. In this case, the higher level agent’s behaviour is defined by the emergent phenomena of the
agents inside its swarm. This multi-level model approach offered by Swarm is very powerful. Multiple
swarms can be used to model agents that themselves build models of their world. In Swarm, agents
can themselves own swarms, models that an agent builds for itself to understand its own world.

The actual model and the task of observing the model is clearly separated in the Swarm system. There
are special “observer” agents whose purpose it is to observe other objects via the probe interface.
These objects can provide both real time data presentation and storage of data for later analysis.
The observer agents are actually swarms as noted above. Combining the observer swarm with the
model swarm gives a complete experimental framework – the model and observer apparatus. With
other simulation tools the distinction between the actual model and that needed to observe and collect
data from the model is blurred making it difficult to change one part without influencing the other.
Separating the model from its observation is a programming pattern which enables the model itself to
remain unchanged if the observation code is modified.

Swarm is probably still the most powerful and flexible simulation platform. However, this comes at
a price. In practice, Swarm has a very steep learning curve. It is necessary to have experience of
Objective-C and possibly Java, be familiar with the object orientation methodology and be able to
learn some Swarm code.

In terms of additional support, there are excellent support mailing lists with prompt and helpful re-
sponses and a lot of generally available Swarm, Java and Objective-C code. There is also an annual
meeting of the Swarm Users Group called SwamFest where researchers from diverse disciplines present
their experience with multi-agent modelling and the Swarm simulation system. Immediately preceed-
ing SwarmFest there is usually a tutorial for inexperienced users on how to use Swarm. Swarm models
can already run inside a Web browser, specifically Netscape. However, a future development goal is for
Swarm to be a complete interactive, browser based development environment for agent based models.

Swarm runs on any platform which has Objective-C. With reference to building simulations for the

3 OTHER MULTI-AGENT SYSTEMS 20

social sciences, Swarm would be one of the best packages to use, being so powerful and flexible that
it would be possible to implement very intricate and complicated social mechanisms. The only pre-
requisite is finding a programmer experienced enough to be able to implement what was needed.

Swarm typically runs on Linux machines with GNU Objective-C (in gcc v3.4 onwards) and X-windows.
The source code is freely available under a GNU license. We have implemented Swarm v2.3.0 on a
Gentoo Linux system for evaluation purposes.

Add-ins and extensions to Swarm are available including:

• COSMIC – General simulation utility classes, provided by the Complex Systems Modelling
Group at Imperial College http://www.swarm.org/index.php/COSMIC

• EcoSwarm@HSU – Modeling tools for use with the Swarm simulation system http://www.
humboldt.edu/~ecomodel

• LogZone – Zone exploration tool http://me.in-berlin.de/~rws/logzone_toc.html

In conclusion, Swarm is the most mature ABMS library based framework and is stable and well
organised. Objective-C seems more natural than Java for ABMs but weak error handling and the lack
of developer tools are drawbacks. Java Swarm allows Swarm’s Objective-C libraries to be called from
Java, but it does not seem to combine advantages of the two languages well. Finally there does not
appear to be any parallel implementation of Swarm to date.

2.30 VisualBots

Easy to use multi-agent simulator for Microsoft Excel which has Visual Basic syntax, rich object
model, documentation and sample simulations, see http://visualbots.com.

2.31 Xholon

Xholon is an open source general purpose modelling, transformation and simulation tool, based on
XML and Java, that supports the Unified Modelling Language, UML-2.1. Systems biology modelling,
other types of modelling and many of the features found in other agent based modelling tools are
implemented. It focuses especially on integration of various approaches. It can, for example, simulate
2D grid and agent based models created using UML tools and can combine multiple agent based
grids in the same model. It includes an optional limited NetLogo like syntax, as Java methods. The
download pages include numerous example applications. The project is currently active with v0.8
updated in Oct’2009 and a new user Wiki established in Apr’2010, see http://www.primordion.com.

3 Other Multi-Agent Systems

These systems are about building distributed networks of communicating autonomous software agents
for “smart” applications [77]. They should not be confused with ABMS. AgentLink was an EU

http://www.swarm.org/index.php/COSMIC
http://www.swarm.org/index.php/COSMIC
http://www.humboldt.edu/~ecomodel
http://www.humboldt.edu/~ecomodel
http://www.humboldt.edu/~ecomodel
http://www.humboldt.edu/~ecomodel
http://me.in-berlin.de/~rws/logzone_toc.html
http://me.in-berlin.de/~rws/logzone_toc.html
http://visualbots.com
http://visualbots.com
http://www.primordion.com
http://www.primordion.com

3 OTHER MULTI-AGENT SYSTEMS 21

funded network of excellence in this area, see http://www.agentlink.org. A list of such software was
available from http://www.agentbuilder.com/AgentTools but you’ll have to go back to a version
prior to Apr’2004 to see the entries.

3.1 A-globe

One of the first projects from the Agent Technology Center of the Czech Technical University in
Prague. See http://agents.felk.cvut.cz/projects. It was developed in partnership with the US
Air Force starting in 2003. Applications are in air traffic control and security.

3.2 ABLE: Agent Building and Learning Environment

ABLE, a project from the IBM T.J. Watson Research Center, provides a Java framework, component
library and productivity toolkit for building intelligent agents using machine learning and reasoning.
The ABLE framework provides a set of Java interfaces and base classes used to build a library of
JavaBeans called AbleBeans. The library includes AbleBeans for reading and writing text and database
data, for data transformation and scaling, for rule based inference using Boolean and fuzzy logic,
and for machine learning techniques such as neural networks, Bayesian classifiers and decision trees.
Developers can extend the set of AbleBeans or implement their own custom algorithms. ABLE runs
on any platform supporting Java-2. See http://www.alphaworks.ibm.com/tech/able.

3.3 Cougaar: Cognitive Agent Architecture

Cougaar is Java software for facilitating the development of agent based applications that are complex,
large scale and distributed. Cougaar is used to build smart resilient networks rather than for simulation
and modelling. The open source software (currently v12.4) includes not only the core architecture but
also a variety of demonstration, visualisation and management components. It was developed as part
of a multi-year DARPA research project into large scale agent systems principally aimed a military
logistics. See http://www.cougaar.org.

For its parallel implementation Cougaar uses a message board communication pattern similar to
FLAME. This is aimed at deployment across wide area networks and supports a number of underlying
protocols via plugins.

3.4 FIPA: Foundation for Physical Intelligent Agents

FIPA is a non-profit IEEE Computer Society organisation aimed at producing standards for the inter-
operation of heterogeneous software agents. It has been active in Swizerland since 1996 and more
widely since June 2005, see http://www.fipa.org.

FIPA’s Agent Framework Reference Model is really an approach to develop an agent framework
interoperable with other FIPA compliant agent frameworks.

http://www.agentlink.org
http://www.agentlink.org
http://www.agentbuilder.com/AgentTools
http://www.agentbuilder.com/AgentTools
http://agents.felk.cvut.cz/projects
http://agents.felk.cvut.cz/projects
http://www.alphaworks.ibm.com/tech/able
http://www.alphaworks.ibm.com/tech/able
http://www.cougaar.org
http://www.cougaar.org
http://www.fipa.org
http://www.fipa.org

3 OTHER MULTI-AGENT SYSTEMS 22

FIPA is developing standards to promote interoperable agent applications and agent systems. FIPA
specifications only talk about the interfaces through which agents may communicate – it does not
describe the implementation details. Specifications are divided into five categories: applications,
abstract architecture, agent communication, agent management and agent message transport (FIPA
Specifications, 2002).

The FIPA Reference Model considers an agent platform as a set of four components: agents, directory
facilitator (DF), agent management system (AMS), and message transport system (MTS). The DF
and AMS support the management of the agents, while the MTS provides a message delivery service.

The FIPA standard does not talk about mobility as a mandatory requirement for compliant systems.
FIPA does however provide some guidelines for how an implementation provider can provide support
for mobility on their own.

3.5 JADE: Java Agent Development Framework

JADE aims to simplify the implementation of distributed multi-agent systems through a middleware
layer that claims to comply with the FIPA specifications and through a set of tools that support the
debugging and deployment phases. The agent platform can be distributed across machines (which do
not even need to share the same o/s) and the configuration can be controlled from a remote GUI. The
configuration can be even changed at run time by moving agents from one machine to another as and
when required.

JADE is aimed at developing smart networks rather than modelling and simulation. It is completely
implemented in Java and the minimal system requirement is Java JDK-1.4. JADE is distributed
by Telecom Italia under the LGPL-2. The current version is 4.0.1 released in July 2010, see http:
//jade.cselt.it.

WADE, Workflows and Agents Development Environment, is an extension which allows agents to
execute tasks defined in a workflow.

3.6 Jason

Jason is an open source interpreter for an extended version of AgentSpeak, a logic based agent oriented
programming language written in Java. It enables users to build complex multi-agent systems that
are capable of operating in environments previously considered too un-predictable for computers to
handle. Jason is easily customisable and is suitable for the implementation of reactive planning systems
according to the Belief-Desire-Intention (BDI) architecture. It is typically used to simulate systems
comprising multiple interacting robots. JASON uses the FIPA libraries to communicate between
agents and is able to inter-operate with JADE.

