
Technical Report 
RAL-TR-95-002 

CLRC 

Time-Dependent Critical Spin 

Fluctuations in Magnetic Salts 


S W lovesey 

May 1995 

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS 



© Council for the Central Laboratory of the Research Councils 1995 

Enquiries about copyright, reproduction and requests for 

additional copies of this report should be addressed to: 

The Central Laboratory for the Research Councils 

Library and Information Services 

Rutherford Appleton Laboratory 

Chilton 

Didcot 

Oxfordshire 

OX11 OQX 
Tel: 01235445384 Fax: 01235446403 
E-mail library@rl.ac.uk 

ISSN 1358-6254 

Neither the Council nor the Laboratory accept any responsibility for loss or 

damage arising from the use of information contained in any of their 

reports or in any communication about their tests or investigations. 

mailto:library@rl.ac.uk


Time-Dependent Critical Spin Fluctuations 
in Magnetic Salts 

Stephen W. Lovesey, 

ISIS Facility, Rutherford Appleton Laboratory, 


Oxfordshire OXII OQX, England. 


Abstract 

A short perspective of dynamic critical scattering is given, together with an 

orientation to modem theories of static and dynamic critical phenomena. The 

materials discussed are magnetic salts which are believed to spontaneously order 

through correlations induced by a Heisenberg exchange interaction between atomic 

spin moments. 

Prepared for a special issue of the Canadian Journal of Physics 

in honour of Professor B. N. Brockhouse. 
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1. Introduction 

For a perfect paramagnet, in which there are no exchange interactions and no 

correlations between the magnetic ions, the magnetic neutron cross-section is strictly 

elastic, spatially isotropic, and independent of temperature. Inelasticity in the 

scattering from exchange coupled paramagnets at infinite temperature was studied 

first by Van Vleck [1], and he suggested the measurement of exchange-induced 

line widths as a means of obtaining information about exchange forces in the solid 

state. Brockhouse [2], in a study of Mn203, reported the first such neutron scattering 

measurement. Van Vleck considered only single ion matrix elements in his 

calculation of the neutron interaction, but de Gennes [3] found a pronounced 

dependence of the energy distribution on the change in the neutron wavevector k. 

This detailed, infinite temperature calculation was based on Van Hove's [4] 

representation of the neutron cross-section in terms of spin correlation functions. For 

large k de Gennes proposed a gaussian distribution changing to a truncated lorenzian 

distribution for small k. The gross features of the temperature dependence of the 

cross-section are obtained on noting that all moments of the normalized energy 

spectrum are inversely proportional to the wavevector dependent isothermal 

susceptibility. At the critical temperature, Te, this susceptibility diverges as k 

approaches a magnetic Bragg position. It follows that for such wavevectors there is a 

pronounced decrease in the inelasticity of the scattering near Te, i.e. thermodynamic 

slowing down of long wavelength spin fluctuations. 

The so-called conventional theory of scattering from exchange-coupled 

paramagnets outlined in the preceding paragraph has been reviewed by Marshall and 

Lowde [5]. It is not reliable at the critical temperature, where an infinite number of 

degrees of freedom are responsible for non-trivial features in the dynamics. Seminal 

work on this aspect of spin dynamics was reported by Wegner [6], Resibois and 

DeLeener [7] and Kawasaki [8]. It is now recognized, largely through the work of 

Hubbard [9], that these developments all lead to the same system of closed non-linear 

equations for the time-dependent and wave-vector-dependent spin-spin response 

function. Today, the set of equations are often referred to as the coupled-mode theory 

of the dynamical properties of spin systems. 

Applied to critical spin dynamics, coupled-mode theory is in accord with two 

other powerful approaches. One, scaling theory, is a set of postulates that lead to 

predictions in the critical region from a knowledge of various properties in the 

hydrodynamical region. The renormalization-group method provides asymptotic 

properties of the spin-correlation function and explicit results for some critical 



exponents. Even though this method does not provide closed equations for the spin­

response function, it is particularly valuable since it alone is a systematic, perturbative 

approach to critical phenomena in spin systems, and other models which display a 

continuous phase transition. Results derived for spin systems using dynamic-scaling 

arguments and the renormalization-group method are gathered, together with copious 

references, by Privman et al. [10]. 

