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Abstract

In the five years since the inception of the High
Performance Computing Initiative (HPCI) in 1994,
the support Centres at Daresbury, Edinburgh
and Southampton (now Daresbury and Edinburgh
working with the Manchester CSAR service) first
ported and optimised codes, and more recently con-
tributed to the longer-term development of new ap-
plications on MPP platforms. To develop optimal
codes new parallel algorithms must be tailored to
the principal target hardware, currently the Cray
T3E-1200E at Manchester, but all codes provid-
ed by the Daresbury Centre are designed to be
portable and use current standards such as MPI,
OpenMP [1] and Fortran. With available hardware
now embracing NUMA systems from, for instance,
IBM, Compaq and SGI, we have begun to develop
and optimise applications using a mixture of MPI
and OpenMP.

OMP, MPI and Mixed Kernels on
IBM Power3 Winterhawk-2

We first consider OpenMP, MPI and mixed Open-
MP+MPI versions of kernel algorithms. These
include hand-tuned multi-threaded DDOT and
DGEMM. We then report first results of examples
of full-scale applications which have been ported
to NUMA systems. Results of future tests will be
made available via the Web site www.ukhec.ac.uk.

Architecture

8 SMP nodes connected by IBM’s TB3-MX switch.
The Winterhawk-2 SMP nodes each comprise 4 IB-
M Power3 375 MHz processors. Each processor has
a 64 kByte primary cache, and a 4 Mbyte secondary
cache.

Dot product

A simple parallel dot product was coded. OMP
directives were used to parallelise the dot product
within an SMP node, whilst MPI is used between
nodes to compute the final results using a sum re-
duction. A number of different scaling behaviours

have been investigated with variations of the code
fragment shownbelow.

Within one SMP node the scaling with the number
of threads was tested by setting the AIX environ-
ment variable XLSMPOPTS=parthds=n. Vectors
of length 10% were used, and each calculation was
repeated 100 times. Performance increased from
140 Mflop/s to 211 Mflop/s using 4 threads, but
decreased down to only 30 Mflop/s with 8 threads.
No attempt was made to flush the cache between
repetitions. The single node scaling with thread
number is poor.

Running over more than one node the performance
of the pure MPI code and a hybrid MPI/OMP
code was compared. For the hybrid approach four
threads per node were used, as this appears to give
the best SMP single-node performance. The test
was with vectors of length 3*10°, and each calcula-
tion was repeated 3000 times. With a single MPI
process per node and 4 threads performance varied
from 50 Mflop/s with only one node to 2.9 Gflop/s
on 8 (32 threads). However with 4 MPI processes
per node and no threads we achieve 195 Mflop/s on
1 node and 4.3 Gflop/s on 4 — some 4 times im-
provement overall.

The single node performance is much better at 108
than 3*108. This is probably because at 10° the
two vectors just fit in the 4 Mbyte secondary cache,
while at 3*108 they can not and have to be read in
for each repeat.

Comments

a) Both scalings for multiple nodes were markedly
super-linear in the original code tried. This was
because for larger numbers of nodes the local length
of the vector is short enough for cache residency.
Repeating the operations inside the main loop for
several different vectors meant that this effect could
be avoided, as shown in the figure.

b) Pure MPI is much better than OMP+MPI for
this case. This is even more significant on the S-
GI Origin2000 where very little performance im-
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Figure 1: Dot Product

provement was seen with threads but the MPI code
behaved predictably and gave speedup even on a
multi-user machine.

c¢) A brief investigation of using the multi-threaded
library DDOT function from ESSLSMP was carried
out. This seemed to behave similarly to the simple
Fortran loop.