A book gives additional information about Jason [9] and for more information see http://jason.
sourceforge.net.

http://jade.cselt.it
http://jade.cselt.it
http://jade.cselt.it
http://jade.cselt.it
http://jason.sourceforge.net
http://jason.sourceforge.net
http://jason.sourceforge.net
http://jason.sourceforge.net

3 OTHER MULTI-AGENT SYSTEMS 23

3.7 MadKit

MadKit is a Java multi-agent platform built upon an organisational model. It provides general agent
facilities, such as lifecycle management, message passing and distribution, allows high heterogeneity in
agent architectures and communication languages and various customisations. MadKit communication
is based on a peer-to-peer mechanism which allows developers to deploy distributed applications
quickly using agent principles. It is free and licensed under the GPL/ LGPL. The current version is
4.2.0, see http://www.madkit.org.

MadKit is used at LIRMM, Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier which is a mixed research unit of l’Université Montpellier II (UMII) and the Centre
National de la Recherche Scientifique (CNRS), Département Sciences et Technologies de l’Information
et de la Communication (STIC). See http://www.lirmm.fr/xml/fr/lirmm.html

3.8 MAGSY

MAGSY is a development platform for multi-agent applications. Each agent in MAGSY has a forward
chaining rule interpreter in its kernel. This rule interpreter is a complete re-implementation of an OPS5
system (a rule based language used in expert systems), further enhanced to make it more suitable
for the development of multi-agent system applications. MAGSY runs on UNIX, LINUX, SunOS and
Solaris systems. See http://www.dfki.uni-sb.de/~kuf/magsy.html.

3.9 MASIF

The MASIF project intends to support interoperability among heterogeneous agent systems. It focuses
on the migration of agents between hosts.

3.10 SDML: Strictly Declarative Modelling Language

SDML is not an environment but a logic based language with object orientation features [42] written
in Smalltalk, see http://cfpm.orgsdml. Knowledge is represented in rule bases and data bases and
the main reasoning mechanism used is forward and backward chaining. Agents may be assigned rules
which determine their behaviour and which can be shared with other agents. The latter is possible
due to the object orientation features. The fact that SDML is strongly grounded in logic allows formal
proofs of the completeness of the model to be constructed. Programming is conducted via a series of
windows. The introduction to SDML on the Web site gives a good feel of the interface.

Sophisticated simulations may be built using SDML involving complex interacting organisations,
deeply nested levels of agents and the ability for agents to possess limited cognitive abilities. However,
the language has a steep learning curve.

Whilst SDML was specifically developed for building simulations in the social sciences, most of the
available models are concerned with economic and market modelling. Indeed, apart from the SDML

http://www.madkit.org
http://www.madkit.org
http://www.lirmm.fr/xml/fr/lirmm.html
http://www.lirmm.fr/xml/fr/lirmm.html
http://www.dfki.uni-sb.de/~kuf/magsy.html
http://www.dfki.uni-sb.de/~kuf/magsy.html
http://cfpm.orgsdml
http://cfpm.orgsdml

3 OTHER MULTI-AGENT SYSTEMS 24

Web site at Manchester Metropolitan University, there are very few examples of simulations using
SDML. However the Web site does not seem to have been updated since 1997.

SDML claims to provide features useful in modelling cognitive social agents. There is no inherent
theory of cognition implemented in SDML so any agent cognition is represented as sets of rules.
Communication between agents is achieved via data bases: the result of a fired rule is written to an
agent’s data base which may be accessed by another agent. The accessibility of one agent’s data base
to another agent’s data base can be restricted by assigning a status to the rule’s clause, e.g. private
or public. Agents may also evaluate each other as being possible “collaborators” and endorse other
agents as being a reliable, un-realiable, successful or unsuccessful collaborator.

SDML runs in a Smalltalk environment and is available for MS Windows 3.1/95/98/2000/NT, Linux,
Intel, PowerMac, Unix ADUX/AIX/HPUX/SGI/Solaris.

3.11 SeSAm: Shell for Simulated Agent Systems

SeSAm from University of Würzburg provides a generic environment for modelling and experiment-
ing with agent based simulation. It focusses on providing a Java tool for the easy construction of
complex models, which include dynamic inter-dependecies or emergent behaviour. This includes easy
visual agent modelling, a flexible environment and situation definition, a programming language and
integrated graphical simulation analysis. Simulations with different starting paramenters can be dis-
tributed. SeSAm can also use a FIPA plugin for agent communication making it compatible with
JADE. The current version is 2.5.1 from Aug’2009, see http://www.simsesam.de.

3.12 SimAgent

SimAgent was developed by Aaron Sloman of University of Birmingham. It was designed for rapidly
implementing and testing out different agent architectures, including scenarios where each agent is
composed of several different sorts of concurrent interacting sub-systems, in an environment where
there are other agents and objects. Some agents should have sensors and effectors and some should
be allowed to communicate with others. Some agents should have hybrid architectures including, for
example, symbolic mechanisms communicating with neural nets. The toolkit is also used for exploring
evolutionary processes. It uses the Pop-11 language in the Poplog software development environment.
See http://www.cs.bham.ac.uk/research/projects/poplog/packages/simagent.html.

3.13 Zeus

The Zeus toolkit, developed by British Telecommunications (BT), provides a library of software com-
ponents and tools that facilitate the rapid design, development and deployment of agent systems. The
three main functional components of the Zeus toolkit are an agent component library, agent building
tools, and visualisation tools. See http://labs.bt.com/projects/agents/zeus.

http://www.simsesam.de
http://www.simsesam.de
http://www.cs.bham.ac.uk/research/projects/poplog/packages/simagent.html
http://www.cs.bham.ac.uk/research/projects/poplog/packages/simagent.html
http://labs.bt.com/projects/agents/zeus
http://labs.bt.com/projects/agents/zeus

4 ABMS APPLICATIONS 25

4 ABMS Applications

The most common uses of ABMS are in social simulation and optimisation problems, such as traffic
flow and supply chains. We will investigate other uses in computational science and engineering.
Computational advances have opened the way for a growing number of agent based applications across
many fields. These applications now range from modelling adaptive behaviours and the emergence of
new entities in the biological sciences to modelling agent behaviour in the stock market and supply
chains to understanding consumer purchasing.

ABMS is thus being actively applied in many practical areas. The applications range from elegant,
minimalist academic models to large scale decision support systems.

Minimalist models are based on a set of idealised assumptions, designed to capture only the most salient
features of a system. These agent based models are used to explore a wide range of assumptions which
can be varied over a large number of simulations. Decision support models tend to serve large scale
applications and are designed to answer real world policy questions. These models normally include
real data and must have passed appropriate validation tests to establish credibility.

For certain applications is it not clear that minimalist models are sufficient, although they might at
first sight seem to exhibit correct behaviour. For certain phenomena, low dimensional differential
equations have been shown to provide very efficient simulators. For highly heterogeneous systems
comprising autonomous actors, ABMs offer a more flexible and powerful tool. ABMs focus on the
changing behaviour of self organising elements, for example, individuals in a crowd, and the ways
in which those elements interact with each other and their environment to form complex systems.
The approach centres on order creation rather than order translation. Since the former is more
characteristic of social phenomena than the latter, ABMs have the potential to map onto social
phenomena rather better than neo-classical models which mimic reductionist physics. Equilibrium
conditions are not assumed but rather studied if, when, and where they emerge.

It is however recognised that agents cannot calculate these aggregate patterns and hence factor them
into their decision making, thus there is a fundamental challenge. Human agents experience time and
space, and in many cases are able to factor history and geography as experiences into what they do.
This is a fundamental characteristic of social systems moving beyond the simplistic view of the first
generation of ABMs that assumed that both social structure and cooperation could be reproduced
from scratch (bottom up) by the interactions of agents. It has been suggested that a new generation of
ABMs should contain: (i) a bounded, but evolving, heterogeneous multi-dimensional irregular lattice
network of communicating agents (characterised by the connection pattern), with behaviours that are
reflexive; (ii) a specified set of non-linear stochastic conditional neighbour interaction rules that are
followed once the agent senses its local state; and (iii) a protocol that describes how local and non-local
knowledge is exchanged using asynchronous updating through the network environment.

Some core research questions are as follows.

• What is the appropriate level of granularity for the ABM, i.e. what entities do the agents
represent?

• What is the appropriate network structure for the ABM, i.e. what degree of non-local connec-
tivity?

4 ABMS APPLICATIONS 26

• How can multi-scale adaptivity be introduced? What timesteps are required in the forward
marching algorithm?

• Drawing on work in bio-engineering, how intelligent do we need to make agents such that the
self healing capacities of communities are adequately represented?

• Are there population size effects and how can these be corrected?

The following lists some general application areas of ABMS.