Although the pioneers of the coupled-mode approach concentrated attention on 

the critical properties of spin systems, there is a body of evidence to the effect that it 

provides an unrivalled account of paramagnetic fluctuations of short and long 

wavelengths in ferromagnetically coupled systems, e.g. EuD and EuS (Hubbard [9], 

Cuccoli et al. [11,12], Westhead et al. [13]). Perhaps the most recent example of the 

reliability of coupled-mode theory outside the critical region is in its application to a 

spin chain at infinite temperature (Lovesey and Balcar [14]). By and large, agreement 

between experimental and theoretical results for RbMnF3, an antiferromagnetically 

coupled system, is strikingly good. However, at Te and for k in the vicinity of the 

antiferromagnetic ordering wave vector there is an obvious disagreement: the 

experimental data for the energy spectrum shows a three-peaked structure, namely, an 

elastic (diffusive) component and two side peaks attributed to collective spin 

oscillations, albeit heavily damped oscillations, while theoretical results for the 

appropriate wave vectors show only two collective mode peaks [15]. 

2. Preamble 

In the vicinity of a continuous phase transition (sometimes referred to as a 

second-order phase transition, and distinguished from a first-order phase transition by 

the absence of both hysteresis and a discontinuous change in the order parameter) 

fluctuations in the order parameter - magnetization of a ferromagnet - become 

extremely large. For an order-disorder transition, these fluctuations can be readily 

visualized as arising from the system locally making excursions between the two 

phases. So, for a ferromagnet very close to the critical temperature a small volume of 

the magnet fluctuates between an ordered, ferromagnetic state and a paramagnetic 

state. Such a process entails a very large number of spin excitations (normal modes or 

degrees of freedom) and this rises to an infinite number at Te. 

A continuous phase transition is experimentally characterized by the divergence 

at the critical point of the mean-square fluctuation in the order parameter, for this 

quantity, apart from some benign factors, is a response function. In the case of a 

ferromagnet the appropriate response function is the magnetic susceptibility, X, and if 

AM is the fluctuation in the magnetization (<AM> = 0, where <....> denotes a thermal 

average), 
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An external probe that couples to the order parameter displays a pronounced signature 

of the phase transition due to the divergence of X at Te' The latter is usually a power 

law; for a ferromagnet it is customary to use the notation, 

X Cl (T - TJ~ ; T > ~ , 

and the critical exponent 'Y - 1.39 for a simple, isotropic ferromagnet. Table I contains 

an abbreviated list of critical exponents, relations among the exponents (so-called 

scaling relations) and theoretically derived numerical values. 

The foregoing comments refer to static properties of a system near a continuous 

phase transition. Equally dramatic effects are observed in the dynamic properties of 

the order parameter, scilicet, the associated relaxation time increases when the sample 

approaches the critical point. A simple, intuitive argument by which to interpret 

critical slowing down stems from considering the reversal of one spin. Near the 

critical point the susceptibility is very large, so the perturbation on the magnetic 

system caused by the spin reversal influences a large volume and hence a large 

number of spins (the perturbation in the magnet at a large distance from the reversed 

spin depends on distance (r) like {exp( -rl~)lr}, to a good approximation, where ~ is 

the correlation length, Table I). It naturally takes a very long time for thermal 

fluctuations to restore eqUilibrium by reversing each one of the large number of 

perturbed spins. A simple model of spin relaxation, which neglects couplings 

between the spin modes, predicts a relaxation time whose temperature dependence is 

provided by X, and this diverges at Te' 

At the time of writing, it is fair to say that static critical phenomena are well 

understood. From the viewpoint of theoretical work, there exists a complete 

formalism (renormalization group and conformal field theory) for the calculation of 

response functions and their associated critical exponents; a thorough account of this 

work is provided by Ma [16] and Zinn-Justin [17]. Hence, given a relatively simple 

model it is possible to confidently calculate static critical properties to a given 

accuracy.. The same is not true of dynamic critical phenomena; at present, there is no 

complete computational formalism by which to obtain response functions observed in 

experiments using, say, neutron and photon beams. Indeed, it is a topic of research in 

which there is still much to be done; neutron beam (spin-echo, and scattering) 

techniques have much to offer. 
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A topic which is not addressed here is the nature of the phase transition, and 

response functions, in spin glasses. It is fairly well established that, there exists a 

sharp transition in three-dimensional Ising spin glasses. Theoretical results for 3d 

Heisenberg spin glasses are so far less conclusive (Fischer and Hertz [18]). 