Dot Product Code

PROGRAM test_omp_dot_product
! declarations

CALL mpi_init(error)

CALL mpi_comm_rank(mpi_comm_world, me, error)

CALL mpi_comm_size(mpi_comm_world, my_mates, &
error)

repeats = 10

DO n = 50000, 2000000,12500

local_n = n / my_mates
threads = num_parthds()
! allocates

CALL Random_number (a)
CALL Random_number (b)
CALL system_clock(count_start, count_rate)
CALL cpu_time(start)
DO i = 1, repeats
local_result = omp_dot_product(a, b)
Call mpi_allreduce(local_result, result, &
1, mpi_double_precision, &
mpi_sum, mpi_comm_world, error)
! use many vectors to avoid cache residency
END DO
CALL cpu_time(finish)
CALL system_clock(count_finish, count_rate)
! write out results

repeats = repeats / 8

! de-allocates
END DO
CALL mpi_finalize(error)
END PROGRAM test_omp_dot_product

PURE FUNCTION omp_dot_product(a, b)
! declarations

n = Size(a)

result = 0.0_float
1$0MP Parallel default(none), &
'$0MP Shared(a, b, n), &
1$0MP Private(i), &
!'$OMP Reduction(+:result), &
'$OMP Do

DO i =

result =

END DO
1$0MP End Do
!$0OMP End Parallel

omp_dot_product = result
END FUNCTION omp_dot_product

i, n
result + a(i) * b(i)

A dot product may not be a very good example of
where OMP should be used as the loop distributed
to the threads has relatively little work in it when
compared to, say, a matrix multiply.

Matrix Multiply using Cannon’s Al-
gorithm

A blocked multithreaded matrix multiply routine
for C = axAx B+ 3xC, ie. no transposes, was
implemented based on Cannon’s algorithm [3]. It
uses a dot product formulation. By using OpenMP
directives it is possible to organise the code so that
the various threads update independent blocks of
C(i,7), while blocks of A and B are kept in cache
and reused as much as possible. To achieve this,
the blocks of A and B are stored in thread private
temporary arrays temp B and temp_A. The latter is
also transposed to ensure good strides in the inner
loops. This process is either load or store bound,
though loop unrolling can help. The “store bound”
method was used in the final version as this appears
to be faster on Power3 CPUs.

The code was optimised for good performance on
the IBM Power3 architecture. For other architec-
tures the following may have to be changed:

i) the blocking factors used. The cache size should
be roughly 3nxn if n is the blocking factor, where
cache refers to whichever level of cache it is better
to use on the target architecture;

ii) 4x4 unrolling has been used in the main mul-



tiply kernel loops. Consideration should be given
to reducing this if the target architecture has less
than 32 floating point registers, otherwise register
spilling may occur.

Through careful use of cache the serial code
achieved a performance for large matrices of near-
ly 1 Gflop/s, which is a 2/3 of the peak processor
speed of 1,5 Gflop/s (using the 2 fused multiply-
add pipes on the Power3). By varying the number
of threads per process and number of MPI process-
es per node it was possible to compare flat MPI
and multi-threaded versions of this code. Results
are shown in Figure 2. It is clear from this figure
that both pure MPI and threaded implementations
are giving good speedup with the latter achieving
3.9 Gflop/s on four threads. The MPI implemen-
tation was optimised using asynchronous message
passing, but only achieved 3.4 Gflop/s at best.

Finally using 4 threads on 4 MPI processes spread
across 4 nodes we were able to achieve a peak of
14 Gflop/s, whereas the flat MPI version with 16
processes was only able to give 8.8 Gflop/s at best.
Note that we used 16 nodes for this test to avoid
any problems of memory bandwidth.

Cannon matrix multiply
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Figure 2: Cannon’s Algorithm

ANGUS - a Regular-grid Engineer-
ing Code

ANGUS performs direct numerical simulations
(DNS) of turbulent pre-mixed combustion to gener-
ate statistical data in support of combustion mod-
elling. The equations to be solved are the Navier-
Stokes equations for fluid flow, augmented by two
additional equations each describing the transport
of a single scalar variable, together specifying the
thermochemical state of the system in the presence
of differential diffusion effects. In total there are six
partial differential equations to be solved.