• Business and Organisations [46]

– Consumer markets

– Supply networks

– Insurance

– Manufacturing

• Economics

– Artificial financial markets

– Trade networks

• Infrastructure

– Transportation

– Electric power markets

– Hydrogen economy

• Crowds

– Human movement patterns

– Evacuation modelling and planning

• Society and Culture

– Ancient civilizations

– Civil disobedience

• Terrorism

– Social determinants

– Organisational networks

• Military

– Command and control

– Combat

– Logistics

4 ABMS APPLICATIONS 27

• Biology and Ecological Systems

– Animal behaviour

– Cell behaviour

– Sub-cellular molecular behaviour

At Argonne, three pilot application areas are being targetted – microbial bio-diversity, cyber-security
and the social aspects of climate change. These are providing a portfolio of requirements for exa-
scale ABMS. Each application area suggests a unique series of experiments that cumulatively cover
the range of functionality required for an agent based architecture. Depending on the findings of
the experiments, a variety of possible designs and implementation paths will be considered. Recent
Argonne work on the Repast Simphony ABMS toolkit offers one possible path among several that
will be experimentally tested. This toolkit has been used successfully for a wide range of applications.
For example, the National Aeronautics and Space Administration (NASA) used Repast for an agent
based simulation on autonomous robots roaming the Martian surface and a dynamic social network
simulation from Repast.

Enabling large scale simulations to address the complexity of real microbial environments is a major
focus of this research. Scalable ABMS simulations show great promise for understanding the detailed
dynamics of large, mixed microbial communities, with a wide range of applications in ecology, health
sciences and industry, says Rick Stevens, associate laboratory director for Computing, Environment,
and Life Science at Argonne. The rapid accumulation of environmental molecular data is uncovering
vast diversity, abundant un-cultivated microbial groups and novel microbial functions. This accumu-
lation of data requires the application of theory and simulation to provide organisation, structure,
insight and ultimately predictive power that is of practical value. Argonne researchers are using re-
source ratio theory in microbial eco-systems in devising requirements for the practical application of
agent based modelling to the exa-scale system under development.

4.1 Biology and Medicine

See http://www.swarm.org/index.php/Agent-Based_Models_in_Biology_and_Medicine and http:
//www.bmm.icnet.uk/~barr03. The latter provides some additional links as follows. Agent Based
Modelling – a tool for replicating biological systems – a good description of ABM as used in the
Epitheliome project [75, 76, 71] at Sheffield, see http://www.dcs.shef.ac.uk/~rod/Integrative_
Systems_Biology.html. Agent Based Modelling for Systems Biology – an introduction to ABM in
this field from a few years ago. Also contains a list of software, see http://abmsystemsbiology.info/
index.htm. Individual based models – a nine year old site, but nevertheless a very comprehensive list
of ABM applications from the time, see http://www.red3d.com/cwr/ibm.html.

Top down modelling involves representing observed system behaviour with equation based models
(EBM), such as differential equations (either ODE’s over time or PDE’s over time and space). In such
systems, observables represent changeable quantities such as population sizes or concentrations of a
particular entity. Models are often designed to match real world observations and then used to make
predictions or hypotheses of the system under differing conditions. Often such predictions can be
checked through observation or experimentation. Despite the advantages for macroscopic simulation,
EBM offers little insight into the micro-level behaviour representing the interactions of the individuals

http://www.swarm.org/index.php/Agent-Based_Models_in_Biology_and_Medicine
http://www.swarm.org/index.php/Agent-Based_Models_in_Biology_and_Medicine
http://www.bmm.icnet.uk/~barr03
http://www.bmm.icnet.uk/~barr03
http://www.bmm.icnet.uk/~barr03
http://www.bmm.icnet.uk/~barr03
http://www.dcs.shef.ac.uk/~rod/Integrative_Systems_Biology.html
http://www.dcs.shef.ac.uk/~rod/Integrative_Systems_Biology.html
http://www.dcs.shef.ac.uk/~rod/Integrative_Systems_Biology.html
http://www.dcs.shef.ac.uk/~rod/Integrative_Systems_Biology.html
http://abmsystemsbiology.info/index.htm
http://abmsystemsbiology.info/index.htm
http://abmsystemsbiology.info/index.htm
http://abmsystemsbiology.info/index.htm
http://www.red3d.com/cwr/ibm.html
http://www.red3d.com/cwr/ibm.html

4 ABMS APPLICATIONS 28

within the system. Where global observations are made, these represent average values and assume
homogeneity and perfect mixing of system components. As a result, important low level details of the
system may be ignored.

In contrast, ABMs utilise a bottom up approach to simulation that does not explicitly attempt to
model aggregate characteristics of a system. As with multi-agent systems (MAS), ABMs can be
described as a “system of interacting parts”. The notable difference being that agents are simulated
as autonomous individuals whereas MAS may use a more generic agent representation. Typically an
ABM consists of a number of agents, an environment and a set of rules governing agent behaviour.
Agents themselves are self contained entities with states and a set of behavioural rules. Agents may
represent discrete spatial entities such as molecules or cells, in which case they may reside within a
continuous or discrete spatial environment. In either case, agents may interact directly or through an
environment where they compete for resources. By specifying rules at an individual level, “emergent”
complex system behaviour can be observed through the result of agent interactions. The specification
of individual rules also makes ABMs inherently capable of representing heterogeneity, as each agent
can possess its own individual attributes and behaviours. Such system wide diversity is important
as in many systems agents cannot be expressed as simple uniform entities. This is particularly true
in cellular level agent based modelling, where cells in differing states (e.g. different cell cycle phases)
or subject to different micro-environments (e.g. local stress of biochemical gradients), may exhibit
entirely different behaviours or differing phenotypes.

Some of the biological applications of ABMS have focussed on artificial life studies. Other studies are
directed to understanding the biology of cells, organs and organisms. A list of six applications was
given in a short survey by Politopoulos [53].

1. An agent based model for real time signalling induced in osteocytic networks by mechanical stimuli
B.J. Ausk, T.S. Gross, S. Srinivasan, Journal of Bio-Mechanics (2005)

2. The epitheliome: agent based modeling of the social behaviour of cells D.C. Walker, J. Southgate,
G. Hill, M. Holcombe, D.R. Hose, S.M. Wood, S. MacNeil, R.H. Smallwood, Bio-Systems 76:1-3
(2004) 89-100

3. Emerging patterns in tumour systems: simulating the dynamics of multi-cellular clusters with
an agent based spatial agglomeration model. Y. Mansury, M. Kimura, J. Lobo, T.S. Deisboeck,
Journal of Theoretical Biology 219:3 (2002) 343-70

4. Multi-disciplinary investigation into adult stem cell behaviour M. d’Inverno and J. Prophet,
Lecture Notes in Computer Science 3737 (2005) 49-64

5. In silico experiments of existing and hypothetical cytokine directed clinical trials using agent
based modeling G. An, Critical Care Medicine 32:10 (2004) 2050-60

6. Modelling the effect of exogenous calcium on keratinocyte and HaCat cell proliferation and dif-
ferentiation using agent based computational paradigm D. Walker, T. Sun, S. MacNeil, R. Small-
wood, Tissue Engineering 12:8 (2006) 2301-9

In medicine, ABMS has been applied to: epidemiology and infection; acute inflammation; immunology;
cancer and tumours; wound healing; vascular system; signaling and metabolic process. All the tissues
in our bodies (to be more general, all multi-cellular creatures) self assemble. The “rules” for doing

4 ABMS APPLICATIONS 29

this are in each cell – in the genetic material. There is no information at a higher level of organisation
than the individual cell, so all the organisation in tissues and organs and organisms is an “emergent
property” of the interaction of large numbers of individual cells – 1013 in a human [43]. That is what
we are interested in – how does this social interaction of the cells produce properly functioning and
structured creatures?

A Web site hosted for Cancer Research UK shows some examples of modelling cancer growth, for
instance angiogenesis [6], see http://www.bmm.icnet.uk/~barr03/us.html. This includes a page of
links to relevant publications.

In the biological sciences, Argonne researchers are using ABMs to model cellular behaviour. AgentCell
is a parallel agent based simulator for modelling the chemotactic processes involved in the motile
behaviour of the Escherichia coli bacteria. AgentCell is an open source tool, based on the Repast
Simphony toolkit developed by Argonne and University of Chicago. The research examined how the
range of natural cell diversity is responsible for the full range of cell behaviours.

The researchers ran numerous simulations of the E. coli chemotaxis network for many cells and stochas-
tic variations. They modelled agents at the molecular level as well as at the whole cell level. Argonne
is now investigating the efficient implementation of agent to agent interactions over MPI that minimise
resource contention through its exascale computing research effort.

Large scale simulations of “digital bacteria” run on compute clusters suggest that the chemotaxis
network is tuned to simultaneously optimise the random spread of cells in the absence of nutrients
and the cellular response to gradients of nutrients. Without a high performance (parallel) implemen-
tation this work would have been very difficult to complete. These computations have paved the way
for closer collaborations between analytical treatments of, computational modelling of, and wet lab
experimentation with E. coli behaviour, which potentially has broad implications for many biological
systems.

Other areas of study include the following.

• Study of propagation of epidemics and pandemics;

• Cell behaviour, e.g. wound healing using stem cells;

• Sub-cellular molecular behaviour;

• Cancer growth modelling.

Whilst it has been shown that other modelling methods are more appropriate to study the actual spread
and causes of pandemics [15], ABMS still has a role to play. According to Epstein [21] ABMS is useful
because it can capture irrational behaviour, complex social networks and global scale phenomena. In
his opinion, the cutting edge in performance is the Global Scale Agent Model (GSAM) developed by
Jon Parker at the Brookings Institute [49]. This includes 6.5 billion distinct agents, with movement
and day-to-day local interactions modelled as available data allow.