3. Perspective 

Introductions to phase transitions and critical phenomena are given by Stanley 

[19], Als-Nielsen and Birgeneau [20] and Cardy [21]. An introduction and more 

advanced material, together with a survey of experimental results on magnetic 

systems, is provided by Collins [22]. Detailed accounts of theoretical work can be 

found in various articles in the series of books edited by Domb and Lebowitz, and the 

monographs by Ma [16], Patashinskii and Pokrovskii [23] and Zinn-Justin [17]. 

The nature of the strong critical scattering observed at a continuous phase 

transition depends on the spatial dimensionality of the magnetic system and the spin 

dimensionality. Indeed, the existence of a phase transition depends on these 

parameters; for example, a two-dimensional magnet with three-dimensional spins 

(planar Heisenberg) does not show long-range magnetic order at any finite 

temperature, in a contrast to a two-dimensional Ising-spin model which orders at a 

temperature whose magnitude is of the order of the exchange parameter. The 

behaviour of the susceptibility, and other static response functions, at the phase 

transition can be classified according to the space and the effective spin 

dimensionality, which recognizes magnetic anisotropies, and this feature of static 

critical phenomena is called universality. The latter is more complicated for dynamic 

critical phenomena. The term universality is justified by the fact that different 

physical systems with the same space and spin - or the variable(s) that corresponds to 

spin-dimensionality - display similar critical properties. A third feature that 

determines the universality class of a system is the nature of the interactions, and 

specifically their spatial range. For static critical phenomena it seems that just the 

three features of spin dimension, spatial dimension, and the range of the spin 

interactions completely determine the universality class. 

Another important concept is that of scaling, which we choose to illustrate for 

quantities of direct relevance to the interpretation of scattering experiments. The 

fundamental information is that certain quantities are homogeneous functions of a few 

reduced variables. This information comes from the renormalization group method, 

although it can also be derived from a less rigorous line of reasoning. We restrict 

ourselves to consideration of the correlation length, Gibbs potential (G) and the spin 

correlation function (T ~Tc)' 
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where the spin deviation at site R is, 

Concerning the definition of Co(R), it is independent of the arbitrary site vector Ro ' 

and, 

L Co (R), 
R 

is proportional to the mean-square fluctuation in the magnetization considered in §2. 

For large values of R =IRI, CO is essentially independent of the direction of R. 

The fundamental information is that ~, G and Co considered as functions of the 

0<::reduced temperature -r = {(T - Tc)ITc} and reduced magnetic field h (BITe) are 

homogeneous functions of the form, 

(1) 

(2) 

and, 

(3) 

Here, A is a scaling variable, and the exponents x and y are related to those listed in 

Table I, as we will see. The physical concept expressed in these relations is that, at the 

critical point bulk quantities remain unchanged after scaling the variables. The scale 

variable, A, is arbitrary, in other words there is a scale invariance, and it can be chosen 

at will. If A is a length the prefactors in the foregoing relations become self-evident; ~ 

is a length, G is a density, and Co is the product of spin densities derived from the 

second derivative of G with respect to the field variable. 

It is useful to follow the type of argument that yields scaling laws, i.e. relations 

between the critical exponents. First, let us establish vy = 1. The definition of 

V is ~ - (1/-r)V for h = 0, cf. Table I. Turning to equation (1), we set h = 0 and choose 

A!-r =1, or A=(lI-r)lIy; then, 



~('t,0) = (11 't)lIy ~(l ,0) , (4) 

and the definition of v leads immediately to the relation vy = 1. 