Discretisation of the equations is carried out using s-
tandard second-order central differences on a three-
dimensional grid. The velocity nodes are located at
the face-centres of each cell, giving a staggered-grid
arrangement that conserves kinetic energy as well
as mass and momentum. The MPI part of the code
is parallelised using regular domain decomposition
with “halo” data added to the domains to cache
data from neighbouring domains required for the
central difference updates.

Several different pressure solvers are available in the
code. We have concentrated effort initially on one
that utilises a pre-conditioned Conjugate Gradient
(CG) method, with level-1 BLAS (DSCAL, DAX-
PY and DDOT) used heavily throughout. Alter-
native pressure solvers use a multigrid method or
an FFT method based on a special approach for
Poisson solvers [4].

The computational work is roughly proportional to
the number of grid points n3, and n=96, a rather
small case, was used for the tests reported. In the
CG solver the matrix to be solved is of size n*7 for
a first-order FD or n3*13 for a second order FD. The
number of iterations depends on the size of the ma-
trix n, typically around 280 with n=96. Paralleli-
sation using OpenMP was introduced by re-writing
the BLAS as explicit merged Fortran loops and in-
troducing PARALLEL DO directives on the outer
loop. Comparing the Fortran and library versions
indicated that, in fact, performance of the Fortran
was somewhat better on most machines. Using the
threaded ESSLSMP library on the IBM with the
original level-1 BLAS code gave only a factor of
2 speedup going from 1 to 4 threads on a single
Winterhawk-2 node.

Pre-conditioning can be applied using a special case
of an ILU pre-conditioner which takes account of
the known structure of the matrix (-1,-1,6,-1,-1) in
bands. This is applied to each block, i.e. the da-
ta belonging to each MPI process. The number of
iterations is greatly reduced if pre-conditioning is
used, in the case of n=96 it is halved, but the ILU
step takes a significant time and we found that run-
ning with 4 MPI processes on one Winterhawk node
there was no significant gain. A further complica-
tion is that the code for the preconditioner contains
loop iteration dependencies as it is applying the 3D
point-wise update and there is no simple way to
parallelise it using OpenMP. The IBM Red Book
[2] does indicate how a similar dependency in a 1-
dimensional loop might be re-written by analysing
the recursion algebra, but this is more complicated
in 3D and would probably introduce a significantly



larger operation count than in the present code.

Preconditioner Code Fragment

FUNCTION precon(nx,ny,nz,i5,i6,i3,i4,i1,i2, &
d,dinv,res,pres,nop)
! declarations

! non-local part contains recursion
DO j=i3, i4
DO i=ib, i6
DO k=i1, i2
term=pres(i-1,j,k)+pres(i,j-1,k)
pres(i,j,k)=(res(i,j,k)+term)*d(i,j,k)
pres(i,j,k)=pres(i,j,k)+pres(i,j,k-1)* &
d(i,j,k)
END DO
END DO
END DO
! local part can be parallelised
'$0MP parallel shared(pres,dinv) private(k,j,i)
1$0MP do
DO k=il, i2
D0 j=i3, i4
DO i=ib, i6
pres(i,j,k)=pres(i,j,k)*dinv(i,j,k)
END DO
END DO
END DO
'$0MP end do
'$0MP end parallel
! non local inverse part

END

Total execution times for the “optimised” code as
a function of the number of nodes, processes per
node and threads per process are reported below
without pre-conditioning. The time taken by the
OMP-parallel and BLAS sections of the CG pres-
sure solver are also reported per iteration. Only
two iterations were performed and remaining time
is spent in copying arrays, setting up the problem
and message passing between halo regions.

As can be seen from the Table 1, the best perfor-
mance is obtained by using a larger number of MPI
processes if this can be done explicitly. For a given
number of MPI processes increasing the number of
threads per process does however have a benefit.