For the USA, the GSAM contains 300 million cyber-people and every hospital and staffed bed in the
country. The National Center for the Study of Preparedness and Catastrophic Event Response at
Johns Hopkins University in Baltimore is using the model to optimise emergency surge capacity in a

http://www.bmm.icnet.uk/~barr03/us.html
http://www.bmm.icnet.uk/~barr03/us.html

4 ABMS APPLICATIONS 30

pandemic, supported by the Department of Homeland Security. We note however that in other work
Operational Research methodologies have been used for surge planning.

4.2 Physics and Chemistry

Some application areas are as follows.

• Design of self organising materials and self organising systems; directed self assembly; use of
fields to govern self organisation, modelling in terms of agent based algorithms.

• Modelling of fluid flows and flow and segregation in granular matter.

• Modelling of gene and protein interaction networks, immunology.

• Complex reactions, network analysis of the fate of pollutants, leading to science based environ-
mental policies.

• Studies of complex fluctuations in physiologic systems including the ability of systems to respond
to multiple environmental stimuli.

• Design of safety critical systems; analysis of failures in distributed systems.

4.3 Security

After the terrorist attack on the USA of 11/9/2001, the defense and intelligence communities expressed
increased interest in understanding what certain kinds of people might do, how their organisations
might behave and how to synthesise useful information out of large data sets. The US Defense
Advanced Research and Projects Agency (DARPA) announced new initiatives in these areas and the
intelligence community, with the National Security Agency (NSA) apparently in the lead, formed
the Advanced Research and Development Activity (ARDA) with the same purposes announced. A
particular interest of ARDA is what they called “novel intelligence from massive data”.

In the UK there are similar initiatives, with BAE Systems and Detica taking a lead. The recent
INSTINCT’09 initiative put on show a number of novel technologies and applications, some including
ABMS.

Some of the application areas are as follows.

• Transportation and logistics;

• Human movement patterns;

• Evacuation modelling and planning;

• Social determinants;

• Organisational networks.

4 ABMS APPLICATIONS 31

There are a number of examples of ABMs applied to scenario planning in evacuation conditions, for
instance [17, 73].

Network analysis is also used in security applications, for instance in understanding links between
political groups via a study of on-line networks [2].

4.4 Cyber Security

Cyber-security also offers considerable opportunities to apply exa-scale ABMS. There is a need to
develop advanced methods to explore future cyber-security scenarios that involve a variety of defensive
strategies. Simulation techniques are one approach that may yield insight to vulnerabilities and
security dynamics. The scope of simulation includes the systems, such as computers, networks, routers,
filters and monitors, users of these systems, administrators, configuration processes, cyber-security
policies and external threat agents.

The world wide information technology (IT) infrastructures are large scale systems with 106 to 1010 IT
entities consisting of a few hundred types. Each entity can have a very large number of possible internal
states and many thousands of users and administrators. These systems are geographically dispersed
and connected by complex networking with constantly evolving topologies. Agent based modelling
is a natural methodology for simulating such infrastructures since both the technical dimensions (for
example, the server protocols) and the human dimensions, such as using “social engineering” to gain
user passwords, of these systems can be simultaneously modelled. Argonne researchers are developing
prototype models of typical IT infrastructures and the associated mechanisms to explore current and
alternative administrative policies. The linking of human behaviour with network structure offers the
possibility of breakthroughs in the fundamental understanding of cyber-security.

4.5 The Environment

Improving scientific understanding of climate change requires researchers to consider the physical,
economic and social determinants of climate impact. Modelling all three aspects is essential for long
term climate forecasting since economic and social decision making has a potentially important effect
on physical climate factors, such as individual fuel choices and how use of energy technologies may
affect atmospheric carbon dioxide concentrations. Similarly, physical climate factors may influence
decision making, for example, rising atmospheric carbon dioxide concentrations may encourage people
to reduce carbon dioxide emissions. Much progress has already been made in modelling the physical
aspects of climate change such as atmospheric flows, oceanic circulation and albedo effects.

4.6 Social and Economic Modelling

Recent research in agent based economic and social modelling has opened the door to modelling the
feedback loops inherent in the social aspects of climate change. The resulting scenarios will require
modelling up to 1010 human agents. These agents would each have a large number of complex internal
states (103 or more) and be drawn from a wide range of behavioural types.

5 ABMS ON HPC 32

FLAME is being used for economic modelling in the EURACE project. From the scientific point of
view, the main effort in this project regards the study and the development of multi-agent models
that reproduce, at the aggregate economic level, the emergence of global features as a self organised
process from the complex pattern of interactions among heterogeneous individuals.

From the technological point of view, the project will develop, with advanced software engineering
techniques, a software platform in order to realise a powerful environment for large scale agent based
economic simulations. Key issues will be the definition of formal languages for modelling and for
optimising code generation, the development of scalable computational simulation tools and the stan-
dardisation of data with easy to use human-machine interfaces.

Finally, from the social point of view, the agent based software platform for the simulation of the
European economy aims to have an impact on the economic policy design capabilities of the European
Union. It will be a powerful tool, enabling to perform “what if?” analysis, optimising the impact of
regulatory decisions that could be quantitatively based on European economy scenarios.

Some application areas are as follows.

• Artificial financial markets;

• Consumer markets;

• Insurance;

• Manufacturing.

4.7 Supply Network and Transport Optimisation

Some application areas are as follows.

• Understanding of product and manufacturing supply networks. Supply networks in economics.

• Understanding and evolution of organisations, including the design of structures for scientific
and technological collaboration.

• Trade networks;

• Transportation;

• Electric power markets;

• Hydrogen economy.

5 ABMS on HPC

High performance computing systems permit the execution of sophisticated adaptive ABMs with many
agents and complex geometry and rules.

5 ABMS ON HPC 33

5.1 HPC Clusters

Cluster based distributed memory computing is efficient if the processor cores spend most of the time
computing rather than communicating. This is however not easy with ABMs due to their high levels
of communication between agents. A number of methods have appeared where those which most
frequently communicate with each other are grouped together on one processor.

See EURACE Web site http://www.eurace.org and [19] for information about FLAME on HPC
clusters including NW-GRID and HPCx. Parallel extensions to FLAME in this case use a “message
board” approach with different boards for different types of message. This allows the communication
pattern to be optimised and messages only sent when necessary.

5.2 BlueGene

See SciDAC review [45] for information on work at Argonne National Laboratory on IBM BlueGene
and clusters.

The open source and highly scalable agent based modelling toolkit being developed at Argonne for the
exa-scale ABMS system has four major architectural components: a time scheduler; a storage system
for agent endogenous data; a storage system for agent topologies; and a data logging system. The
storage systems for agent endogenous data and agent topologies are generally synchronised to form a
single data storage framework.

Time schedulers coordinate and synchronise the flow of agent activities as events unfold in the simu-
lation. Storage systems for agent endogenous data hold the internal state information for each agent,
for example, each agent’s scalar attributes. This component is also responsible for saving the agent’s
internal state information across executions of the model, such as storing input data or allowing runs
to be replicated. Storage and access systems for agent topologies hold both the spatial and aspatial
relationships between agents and manage the communications between agents that occur across these
links. These systems are also responsible for saving the relationship information across separate exe-
cutions of the model. Data logging systems record the activities within and the results of simulations,
for example, who talked to whom, and when, in a social network. The information stored by these
systems is used for simulation analysis and visualisation.

Argonne researchers plan to complete the backbone of the exa-scale ABMS system within the next
year. They will then work to extend the system, based on a focused series of experiments in each of
the pilot application areas, as well as furthering the development of the models for each domain. The
system will enable the researchers to work with microbiologists, social scientists and cyber-security
experts in advancing breakthrough science in these areas. In broader terms, the architecture and
knowledge provided by this research will be applicable to many other areas.

5.3 GPGPU

Over the past 5 years, a minor revolution has ocurred in low cost HPC capabilities through the
emergence of general purpose programmable graphical processor units (GPGPUs). Using commodity
GPUs such as those from nVidia or AMD has appeal as many personal computers have them, so

http://www.eurace.org
http://www.eurace.org

6 ABMS COMMUNITY AND RESEARCH 34

give enhanced power to resources such as Condor pools and home computers used in philanthropic
computing.

ABMS packages are beginning to be adapted to run on GPUs e.g. using the CUDA language. There is
a Web site devoted to genetic programming for GPU – GPGPGPU at http://www.gpgpgpu.com. Cur-
rent references include the work of Lysenko and D’Souza at Michigan Technological University [37] and
of Paul Richmond at Sheffield University http://www.dcs.shef.ac.uk/~paul/abgpu.html. Lysenko
et al. presented an attractive stochastic allocator algorithm for parallel agent replication on a GPU.
Richmond et al. have written a number of papers on Agent Based Modelling on GPU [59, 60, 63] and
described GPU extensions to the FLAME framework. More recent work on multi-GPU and multi-core
systems is by Aaby et al. [1] at Oak Ridge National Laboratory.

5.4 Cell

There are currently no known ports of ABMS to Cell, although there are some genetic algorithms and li-
braries being developed, see http://www.ibm.com/developerworks/power/cell/open_source.html.