Having expressed the exponent y in terms of one of the critical exponents listed 

in Table I, let us focus on the exponent x; we shall establish the relation, 

'Y =v(2x-d), (5) 

which leads to the scaling relation cited in Table I between 'Y, T) and v. To obtain (5) 

we use the standard thermodynamic relation for the isothermal susceptibility as the 

second derivative of G with respect to h evaluated h =0, namely, 

(6) 

The second equality follows from the choice, 

-'t=(1/AY, 

in which the sign of 't is appropriate for the ordered magnetic phase. If we assume 

that the critical exponent 'Y is the same on both sides of the critical point, the relation 

(5) follows immediately from equation (6). (Exponents above and below Tc are 

usually the same but the coefficients of proportionality, or critical amplitudes, are 

different, i.e. G(1,h) is not expected to be the same as G(-l,h)[lO].) 

In equation (3) we choose A=R. For h =0, we have already established, 

so we can write, 

Co (R, 't,0) =R2
(x-d) C(R I ~), (7) 

where C is a function of the dimensionless variable (R/~) which contains the 

temperature dependence. The standard definition of the exponent T) is (T = Tc), 

C (R 0 0) _ R2- d -Tt (8)o " , 

and it follows that (5) leads to the scaling relation, 



(9) 

The relations (1) - (3) provide other scaling laws involving a and Pbut we do not 

pause to obtain them. 

Instead, we couch the foregoing discussion in terms of the wave vector 

dependent isothermal susceptibility, defined for a classical system as the spatial 

Fourier transform of Co(R;t,h). Denoting this important susceptibility by X(k) , 

equation (7) leads to the result (h =0), 

(10) 

where C - is proportional to the spatial Fourier transform of C. In particular, at 

Tc ' where ~-700, 

k TJ 2X(k) - - ; T = 7;. (11) 

In the limit k -7 0, X(k) tends to the bulk susceptibility introduced in §2. From 

equation (10) it follows that, in this limit, 

and the identification of X with X(O) reproduces the scaling relation (9). 

Let us now consider some dynamical properties of spin fluctuations in the 

vicinity of Tc' Results are less surely footed because there is not the solid base of 

information that (1) - (3) provide for static critical phenomena, i.e. the renormalization 

group method is less useful. There is an equally important method for dynamical 

properties called coupled-mode theory, which amounts to a certain recipe for 

obtaining self-consistent solutions to the full equation of motion for spin fluctuations. 

The time-dependent generalization of the spatial Fourier transform of the spin 

correlation function Co(R) is denoted by F(k,t). The equation of motion for F(k,t), 

usually referred to as a generalized Langevin equation (see for example, Lovesey, 

[24]), shows that F(k,t) is a homogeneous function that satisfies, 

(12) 

but the exponent (a) is not determined. To find a value for this exponent it is 

necessary to invoke an approximation that closes the equation of motion. The 



aforementioned coupled-mode theory achieves closure, and produces an integro­

differential equation for F(k,t) which is self-consistent, i.e. the dynamics is expressed 

solely in terms of F(k,t). One can view a self-consistent equation as the result of a 

perturbation expansion for a subset of interactions taken to an infinite order. That 

such a type of approximation is required to generate physically sensible results in the 

critical region is a consequence of having, inevitably in an approximate manner, to 

account for the vast number of degrees of freedom that participate in critical 

fluctuati ons. 

The standard form of the coupled-mode theory for a Heisenberg model of a 

ferromagnet gives the result a = - 115, and the relation, 

(13) 


In view of the relation (13) one is led to seek a self-consistent solution ofthe form, 

F(k,t;~) = Q(kZ tQ(k~)). (14) 

As in the case of static critical phenomena, useful information can be extracted from 

(14) without knowledge of the single-variable functions Q and Q. Such knowledge is 

required, however, when coupled-mode theory is confronted with the spectrum of spin 

fluctuations observed by neutron spectroscopy (Cuccoli et al. [11], [12]). 

Equations (13) and (14) are mutually consistent when, 

az + -} =o. 