A Case Study in Atomic and Molec-
ular Collision Physics

We are in the process of developing a number of full-
scale scientific application codes using both MPI
and OpenMP. We describe one such case in some de-
tail to illustrate the advantage of this mixed-mode

Table 1: ANGUS performance on Winterhawk-2
a|blc|d e f g
4 (2|21 6.0 |0.56]20.9
4 |4|1|1]| 42 |0.53 ] 16.6
8 21212 25 |0.74 ]| 15.1
8 |4 ]|1|2] 20 |0.52] 12.8
16 |4 |1]4] 1.1 0.5 | 12.3
8 |24 |1]|18 025 9.1
8 |4 121 1.6 | 032 | 9.0
16 |4(2|2]095]|038 | 80
16 |4 4|1 |064 | 0.1 5.0

a — total parallelism

b — number of nodes

¢ — number of MPI tasks per node
d — number of threads per task

e — time in OMP regions [s]

f — time in remaining BLAS [s]

g — total elapsed job time

style and the importance of selecting the computa-
tional algorithm to obtain the best parallel decom-
position.

Collisions between electrons, photons or atoms and
atomic or molecular targets are central, for exam-
ple, in the physics and chemistry of the upper atmo-
sphere and in the interaction of lasers with matter.
The investigation of these problems, as well as many
others, requires the solution of large coupled sets of
radial Schrédinger equations of the form

(C;‘l_; + w@«)) F(r) = 0 (1)

where the wave vector matrix, W(r) is related to
the local potential coupling matrix V by

W) =k* - V(r). )

The diagonal matrix of channel energies, k?, de-
pends on the scattering energy E. The dimensions
of these matrices range from a few hundred to a few
thousand and the coupled equations may have to be
solved for many values of the scattering energy F.
Solutions are required to be regular at the origin

F(r)y —— 0
r—0

3)
or are matched at some inner boundary, r = r,, to
the solutions of a separate boundary condition mod-
el. Equation (1) is integrated radially outwards to



a point r = rp where the solution is matched to
some asymptotic boundary condition. Each of the
coupled equations represents one asymptotic chan-
nel, ¢, and may be either open or closed according
to whether k? > 0 or k? < 0. Closed channels are
introduced in order to describe the distortion of the
target by the projectile. In this situation very sta-
ble integration methods such as the R-Matrix or
log-derivative (LD) propagator methods are partic-
ularly efficient.

Propagator methods solve the equations by divid-
ing the the radial interval [rq, 73] into subintervals,
[ri,riq1], for i = 1,...n where 11 = r, and r, = 7.
Each of these subintervals, or sectors, are chosen to
be sufficiently small that the Greens function corre-
sponding to equation (1) may be determined within
the sector either by introducing a basis set expan-
sion or by approximating the potential V(r). Given
the Greens function ), the logarithmic derivative of
the solution at the inner boundary of a sector ¢,

Y(ri) = F'(r)F ' (r;) (4)

(the prime denotes differentiation with respect to
r) may be propagated to the outer boundary r;y;
by the equation

Y(ri) =Yi=Vs D +Y@)] " Y (5)

The diagonal matrices, V;,i = 1...4 are the sector
Greens function evaluated on the boundaries. The
recursive application of equation (5) allows the so-
lution corresponding to a particular boundary con-
dition at r = r, to be obtained at r = ry.

We have studied the parallelisation of the propa-
gation method [5] on distributed memory parallel
computers using MPI. When electrons are scattered
by atomic ions very large numbers of scattering en-
ergies have to be considered in order to map out
the rapidly varying structures associated with the
formation of Rydberg resonances below each scat-
tering threshold. In this case an effective strategy
is to set up systolic pipes of processors in which
each processor node performs a single sector cal-
culation. Results for each scattering energy are
propagated to successively larger radial distances as
they are passed along the pipeline. This approach
is very efficient as communication costs may be hid-
den and for sufficiently large numbers of scattering
energies the start-up and wind-down costs are neg-
ligible. Multiple processor pipes may be set up and

controlled to ensure load-balancing and the efficient
use of large numbers of processors.

