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Abstract 

We consider the production of baryon number from collapsing domain walls, 
and in particular examine the magnitude of CP violation which is required in such 
schemes. Taking the conventional solution to the domain wall problem in the Next­
to-Minimal Supersymmetric Standard Model as an example, we show that the ob­
served baryon asymmetry of the universe may have been generated, even if the 
initial explicit CP violation in the Lagrangian were so small (i.e. gravitational) that 
it could never be experimentally detected. This is possible by having the explicit 
CP violation affect the way in which the walls collapse, rather than be responsible 
for the generation of baryon number directly. Net baryon number is created at the 
domain walls by the spontaneous breaking of CPo 
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1 Introduction 

In models of baryogenesis at. or close to the electroweak phase transition, one of the three 
Sakharov conditions [1] (no thermal equilibrium) is fulfilled by the phase transition itself, while 
the remaining two conditions (B, C and CP violation) are provided by sphaleron mediated 
processes and some extension to the Higgs sector usually involving an explicit CP violating 
phase [2, 3]. So far, the study of baryon number production involving topological defects has 
mainly addressed the first of these conditions. That is, it has been shown that the departure 
from thermal equilibrium may be provided by the collapse of cosmic strings or domain walls 
[4, 5]. In this paper we shall address the second. It is generally assumed that there must be 
an explicit CP violating extension to the Higgs sector similar in magnitude to that required for 
electro-weak baryogenesis, in order to bias the production of baryons. Such CP violating terms 
may eventually be detected through their contribution to the neutron electric dipole moment 
for example [6]. Here we shall show that this is not a necessary condition for baryogenesis 
from topological defects. In fact, provided that there is spontaneous breaking of CP when the 
domain walls form [7], it is possible to generate the observed baryon asymmetry with additional 
explicit CP violating terms which are gravitationally suppressed, and which will therefore never 
be detected. We stress the difference between 'spontaneous' violation of CP which is responsible 
for the local production baryon number at the domain walls, and the 'explicit' CP violation 
which is needed in order to have a global excess of baryons. In this respect, our picture is 
similar to that proposed in Ref.[8]. 

Our argument can be summarised as follows. Because the domain walls in question result 
from a breaking of CP, any particular wall is not CP invariant. Global CP invariance is provided 
by the fact that there exist different types of wall which are CP conjugates of each other. The 
mechanism which is invoked in order to remove the walls need not involve large terms in the 
Higgs potential. In fact for walls in which the higgs VEV, v, is of the order the electroweak 
scale (or larger), if the degeneracy in the minima is broken by gravitational couplings of order 
v5IMp" the walls will disappear well before the onset of nucleosynthesis [9]. Since individual 
walls are not CP invariant, it is possible to generate a sufficient baryon number with explicit 
CP violation of order v5IMp/. 

We shall demonstrate this using the next-to-minimal supersymmetric standard model (NMSSM). 
It should be borne in mind however that our discussion applies to any model in which the spon­
taneous breaking of CP produces domain walls. By choosing an example with three phases we 
are perhaps making things more difficult for ourselves, since models with more than two phases 
have their own special problems (some of which will be addressed in Ref.[IO]). However it is 
interesting that a case with the required properties exists already in the literature. 

The NMSSM [11] is an extension of the usual minimal supersymmetric standard model 
(MSSM) [12], in which the usual two Higgs doublets HI and H2 which are necessary to give 
masses to the up and down type quarks are supplemented by a singlet Higgs superfield N. 
The usual J.L term in the lagrangian, J.LHIH2' is then eliminated by invoking a Z3 symmetry 

e21riunder which every chiral superfield cI> transforms as cI> --t / 
3 cI>. The allowed terms in the 

superpotential are then >"NHIH2 - ~N 3 , in addition to the usual fermion mass generating 
Yukawa terms, while the Higgs part of the soft supersymmetry breaking potential is extended 
by the inclusion of two more extra trilinear soft terms A,\ and Ak in place of the MSSM term 
BJ.LH1 H2 to become 
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(1) 