Some simpler simulations of crowd behaviour demonstrating flocking via the Boids algorithm have been
published: PSBoids – Reynolds 2000 (on PS2); GEBS – Erra et al. 2004 (CPU+GPU); FastCrowd –
Courty and Musse 2005 (CPU+GPU); and PSCrowd – Reynolds 2006 (on PS3) [58].

Richmond et al. planned to re-code FLAME GPU in OpenCL which would permit it to run on Cell,
ATI GPUs and Intel Larrabee. By 2010 the interest in cell based systems had waned as GPGPUs
became increasingly popular.

6 ABMS Community and Research

AgentLink: an EU Network of Excellence for Agent Based Computing, was a network of researchers
and developers with a common interest in agent technology. Funding ceased in 2005, see http:
//www.agentlink.org.

CoABS: Control of Agent Based Systems (CoABS) is a DARPA programme to develop and demon-
strate techniques to safely control, coordinate, and manage large systems of autonomous distributed
software agents. CoABS is investigating the use of agent technology to improve military command,
control, communication, and intelligence gathering. See http://coabs.globalinfotek.com.

CSCS, Center for the Study of Complex Systems, is a broadly inter-disciplinary programme at the
University of Michigan designed to encourage and facilitate research and education in the general area
of non-linear, dynamical and adaptive systems. Nearly every college of the university participate, thus
illustrating that many different kinds of system which include self regulation, feedback or adaptation
in their dynamics, may have a common underlying structure. Moreover, the structural similarities
can be exploited to transfer methods of analysis and understanding from one field to another. In
addition to developing deeper understandings of specific systems, inter-disciplinary approaches should
help elucidate the general structure and behaviour of complex systems and move us toward a fuller
appreciation of the general nature of such systems. See http://cscs.umich.edu.

http://www.gpgpgpu.com
http://www.gpgpgpu.com
http://www.dcs.shef.ac.uk/~paul/abgpu.html
http://www.dcs.shef.ac.uk/~paul/abgpu.html
http://www.ibm.com/developerworks/power/cell/open_source.html
http://www.ibm.com/developerworks/power/cell/open_source.html
http://www.agentlink.org
http://www.agentlink.org
http://www.agentlink.org
http://www.agentlink.org
http://coabs.globalinfotek.com
http://coabs.globalinfotek.com
http://cscs.umich.edu
http://cscs.umich.edu

6 ABMS COMMUNITY AND RESEARCH 35

EURAMAS, European Association for Multi-Agent Systems, provides one of the few European organ-
isations encouraging cross disciplinary collaboration in this area. EURAMAS organises a European
Workshop on Multi-agent Systems (EUMAS) and the European Summer School on Multi-agent Sys-
tems (EASSS). These are important in promoting the understanding and application of agent based
technology.

Recently ERCIM (The European Research Consortium for Informatics and Mathematics)has consid-
ered setting up a Special Interest Group on Agent Based Technology and Applications.

Open Agent Based Modeling Consortium http://www.openabm.org/site is hosted at Arizona State
University as part of the NSF CoMSES. The OpenABM Consortium is a group of researchers, edu-
cators and professionals with a common goal to improve the way we develop, share, and utilise agent
based models. They are currently developing a model archive to preserve and maintain the digital
artefacts and source code comprising an agent based model.

The Software Agents group of the MIT Media Laboratory investigates computer systems to which
one can delegate tasks. Software agents differ from conventional software in that they are long lived,
semi-autonomous, proactive and adaptive. The group develops techniques and builds prototype agent
systems that can be tested. See http://agents.media.mit.edu, but there seem to be no publications
since 2004.

SWARM Developers Group Wiki http://www.swarm.org/wiki.

Recently, following a call for statments of interest from EPSRC, the UK community has rallied around
a proposal to establish a Collaborative Computational Project in Agent Based Modelling Technol-
ogy [98].

6.1 Future Research Challenges

As discussed in [98] there are a number of challenges which must be faced in order to make ABMs
a mainstream computational science technology. These are being addressed by the community, and
include the following 1.

• Issues of applications to large and complex systems;

• Performance of ABMs – parallelisation technology;

• Verification and validation of large scale models;

• Statistical inference for agent based models;

• Representation and standards for model exchange between codes;

• Future application areas;

• Need for a Collaborative Computational Project in ABMs where the community can share best
practice and software.

1as discussed at a community awareness raising workshop held in Leeds on 15/6/2010.

http://www.openabm.org/site
http://www.openabm.org/site
http://agents.media.mit.edu
http://agents.media.mit.edu
http://www.swarm.org/wiki
http://www.swarm.org/wiki

REFERENCES 36

An NSF report was published in 2007 entitled: Modeling and Simulation at the Exascale for Energy
and the Environment. Report on the Advanced Scientific Computing Research Town Hall Meetings
on Simulation and Modeling at the Exascale for Energy, Ecological Sustainability and Global Security
(E3). http://www.sc.doe.gov/ascr/ProgramDocuments/ProgDocs.html. This notes as one of its
goals to identify emerging domains of computation and computational science that could have dramatic
impacts on economic development, such as agent based simulation, self assembly, and self organization
and suggests this can be addressed by Math and Algorithms. Advancing mathematical and algorithmic
foundations to support scientific computing in emerging disciplines such as molecular self assembly,
systems biology, behavior of complex systems, agent based modeling, and evolutionary and adaptive
computing.

More specifically it listed a number of challenges which have to be addressed.

• Distributed query resolution to allow agents to flexibly and repeatedly find other agents and
recognise methods for interaction in a dynamic environment with a continually and endogenously
evolving structure (e.g., non-reified networks);

• Situational activation of agents based on contextual factors and associated real location to work-
ing sets of processors with appropriate inter-processor locality;

• Efficient implementation of periodic fine grained interactions between agents where the pay-offs
from the interplay are defined as an endogenous function of the ongoing interactions themselves,
such that players are free to enter and leave the interactions at idiosyncratic times;

• Distributed time scheduling at a level of parallelism beyond the current approaches;

• Extremely high volume data warehousing to allow efficient exploration of huge numbers of large
model runs;

• Efficient directed sweeps across huge model parameter spaces with appropriate adaptation as
results are discovered;

• Domain decomposition techniques for parallel agent based simulations where the computational
load per agent is variable, in time for the same agent, as well as from agent to agent, and where
the geographical locality has no relation to the nature and volume of communication between
agents.

Clearly agent based modelling must be advanced along several directions before it can present a
viable approach for addressing exa-scale application needs and which can be relied upon to help make
decisions in a complex and changing world.

References

[1] B.G. Aaby, K.S. Perumalla and S.K. Seal Efficient Simulation of Agent Based Models on multi-
GPU and multi-Core Clusters Proc. 3rd Int. Conf. on Simulation Tools and Techniques (Simu-
Tools 2010, Malaga)

http://www.sc.doe.gov/ascr/ProgramDocuments/ProgDocs.html
http://www.sc.doe.gov/ascr/ProgramDocuments/ProgDocs.html

REFERENCES 37

[2] R. Ackland et al. VOSON: Virtual Observatory for the Study of On-line Networks Web site
http://voson.anu.edu.au

[3] K. Arai, H. Deguchi and H. Matsui (eds.) Agent Based Modeling Meets Gaming Simulation Proc.
ISAGA 2006 (Springer 2006) 180pp ISBN 978-4-4312-9426-0

[4] R.A. Axelrod The Complexity of Cooperation: Agent Based Models of Competition and Collab-
oration (Princeton University Press, 1997) 248pp ISBN 978-0-6910-1567-5

[5] M. Batty Cities and Complexity: Understanding Cities with Cellular Automata, Agent Based
Models and Fractals (The MIT Press, 2005) 542pp ISBN 978-0-262-02583-6

[6] K. Bentley, H. Gerhardt and P.A. Bates Agent based simulation of notch mediated tip cell selec-
tion in angiogenic sprout initialisation Journal of Theoretical Biology, 250:1 (2008) 25-36

[7] E. Bonabeau Agent based modeling: Methods and techniques for simulating human systems Proc.
Nat. Academy of Sciences 99 (2002) 7280-287

[8] E. Bonabeau Predicting the unpredictable Harvard Business Review 80:3 (2002) 109-15

[9] R.H. Bordini, J.F. Hübner and M. Wooldridge Programming Multi-Agent Systems in AgentSpeak
using Jason (John Wiley, 2007) 292pp ISBN 978-0-470-02900-8

[10] J. Carvalho Using AgentSheets to teach simulation to undergraduate students Journal of Artificial
Societies and Social Simulations 3:3 (2000) http://jasss.soc.surrey.ac.uk/3/3/forum/2.
html

[11] C.J.E. Castle and A.T. Crooks Principles and Concepts of Agent Based Modelling for Developing
Geo-spatial Simulations (UCL, Sept’2007) ISSN 1467-1298. See CASA Web site working paper
110

[12] S. Coakley, R. Smallwood and M. Holcombe From Molecules to Insect Communities – how For-
mal Agent Based Computational Modelling is uncovering new Biological Facts Scientiae Mathe-
maticae Japonicae 64:2 (2006) 185-98