The program currently being developed is required
for studies of the multiphoton ionisation of atoms
by intense laser beams and for the investigation of
harmonic generation using Floquet methods. The
LD propagator method employed assumes a linear
reference potential so the sector Greens functions
are represented by Airy functions [6]. In addition,
the appropriate outer boundary conditions are giv-
en by the Siegert condition

F(r) —— exp (tkr)

r—00 (6)
which corresponds to all outgoing waves. The en-
ergy in this application is complex-valued (a quasi-
energy) and is normally determined iteratively. The
first stage of the calculation is to determine the sec-
tor sizes and this involves the diagonalisation of
the wave vector matrix at selected points within
each sector. This information is saved and is used
for subsequent calculations at each quasi-energy E.
The core of the calculation reduces to two steps
which must be repeated for each quasi-energy E
and for each sector i. These are: (1) to transform
the LD matrix into a local matrix representation
which diagonalises the potential in sector ¢; and
(2) propagate the solution across the sector using
equation (5). These operations require two matrix-
matrix multiplies, one matrix-vector multiply and
the solution of one set of linear equations. The fact
that the kernel of the method is expressed in terms
of standard matrix operations is a key advantage
of the approach. The algorithm is ideally suited to
the use of OpenMP on an SMP mode and is able
to take full advantage of the optimised libraries and
the global memory.

In the following table we show sample timings for
the computation of a problem involving 300 scat-
tering channels in which solutions are integrated
from 10 to 100 Bohr radii. The timings were carried
out on a Winterhawk-2 node and show the scaling
as the number of threads is increased. The use of
tuned BLAS and linear algebra from the ESSLSMP
library provides good scalability and high efficiency.
Further, but less significant speedups are obtained
in other parts of the code by the use of OpenMP
directives.

In this scheme larger calculations are easily accom-
modated by the construction of systolic pipelines of
two or more SMP nodes. The approach used previ-
ously for electron scattering may be taken over with



Table 2: Propagator performance on Winterhawk-2

Number of threads | Set up | Propagation
(secs) (secs)
1 15.39 55.35
2 10.14 30.97
3 8.07 22.56
4 8.20 19.59

only minor amendments.

Further parallelisation requires an algorithmic
change. The iterative method commonly used
to determine the quasi-energy is inherently seri-
al. However it is possible to determine a number
of quasi-energies simultaneously using a complex-
energy contour integration technique [7]. Each in-
tegrand point of the contour integral corresponds
essentially to a single instance of the calculation we
have described above. The evaluation of the con-
tour integral is simply accomplished by MPI task-
farming the integrand calculations to the SMP n-
odes.

Although the full program package is incomplete we
have demonstrated each of the major elements. The
linear reference potential LD propagation method,
even for the case of complex energies, may be readi-
ly and efficiently parallelised using OpenMP on each
processor node. The overall scheme, using both
OpenMP and MPI, is flexible and capable of mak-
ing efficient use of large processor arrays.

Conclusions

Whilst it has been demonstrated that mixed-mode
MPI/ OpenMP codes can give significant perfor-
mance on kernel algorithms such as Cannon’s ma-
trix multiply, there can be a significant amount of
work involved to achieve this. On real codes using a
flat MPI implementation may even give better per-
formance. The reason is partly in the overhead of
starting teams of threads at the loop level — IBM
recommend keeping a team active throughout the
whole run (SPMD program), but this requires a dif-
ferent approach to that usually adopted on shared-
memory systems.

There may also be significant cache effects with
cache lines being invalidated if different proces-
sors (threads) access neighbouring array elements.
Bandwidth for several processors to access memory
within a node is also important. Finally Amdahl’s
Law applies, and devising a thread-parallel imple-
mentation for all sections of a large code is difficult.
We hayve so far had no success in using the automat-

ic compiler options to do this. Nevertheless combin-
ing MPI and OpenMP (or using thread-parallel li-
braries) can give the flexibility needed to parallelise
a complex code and yield good performance.

Finally we note that we have not carried out rig-
orous tests on all available platforms, e.g. Com-
paq, IBM, SGI, SUN and HP. Compilers and library
software are evolving rapidly and we shall re-visit
mixed-mode programming in the future.
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