where HIH2 = HrHg - H- H+, and we shall hereafter drop the °index for neutral Higgses. 
The primary motivations for the NMSSM are the elimination (or at least reparametrisation) 

of the p problem, which is that it is not clear what could be the origin of a p parameter in 
pHIH2 which is of order the electroweak scale; that it allows the evasion of the usual MSSM 
Higgs mass bounds [13]; and the fact that this relatively minor alteration to the model gives 
an extremely rich and complex Higgs and neutralino phenomenology which can be significantly 
different from that in the MSSM [14]. 

When electroweak symmetry breaking occurs, the three neutral CP-even Higgs scalars ac­
quire VEVs. Using the parameters 

PIeiIJ1HI 

P2eiIJ2H2 ­
N pzeilJz (2) 

it can be shown that any true minimum of the potential does not violate CP in the sense that 
the VEVs can always be made real by an appropriate field redefinition, up to the existence of 
three degenerate vacua related to each other by Z3 transformations [15], and hence we have 
minima with 81 82 = 8z = 2;ni for integer n, 1 and with Pi = Vi, pz = x. Note that although 
we have imposed that the Vi be real, one or two of them may still be negative. We shall refer to 
the three minima 

0, 21r/3, 41r/3 


0, 41r /3, 21r/3, (3) 


as A, B, C respectively, and for convenience will assume that the evolution of the universe will 
ultimately end with phase A dominating. 

After the electroweak phase transition the universe will be divided up into regions of different 
minima separated by domain walls. In each of the three degenerate minima, there is an operation 
which performs a CP transformation in the effective low energy theorem, and which maps the 
vacuum into itself. IT we define the Z3 operation to be Z3 : A -+ B, Z3 : B -+ C, and Z3 : C -+ A, 
then the transformations are 

CPA = CP 

CPB CPZ3 

CPa CPZ;, (4) 

where here, CP is the transformation in the full theory. In each minimum, the two false vacua 
are CP conjugates of each other. Alternatively, we could have performed a field redefinition 
such that the true minimum (here A) is CP invariant. 

Domain Walls in the NMSSM 
Domain walls are one of the simplest types of topological defects [9], and form whenever the 
theory in question has a discrete number of degenerate vacua, usually due to the spontaneous 

1We can use weak hypercharge to select any phase for 01 - O2 • 
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breaking of a discrete symmetry. The simplest example occurs in the case of a real scalar field </J 
with potential V A(</J2 - V 

2 
}2. This potential clearly has two degenerate minima with </J ±v 

as a result of the Z2 symmetry </J - -</J. If we look for time independent solutions of the field 
equations which are translation invariant in two of the three space dimensions, and which obey 
</J(z = -oo} = -v and </J(z oo} = v we find a solution </J tanh(z/6z}. This is a domain 
wall, whose thickness 6z is given by 6z = (v'2-\V)-l, and which has a surface energy u given by 
3u = 4v'2-\v3 

• In more complicated models, it is no longer possible to solve the field equations 
analytically, but it is straightforward to solve them numerically. We find that 6z ""' V-I and 
u ""' v3 as before, where v is now some typical VEV of one of the fields, and the structure is in 
general similar . 

Turning specifically to the NMSSM, the potential for the neutral scalars takes the form (at 
tree-level) 

(5) 

With real VEVs < PI >= VI! < P2 >= V2, < pz >= x our inputs are then tan,B = ~, r ~,
VI V 

2A, k, A l , A k , while v = v~ + v~ is derived from the requirement that we have the correct Z 
mass. We choose to specify the VEVs as input parameters rather than the masses appearing 
in the potential for convenience, since we may immediately calculate the soft masses m1rl' m1rz' 
m~ from the VEVs by using the minimisation conditions. Of course, this model typically has 
several different minima, usually including for example minima with only one of the three VEVs 
non-zero, and in order to study the vacuum structure it is necessary to find all of them to ensure 
that the minimum which we are analysing is indeed the deepest one. 