[13] S. Coakley, R. Smallwood and M. Holcombe Using X-Machines as a Formal Basis for describing
Agents in Agent Based Modelling Proc. Spring Simulation Multi-conference (SCS, 2006) 33-40
http://www.scs.org/confernc/springsim06/prelimProgram/ads/5.html

[14] V.S. Colella, E. Klopfer and M. Resnick Adventures in Modeling: exploring complex dynamic
systems with StarLogo (Teachers College Press, 2001) 188pp ISBN 978-0-8077-4082-8 http:
//www.media.mit.edu/starlogo/adventures

[15] V. Colizza and A. Vespignani The Flu Fighters Physics World 23:2 (Feb’2010) 26-30

[16] N. Collier, R. Howe and M. North Onward and Upward: The Transition to Repast 2.0 Proc.
1st Annual North American Association for Computational Social and Organizational Science
Conference. (Pittsburgh, PA, June 2003)

[17] A.T. Crooks, C.J.E. Castle and M. Batty Key Challenges in Agent Based Modelling for Geo-
spatial Simulation (UCL, Sept’2007) ISSN 1467-1298 See CASA Web site working paper 121

[18] H. Deguchi Economics as an Agent Based Complex System: Toward Agent Based Social Systems
Sciences (Springer 2004) 260pp ISBN 978-0-443-120985-0

http://voson.anu.edu.au
http://voson.anu.edu.au
http://jasss.soc.surrey.ac.uk/3/3/forum/2.html
http://jasss.soc.surrey.ac.uk/3/3/forum/2.html
http://jasss.soc.surrey.ac.uk/3/3/forum/2.html
http://jasss.soc.surrey.ac.uk/3/3/forum/2.html
http://www.scs.org/confernc/springsim06/prelimProgram/ads/5.html
http://www.scs.org/confernc/springsim06/prelimProgram/ads/5.html
http://www.media.mit.edu/starlogo/adventures
http://www.media.mit.edu/starlogo/adventures
http://www.media.mit.edu/starlogo/adventures
http://www.media.mit.edu/starlogo/adventures

REFERENCES 38

[19] C. Deissenberg, S. van der Hoog and H. Dawid EURACE: a Massively Parallel Agent Based
Model of the European Economy Applied Mathematics and Computation 204 (2008) 541-52

[20] N. Ehrentreich Agent Based Modeling – The Santa Fe Institute Artificial Stock Market Model
Revisited (Springer, 2007) ISBN 978-3-5407-3878-9

[21] J.M. Epstein Modelling to contain Pandemics Nature 460 (6/8/2009) 687. DOI 1038/460687a
http://www.nature.com/nature/journal/v460/n7256/full/460687a.html

[22] P.A. Fishwick Simulation Model Design and Execution: Building Digital Worlds (Prentice-Hall,
1995) 432pp ISBN 978-0-13-098609-2

[23] L. Foucart A Small Multi-Agent Systems Review http://geneura.ugr.es/~louis/masReview.
html

[24] N. Gilbert Agent Based Models – Quantitative Applications in the Social Sciences Series (SAGE
Publications, 2007) 112pp ISBN 978-1-4129-4964-4

[25] N. Gilbert and S. Bankes Platforms and Methods for Agent based Modeling Proc. National
Academy of Sciences of the USA 99:3 (14/5/2002) 7197-8

[26] V. Grimm and S.F. Railsback Individual Based Modeling and Ecology (Princeton University
Press, 2005) 480pp ISBN 978-0-691-09666-7 http://www.humboldt.edu/~ecomodel/book.htm

[27] C.A. Iglesias, M. Garijo and J. Centeno-González A Survey of Agent Oriented Methodologies
Proc. 5th Int. Workshop on Intelligent Agents (Springer, 1999) 317-30

[28] N.R. Jennings, K. Sycara and M. Wooldridge A Roadmap of Agent Research and Development
J. Autonomous Agents and Multi-Agent Systems 1:1 (1998) 7-38

[29] A. Johansson Data Driven Modeling of Pedestrian Crowds: Crowd Simulation, Computer Vision,
and Real World Applications (VDM Verlag Dr. Müller, 20/11/2009) 196pp ISBN 978-3-63920-
893-1

[30] P. Johnson Swarm User Guide http://lark.cc.ukans.edu/~pauljohn/Swarm/Beta/
SwarmUserGuide/userbook.html

[31] Paul Johnson’s Swarm HQ includes lots of examples of Swarm code http://lark.cc.ukans.
edu/~pauljohn/Swarm

[32] K. Kahn and H. Noble The BehaviourComposer 2.0: a Web based tool for composing NetL-
ogo code fragments Proc. Constructionism (Paris, 2010) http://modelling4all.wikidot.com/
publications

[33] E. Lavery Introduction to Agent Based Simulation and Flexsim (Flexsim Corp. 2008) http:
//www.flexsim.com

[34] M. Luck, R. Ashri and M. d’Inverno Agent Based Software Development (Agent Oriented Sys-
tems) (Artech House Publishers, 2004) 228pp ISBN 978-1-58053-605-0

[35] M. Luck, P. McBurney, O. Shehory and S. Willmott Agent Technology: Computing as Interaction
(A Roadmap for Agent Based Computing) (AgentLink, 2005) ISBN 978-0-85432-845-9

http://www.nature.com/nature/journal/v460/n7256/full/460687a.html
http://www.nature.com/nature/journal/v460/n7256/full/460687a.html
http://geneura.ugr.es/~louis/masReview.html
http://geneura.ugr.es/~louis/masReview.html
http://geneura.ugr.es/~louis/masReview.html
http://geneura.ugr.es/~louis/masReview.html
http://www.humboldt.edu/~ecomodel/book.htm
http://www.humboldt.edu/~ecomodel/book.htm
http://lark.cc.ukans.edu/~pauljohn/Swarm/Beta/SwarmUserGuide/userbook.html
http://lark.cc.ukans.edu/~pauljohn/Swarm/Beta/SwarmUserGuide/userbook.html
http://lark.cc.ukans.edu/~pauljohn/Swarm/Beta/SwarmUserGuide/userbook.html
http://lark.cc.ukans.edu/~pauljohn/Swarm/Beta/SwarmUserGuide/userbook.html
http://lark.cc.ukans.edu/~pauljohn/Swarm
http://lark.cc.ukans.edu/~pauljohn/Swarm
http://lark.cc.ukans.edu/~pauljohn/Swarm
http://lark.cc.ukans.edu/~pauljohn/Swarm
http://modelling4all.wikidot.com/publications
http://modelling4all.wikidot.com/publications
http://modelling4all.wikidot.com/publications
http://modelling4all.wikidot.com/publications
http://www.flexsim.com
http://www.flexsim.com
http://www.flexsim.com
http://www.flexsim.com

REFERENCES 39

[36] S. Luke, C. Cioffi-Revilla, L. Panait and K. Sullivan MASON: a new Multi-Agent Simulation
Environment Simulation 81:7 (2005) 517-27

[37] M. Lysenko and R. D’Souza A Framework for Megascale Agent Based Model Simulations on
Graphics Processing Units Journal of Artificial Societies and Social Simulation 11:4 (2008) 10
http://jasss.soc.surrey.ac.uk/11/4/10.html

[38] C.M. Macal and M.J. North Tutorial on Agent Based Modeling and Simulation: Desktop ABMS
Proc. 2007 Winter Simulation Conference. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle,
J. D. Tew and R. R. Barton (eds.), (Washington, DC, December 2007) 95-106 http://www.
informs-sim.org/wsc07papers/011.pdf

[39] G. Marsaglia, A. Zaman and W.W. Tsang A Universal Random Number Generator Statistics
and Probability Letters 8 (1990) 35-39

[40] M. Matsumoto and T. Nishimura Mersenne Twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator ACM Transactions on Modeling and Computer Simula-
tion 8 (1998) 3-30

[41] N. Minar, R. Burkhart, C. Langton and M. Ashenazi The Swarm Simulation System: a Toolkit
for building multi-agent Simulations (Santa Fe Institute, 1996) Working Paper 96-06-042

[42] S. Moss, H.Gaylard, S. Wallis and B. Edmonds SDML: A Multi-agent Language for Organiza-
tional Modelling Computational and Mathematical Organization Theory 4:1 (1998) 43-69

[43] D. Noble The Music of Life – Biology beyond the Genome (OUP, June 2006) 176pp ISBN 978-
0-199-22836-2 http://www.musicoflife.co.uk/

[44] M.J. North, N.T. Collier and J.R. Vos Experiences Creating Three Implementations of the Repast
Agent Modeling Toolkit ACM Transactions on Modeling and Computer Simulation 16:1 (2006)
1-25

[45] M.J. North and C.M. Macal Agent Based Modelling and Simulation for Exascale Computing
SciDAC Review (Feb’2008) http://www.scidacreview.org/0802/html/abms.html

[46] M.J. North and C.M. Macal Managing Business Complexity: Discovering Strategic Solutions
with Agent Based Modeling and Simulation (Oxford University Press, 2007) 329pp ISBN 978-0
195-17211-9

[47] J.J. Odell Objects and Agents Compared J. of Object Technology 1:1 (May-June 2002) 41-53

[48] A.L. Paredes and C.H. Iglesias (eds.) Agent Based Modelling in Natural Resource Management
(INSISOC, Spain, 2008), http://www.insisoc.org/INSISOC/INSISOC_archivos/ABMbook/
ABMbook.htm

[49] J.A. Parker ACM Trans. Model. Comput. S. (2009) in press. Cited by Epstein.