Since a = - 115 the dynamic critical exponent z =512. At the critical point (k~)-7oo, 

and Q(k~) approaches a constant. In consequence,·· the relaxation rate for 

ferromagnetic spin fluctuations r(k) a k512 at T =Tc. The data obtained for EuO at Tc' 

displayed in fig. (1), is consistent with the value z = 512 over a wide range of wave 

vectors. By carrying through the self-consistent solution of the coupled-mode theory 

one finds (h = 0), 

(15) 


where c and Vo are the exchange stiffness and unit cell volume, respectively (the spin­

wave stiffness D = 2c S). 
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We conclude this section by considering the influence of dipolar forces between 

the atomic magnetic moments. Such forces are present in all magnetic materials, of 

course, and produce the effect of demagnetization. A measure of the strength of 

dipolar forces is the wave vector qd defined by, 

in which g is the gyromagnetic factor. For the moment, it is useful to note the values 

of qd for EuO and EuS, namely, O.15kl (EuO) and O.26A-l (EuS), from which it is 

seen that dipolar forces are larger in EuS than EuO. Experiments by Boni et al. [25, 

26] on EuS are largely consistent with theoretical results derived by Frey and Schwabl 

[27] from coupled-mode theory applied to a Heisenberg Hamiltonian including 

dipolar forces. 

The inclusion of dipolar forces produces spatial anisotropy. For T?Tc it is 

logical to speak of fluctuations parallel (longitudinal) and perpendicular (transverse) 

to the wave vector k associated with the spin fluctuations under observation. One 

effect of the dipolar forces between atomic moments is to prevent the longitudinal 

fluctuations from diverging in the critical region, k-70 and T-7Tc' so the phase 

transition is dominated by transverse fluctuations. The relaxation rates are found to 

be, 

where the dimensionless variables x, yare, 

x =(1 / k~), and y =(qd / k). 

Table II contains the asymptotic behaviour of the scaling functions 'Ya(x,y), in which 

the notation is: D, dipolar; I, isotropic; C, critical; H, hydrodynamic. The four 

limiting regions are then: DC, x«I, y»I; IC, x«I, y«I; DH, x»I, y»x; IH, 

x»I,y<<x. 

The dynamic critical exponent of the longitudinal relaxation rate is found to 

cross-over from z = 512 in the isotropic critical region, considered in previous 

paragraphs, to z = 0 in the dipolar critical region. The situation for transverse 

fluctuations is a cross-over from z =512 to z =2. A numerical solution of the coupled­

mode equations shows that for transverse fluctuations the dynamic cross-over is 

shifted with respect to the static one, k - qd' to a wave vector - qilO. Longitudinal 

fluctuations are not anomalous and the dynamic and static cross-overs coincide. The 
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dynamic cross-over in the transverse fluctuations has not been clearly demonstrated 

experimentally. 

4. Neutron Scattering 

The neutron scattering cross-section is proportional to (a, ~ label Cartesian 

components), 

where the so-caIIed van Hove response function for a sample with N spins on a lattice 

is, 

SXP(K,ro)=2~N j dtexp(-irot) L exp{iK.(R-R')}<~(R.O)&S'Il(R',t». (16) 
R,R' 

Recall that the spin fluctuation at the site labelled R satisfies < !1S'" (R» = 0, while 

M(R,t) is a Heisenberg operator at the time t. Inspection of (16) reveals that 

S"~(K,ro) is the spatial and temporal Fourier transform of spin autocorrelation 

functions. 

Let us now make contact between the measured response function and quantities 

introduced in previous sections. First, the integral of sal3(k,ro) with respect to ro is 

proportional to the isothermal susceptibility, cf. equation (10) that applies to an 

isotropic system for which the spin autocorrelation function vanishes for a:;t!:~, while 

for a.=~ it is independent of the value of the Cartesian label. The experimental 

realization of integrating over ro, to measure the total scattering, is discussed by 

Collins [22] and Als-Nielsen [28]. 

It is now almost standard practice to decompose ~ (k,ro) in the following 

manner, 

S(k,ro) = TX(k)F(k,ro), (17) 

where for simplicity we omit the Cartesian labels on S(k,ro), X(k) and F(k,ro), and the 

latter is the time Fourier transform of F(k,t) introduced in §3. 

Near Tc ' and neglecting the critical exponent TI, the susceptibility of an isotropic 

spin system is well represented by the form adopted by Ornstein and Zernike in which, 
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(18) 

The expression appropriate in the presence of dipolar forces is given by Frey and 

Schwabl [27]. 