[50] M. Parker Presentation Slides on Ascape http://www.brook.edu/es/dynamics/models/
ascape/UChicago/tsld001.htm

[51] M. Parker What is Ascape and why should you care? JASSS:Journal of Artificial Societies and
Social Simulation (January 2001) http://jasss.soc.surrey.ac.uk

http://jasss.soc.surrey.ac.uk/11/4/10.html
http://jasss.soc.surrey.ac.uk/11/4/10.html
http://www.informs-sim.org/wsc07papers/011.pdf
http://www.informs-sim.org/wsc07papers/011.pdf
http://www.informs-sim.org/wsc07papers/011.pdf
http://www.informs-sim.org/wsc07papers/011.pdf
http://www.musicoflife.co.uk/
http://www.musicoflife.co.uk/
http://www.scidacreview.org/0802/html/abms.html
http://www.scidacreview.org/0802/html/abms.html
http://www.insisoc.org/INSISOC/INSISOC_archivos/ABMbook/ABMbook.htm
http://www.insisoc.org/INSISOC/INSISOC_archivos/ABMbook/ABMbook.htm
http://www.insisoc.org/INSISOC/INSISOC_archivos/ABMbook/ABMbook.htm
http://www.insisoc.org/INSISOC/INSISOC_archivos/ABMbook/ABMbook.htm
http://www.brook.edu/es/dynamics/models/ascape/UChicago/tsld001.htm
http://www.brook.edu/es/dynamics/models/ascape/UChicago/tsld001.htm
http://www.brook.edu/es/dynamics/models/ascape/UChicago/tsld001.htm
http://www.brook.edu/es/dynamics/models/ascape/UChicago/tsld001.htm
http://jasss.soc.surrey.ac.uk
http://jasss.soc.surrey.ac.uk

REFERENCES 40

[52] H. Van Dyke Parunak Go to the Ant: Engineering Principles from Natural Agent Systems Annals
of Operations Research 75 (1997) 69-101

[53] I. Politopoulos Review and Analysis of Agent Based Models in Biology (University of Liverpool,
11/9/2007)

[54] S.F. Railsback and V. Grimm A Course in Individual and Agent Based Modelling Princeton
University Press (in preparation, 2010) http://www.railsback-grimm-abm-book.com

[55] S.F. Railsback, S.L. Lytinen and S.K. Jackson Agent Based Simulation Platforms: Review
and Development Recommendations Simulation 8:9 (2005) 609-23 http://www.humboldt.edu/

~ecomodel/documents/ABMPlatformReview.pdf

[56] F. Rateb, N. Bellamin and B. Pavard The simulation of the Spread of Malaria in Haiti devel-
oped at GRIC IRIT, see Web site http://www.irit.fr/COSI/training/evaluationoftools/
Evaluation-Of-Starlogo.htm

[57] A. Repenning, A. Ioannidou and J. Zola AgentSheets: End User Programmable Simulations
Journal of Artificial Societies and Social Simulations 3:3 (2000) http://jasss.soc.surrey.
ac.uk/3/3/forum/1.html

[58] C. Reynolds Big Fast Crowds on PS3 Proc. ACM SIGGRAPH Symposium on Video-games
(Sandbox’06, 2006) 113-21

[59] P. Richmond and D. Romano Agent Based GPU, a Real Time 3D Simulation and Interactive
Visualisation Framework for Massive Agent Based Modelling on the GPU Web site http://
www.dcs.shef.ac.uk/~paul/abgpu.html

[60] P. Richmond and D. Romano A High Performance Framework for Agent Based Pedestrian Dy-
namics on GPU Hardware Web site http://www.dcs.shef.ac.uk/~paul/pedestrians.html

[61] P. Richmond and D. Romano Agent based GPU, a real-time 3D Simulation and Interactive
Visualisation Framework for Massive Agent Based Modelling on the GPU Proc. Int. Workshop
on Super-visualisation (IWSV08, Greece, 2008) in press

[62] P. Richmond, S. Coakley and D. Romano High Performance Agent Based Modelling Framework
on Graphic Card Hardware with CUDA Proc. 8th Int. Conf. on Autonomous Agents and Multi-
agent Systems (AAMAS, Budapest, 2009) in press

[63] P. Richmond, S. Coakley and D. Romano Cellular Level Agent Based Modelling on the Graphics
Processing Unit Proc. Workshop on High Performance Systems Biology (HiBi09, 2009) in press

[64] P. Richmond, S. Coakley, D. Walker and D. Romano Parallel Cellular Level Agent Based Mod-
elling with FLAME Briefings in Bio-informatics (Oxford University Press, 2009) submitted

[65] A. Schadschneider I’m a Football Fan – get me out of Here Physics World (IoP, July 2010) 21-5
http://physicsworld.com/cws/article/indepth/43033

[66] A. Serenko and B. Detlor Agent Toolkits: A General Overview of the Market and an Assessment
of Instructor Satisfaction with Utilizing Toolkits in the Classroom Working Paper 455 (McMaster
University, Hamilton, Ontario, Canada, 2002)

http://www.railsback-grimm-abm-book.com
http://www.railsback-grimm-abm-book.com
http://www.humboldt.edu/~ecomodel/documents/ABMPlatformReview.pdf
http://www.humboldt.edu/~ecomodel/documents/ABMPlatformReview.pdf
http://www.humboldt.edu/~ecomodel/documents/ABMPlatformReview.pdf
http://www.humboldt.edu/~ecomodel/documents/ABMPlatformReview.pdf
http://www.irit.fr/COSI/training/evaluationoftools/Evaluation-Of-Starlogo.htm
http://www.irit.fr/COSI/training/evaluationoftools/Evaluation-Of-Starlogo.htm
http://www.irit.fr/COSI/training/evaluationoftools/Evaluation-Of-Starlogo.htm
http://www.irit.fr/COSI/training/evaluationoftools/Evaluation-Of-Starlogo.htm
http://jasss.soc.surrey.ac.uk/3/3/forum/1.html
http://jasss.soc.surrey.ac.uk/3/3/forum/1.html
http://jasss.soc.surrey.ac.uk/3/3/forum/1.html
http://jasss.soc.surrey.ac.uk/3/3/forum/1.html
http://www.dcs.shef.ac.uk/~paul/abgpu.html
http://www.dcs.shef.ac.uk/~paul/abgpu.html
http://www.dcs.shef.ac.uk/~paul/abgpu.html
http://www.dcs.shef.ac.uk/~paul/abgpu.html
http://www.dcs.shef.ac.uk/~paul/pedestrians.html
http://www.dcs.shef.ac.uk/~paul/pedestrians.html
http://physicsworld.com/cws/article/indepth/43033
http://physicsworld.com/cws/article/indepth/43033

REFERENCES 41

[67] C.R. Shalizi Methods and Techniques of Complex Systems Science: An Overview Chapter 1 in
T.S. Deisboeck and J.Y. Kresh (eds.) “Complex Systems Science in Bio-medicine” (Springer,
New York, 2006) 33-114 ISBN 978-0-387-30241-6 http://arxiv.org/abs/nlin.AO/0307015

[68] C.R. Shalizi. On-line notebooks on ABM. Web site http://cscs.umich.edu/~crshalizi/
notebooks/agent-based-modeling.html

[69] R.K. Standish EcoLab Documentation Web site http://ecolab.sourceforge.net/doc/
ecolab/ecolab.html

[70] R.K. Standish and R. Leow EcoLab: Agent Based Modeling for C++ Programmers Proc. Swarm-
Fest (2003) arXiv:cs.MA/0401026

[71] T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood and S. MacNeil An integrated
systems biology approach to understanding the rules of keratinocyte colony formation J. Roy.
Soc. Interface 4 (2007) 1077-92

[72] R. Tobias and C. Hofmann Evaluation of free Java-libraries for social scientific agent based
simulation Journal of Artificial Societies and Social Simulation 7:1 (2004) http://jasss.soc.
surrey.ac.uk/7/1/6.html

[73] J. Thorp, S. Guerin, F. Wimberly, M. Rossbach, O. Densmore, M. Agar and D. Roberts Santa
Fe on Fire: Agent Based Modelling of Wildfire Evacuation Dynamcs Web site http://www.
redfish.com/wildfire

[74] M. Valente and E.S. Anderson A Hands-On Approach to Evolutionary Simulation: Nelson-
Winter Models in the Laboratory for Simulation Development The Electronic Journal of Evolu-
tionary Modeling and Economic Dynamics, 1003:1 (January 15, 2002) http://www.e-jemed.
org/1003/index.php

[75] D.C. Walker, J. Southgate and G. Hill The Epitheliome Project: Agent Based Modelling of the
Social Behaviour of Cells J. Bio. Systems 76:1-3 (2004) 89-100 http://dx.doi.org/10.1016/
-j.biosystems.2004.05.025

[76] D.C. Walker, S. Wood, J. Southgate, M. Holcombe and R. Smallwood An integrated Agent
Mathematical Model of the Effect of intra-cellular Signalling via the epidermal growth factor
receptor on cell proliferation J. Theoretical Biology 242 (2006) 774-89