A simple derivation of the coupled-mode equation for F(k,t), together with an 

examination of its predictions, is given by Lovesey [24]. Complete solutions to the 

equation, obtained by numerical integration, are applied by Cuccoli et aL [11,12] to 

the interpretation of neutron scattering data obtained for T ;;:: Tc and a wide range of 

wave vectors. The confrontation of theory and data provides good evidence for the 

success of the coupled-mode approximation for the description of paramagnetic and 

critical spin fluctuations in ferromagnetically coupled systems. A similar finding is 

reached by Frey and Schwabl [27] in their discussion of effects due to dipolar forces; 

see, also, [29]. 

Experimental results on the relaxation rate r(k) are usually obtained by fitting a 

model S(k,ro) to the data. This is most often accomplished by use of the susceptibility 

(18) and, 

(19) 

where r =r(k) is discussed in §3. Ideally, one would like to use a more firmly based 

approximation for F(k,ro). Certainly, it is required to test results for r(k) for their 

dependence on the assumed shape of F(k,ro). At present, the computer time involved 

in solving the coupled-mode equation for F(k,t) is too large for a direct fitting scheme 

to be a practical exercise, and so some form of parameterization, such as (19), seems 

unavoidable. 

One can speculate that the apparent disagreement between experimental data on 

an antiferromagnetically coupled system, RbMnF3, and results from coupled-mode 

theory applied to an appropriate model [15] is due to this kind of fitting scheme. Data 

at Tc seem to support the existence of a central, diffusive component in F(k,ro) 

observed at the anti ferromagnetic ordering wave vector. In contrast, theoretical results 

for F(k,ro) displayed in fig. (2) have a dip at the elastic (00 = 0) position. 

5. Conclusions 

The investigation of time-dependent critical and paramagnetic spin 

fluctuations by neutron beam techniques, which was started in 1955 by Brockhouse, 
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has been very influential in the development of sophisticated modem theories of co­

operative phenomena. Neutron beam techniques, and a few other experimental probes, 

have the great advantage of providing good quality data on quantities that are central 

to theoretical developments. It appears that, static critical phenomena are largely 

understood, and theoretical methods are surely footed. The same situation does not 

prevail with regard to dynamic critical phenomena. Not surprisingly, neutron beam 

data is needed to shed light on the known outstanding issues in this field of basic 

research. 
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Table I 

Magnetization -	 (Tc T)fi 

Susceptibility, X ~ (T - T )-Y 
c 

Correlation length, ~ - (T - T )-v
c 

Specific heat - (T - T )-a.
c 

Fisher exponent, 	Tl: 'Y = v(2 - Tl) 

a = 2-vd 	 ) 
) d =spatial dimension 

2~ = v(d - 2+Tl) ) 

Isotropic ferromagnet, d = 3: critical exponents derived from 

a renormalization group calculation (from Zinn-Justin [17] 

table 25.6) 

~ = 0.368 ±0.004 


'Y = 1.390 ± 0.010 


v = 0.710 ± 0.007 


Tl = 0.040 ± 0.003 




Table II 

'YT 'YL 

DC y1l2 ySf2 

IC 1 

DH x2y 1l2 ySf2 

Xlf2 Xlf2IH 

Asymplotic behaviour of the scaling functions for the relaxation rates 

in a paramagnet in which the dipolar energy is included: After Frey 

and Schwabl [27]; see, also, [29]. 
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Figure Captions 

1. 	 Logarithmic plot of the relaxation rate of the critical fluctuations (T =Tc) as a function of 
wavevector q in EuO. The data follow a variation with qZ, z =512, over four decades of 
energy [30]. 

2. 	 F(k,ro) is displayed for T = Tc; results are derived from coupled-mode theory applied to a 
model of RhMnF3 [15]. The wavevector k is close to the Brillouin zone centre in panel (a), 
and close to the antiferromagnetic-ordering wavevector, W = (1,1,1) in panel (b). The 

wavevectors in units of (1tI12ao) are: 1, (0,0,1); 2, (0,1,1); 3, (1,1,1); 4, (11,12,12) 
; 5, (11,11,12) and 6, (11,11,11). 
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