[77] M. Wooldridge An Introduction to Multi-Agent Systems (Wiley and Sons, 2002) 348pp ISBN
978-0-471-49691-5

[78] B. Zeigler, T.G. Kim and H. Praehofer Theory of Modeling and Simulation 2nd edition. (Aca-
demic Press, 2000) ISBN 978-0-12-778455-7

[79] MAML Web site including MAML User manual, examples, papers, etc. http://www.maml.hu/
maml/about/about.html

[80] Slides describing MAML which was presented at SwamFest’99 http://www.syslab.ceu.hu/
maml/SwarmFest99

[81] RePast Web site http://repast.sourceforge.net/repast_3

[82] SDML Web site at Manchester Metropolitan University (the site includes tutorials, discussion
papers, SDML download facility and mailing lists). http://www.cpm.mmu.ac.uk/sdml

http://arxiv.org/abs/nlin.AO/0307015
http://arxiv.org/abs/nlin.AO/0307015
http://cscs.umich.edu/~crshalizi/notebooks/agent-based-modeling.html
http://cscs.umich.edu/~crshalizi/notebooks/agent-based-modeling.html
http://cscs.umich.edu/~crshalizi/notebooks/agent-based-modeling.html
http://cscs.umich.edu/~crshalizi/notebooks/agent-based-modeling.html
http://ecolab.sourceforge.net/doc/ecolab/ecolab.html
http://ecolab.sourceforge.net/doc/ecolab/ecolab.html
http://ecolab.sourceforge.net/doc/ecolab/ecolab.html
http://ecolab.sourceforge.net/doc/ecolab/ecolab.html
http://jasss.soc.surrey.ac.uk/7/1/6.html
http://jasss.soc.surrey.ac.uk/7/1/6.html
http://jasss.soc.surrey.ac.uk/7/1/6.html
http://jasss.soc.surrey.ac.uk/7/1/6.html
http://www.redfish.com/wildfire
http://www.redfish.com/wildfire
http://www.redfish.com/wildfire
http://www.redfish.com/wildfire
http://www.e-jemed.org/1003/index.php
http://www.e-jemed.org/1003/index.php
http://www.e-jemed.org/1003/index.php
http://www.e-jemed.org/1003/index.php
http://dx.doi.org/10.1016/-j.biosystems.2004.05.025
http://dx.doi.org/10.1016/-j.biosystems.2004.05.025
http://dx.doi.org/10.1016/-j.biosystems.2004.05.025
http://dx.doi.org/10.1016/-j.biosystems.2004.05.025
http://www.maml.hu/maml/about/about.html
http://www.maml.hu/maml/about/about.html
http://www.maml.hu/maml/about/about.html
http://www.maml.hu/maml/about/about.html
http://www.syslab.ceu.hu/maml/SwarmFest99
http://www.syslab.ceu.hu/maml/SwarmFest99
http://www.syslab.ceu.hu/maml/SwarmFest99
http://www.syslab.ceu.hu/maml/SwarmFest99
http://repast.sourceforge.net/repast_3
http://repast.sourceforge.net/repast_3
http://www.cpm.mmu.ac.uk/sdml
http://www.cpm.mmu.ac.uk/sdml

REFERENCES 42

[83] The SDML Beginners tutorial http://www.cpm.mmu.ac.uk/sdml/intro/html/sdml_tut_1.
html

[84] Starlogo Web site at MIT includes examples and tutorials, etc. http://www.media.mit.edu/
starlogo

[85] Connected Mathematics Team at Northwestern University contains lots of models imple-
mented in StarlogoT (for the Macintosh) and a useful list of links. http://www.ccl.sesp.
northwestern.edu/cm

[86] Starlogo sites at Maine University http://www.asap.um.maine.edu/starlogo

[87] The Swarm Development Group contains tutorials, examples, community projects and code.
http://www.swarm.org

[88] EcoLab Web site http://ecolab.sourceforge.net

[89] ZooLand: the Artificial Life Resource An interesting resource, but with many broken links
http://surf.de.uu.net/zooland

[90] FLAME: FLexible Agent Modelling Environment Web site http://www.flame.ac.uk

[91] Journal of Artificial Societies and Social Simulation http://jasss.soc.surrey.ac.uk/JASSS.
html

[92] Complexity International http://journal-ci.csse.monash.edu.au/ci/info-journal.html
An electronic refereed journal including a wide range of papers on complexity theory.

[93] Complexity Digest http://www.comdig.org A weekly newsletter about complexity in the nat-
ural and social sciences, which includes links to relevant reviews, notices of articles, conference
announcements and so forth;

[94] Artificial Life On-line http://www.alife.org An on-line companion to the (paper) journal
Artificial Life, published by the Santa Fe Institute.

[95] Agent Based Modelling in Biology CR-UK Web site http://www.bmm.icnet.uk/~barr03

[96] AgentSheets Web site http://www.agentsheets.com

[97] Ascape Web site http://www.brook.edu/es/dynamics/models/ascape

[98] Proposal to establish a UK Collaborative Computational Project in ABMS. Web site http:
//www.softeng.rl.ac.uk/abm_ccp

http://www.cpm.mmu.ac.uk/sdml/intro/html/sdml_tut_1.html
http://www.cpm.mmu.ac.uk/sdml/intro/html/sdml_tut_1.html
http://www.cpm.mmu.ac.uk/sdml/intro/html/sdml_tut_1.html
http://www.cpm.mmu.ac.uk/sdml/intro/html/sdml_tut_1.html
http://www.media.mit.edu/starlogo
http://www.media.mit.edu/starlogo
http://www.media.mit.edu/starlogo
http://www.media.mit.edu/starlogo
http://www.ccl.sesp.northwestern.edu/cm
http://www.ccl.sesp.northwestern.edu/cm
http://www.ccl.sesp.northwestern.edu/cm
http://www.ccl.sesp.northwestern.edu/cm
http://www.asap.um.maine.edu/starlogo
http://www.asap.um.maine.edu/starlogo
http://www.swarm.org
http://www.swarm.org
http://ecolab.sourceforge.net
http://ecolab.sourceforge.net
http://surf.de.uu.net/zooland
http://surf.de.uu.net/zooland
http://www.flame.ac.uk
http://www.flame.ac.uk
http://jasss.soc.surrey.ac.uk/JASSS.html
http://jasss.soc.surrey.ac.uk/JASSS.html
http://jasss.soc.surrey.ac.uk/JASSS.html
http://jasss.soc.surrey.ac.uk/JASSS.html
http://journal-ci.csse.monash.edu.au/ci/info-journal.html
http://journal-ci.csse.monash.edu.au/ci/info-journal.html
http://www.comdig.org
http://www.comdig.org
http://www.alife.org
http://www.alife.org
http://www.bmm.icnet.uk/~barr03
http://www.bmm.icnet.uk/~barr03
http://www.agentsheets.com
http://www.agentsheets.com
http://www.brook.edu/es/dynamics/models/ascape
http://www.brook.edu/es/dynamics/models/ascape
http://www.softeng.rl.ac.uk/abm_ccp
http://www.softeng.rl.ac.uk/abm_ccp
http://www.softeng.rl.ac.uk/abm_ccp
http://www.softeng.rl.ac.uk/abm_ccp

	DLTR-2010-007
	DLTR-2007-004.pdf
	DLTR inner cover

	ABMS
	Introduction
	Terminology
	Comments on Object Oriented Modelling
	Petri Net Representation
	Comments on Random Number Generation

	ABMS Software Packages
	AgentSheets
	AndroMeta
	AnyLogic
	Ascape
	Breve
	Cormas
	DEVS: Discrete Event System Specification
	EcoLab
	FLAME: FLexible Agent Modelling Environment
	JAS: Java Agent Based Simulation Library
	LSD: Laboratory for Simulation Development
	MAML: Multi-Agent Modelling Language
	MATSim
	MASON: Multi-Agent Simulation of Neighbourhoods
	MASS: Multi-Agent Simulation Suite
	MetaABM
	MIMOSE
	MobiDyc: Modélisation Basée sur les Individus pour la Dynamique des Communautés
	Modelling4all
	NetLogo
	Open StarLogo
	RePast: Recursive Porous Agent Simulation Toolkit
	Repast Simphony
	SimPack
	SimPy
	SOARS: Spot Oriented Agent Role Simulator
	StarLogo
	SugarScape
	Swarm
	VisualBots
	Xholon

	Other Multi-Agent Systems
	A-globe
	ABLE: Agent Building and Learning Environment
	Cougaar: Cognitive Agent Architecture
	FIPA: Foundation for Physical Intelligent Agents
	JADE: Java Agent Development Framework
	Jason
	MadKit
	MAGSY
	MASIF
	SDML: Strictly Declarative Modelling Language
	SeSAm: Shell for Simulated Agent Systems
	SimAgent
	Zeus

	ABMS Applications
	Biology and Medicine
	Physics and Chemistry
	Security
	Cyber Security
	The Environment
	Social and Economic Modelling
	Supply Network and Transport Optimisation

	ABMS on HPC
	HPC Clusters
	BlueGene
	GPGPU
	Cell

	ABMS Community and Research
	Future Research Challenges