Let us now turn to domain wall solutions of the field equations. These reduce to the six 
equations 

d</Ji 1 &V 
(6)dz + 2&</Ji = 0 

where </Ji is the real or imaginary part of one or other of the three scalar Higgs fields. We 
may then impose the boundary conditions that (H1!H2,N) are (V1!V2,X) at z -00 and 

21ri/ 3 21ri/ 3 )(VI e , v2e21ri/3, xe at z 00. It is straightforward to find solutions to such equations 
numerically, and by appropriate Z3 field redefinitions it is clear that walls with the same structure 
exist between any two pairs of vacua. 

A typical solution is shown in Figure 1, where we show the absolute values, phases, and 
energy density as a function of z in the wall region. The input parameters are A = k = 0.2, 
Al = Ak 100GeV, tan,B r = 2. Here the total surface energy density of the wall is 
7.1 x 106 GeV3 after we have subtracted the vacuum energy density, while the wall thickness is 
around O.02GeV- I

, in reasonable agreement with the approximate arguments given above. It 
should be noted that even in the centre of the wall the VEVs are not zero, and so electroweak 
symmetry is not restored. 

In fact, as the parameters are varied a very wide range of different behaviours and structures 
for the wall can be seen, with typically (for tan,B > 1 and r > I) pz remaining large over 
much of the region, while P2 > 0 always but may become quite small near the centre of the 
wall. The phase behaviour shown in Figure Ib, where the U(I}y phase 01 - 82 goes from 27r 
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to 0 continuously across the range is not universal but is typical. Unlike that for all the other 
variables, most of this change in 01 O2 is outside the wall region, but we have explicitly checked 
that changing the size of the box does not have any significant impact on the total energy or 
the shape of the field configuration. 

An example of a set of parameters for which electroweak symmetry is virtually restored is 
shown in Figure 2. Here)' = k 0.1, A~ = All 250GeV, tan/3 = 2, r = 5. The total wall 
energy is 2.2 x 107 GeV3

, rather higher than before because the singlet VEV is larger, while the 
wall is now slightly wider. Although only PI is ever zero inside the wall, P2 falls to under 3Ge V, 
and is less than lOGe V for a region of width"" 0.04GeV-I. 

Of course, these are just two of a multitude of possible sets of parameters, each of which will 
give a wall with possibly very different characteristics. We also remark that there can be more 
than one solution for a given set of parameters, although for those shown there are no other wall 
solutions with higher surface energy. Since the VEVs of the higgs fields do not go through the 
origin, there is the possibility for 'double' (and also triple in this case) wall systems with the 
same phase on either side to form in the manner described in Ref.[16]. We shall assume that 
this does not occur, or at least that if it does the double walls are unstable to the formation of 
holes by quantum tunneling, which then expand under the surface tension destroying the wall. 
Our primary conclusion must be that for at least some sets of parameters, the domain walls 
possess exactly the properties which we will require in order to have them driving baryogenesis. 

Baryogenesis from Z3 Wall Networks 

Having established this fact, let us go on to examine the possibilities for baryogenesis. Mter the 
phase transition we have an 'emulsion' of three phases separated by highly convoluted domain 
walls. CP is also spontaneously broken by the phase transition, but as yet there is no explicit 
CP violation. In fact, as we have seen, when going through a domain wall from A ---+ C, B ---+ A 
or C ---+ B, the phase changes of the Higgs fields are equal and opposite to those occurring 
when going from A ---+ B, B ---+ C or C ---+ A. We shall refer to these two types of transition as 
'positive' and 'negative' respectively. The walls are not invariant under CP, and inside them the 
electroweak symmetry is restored if the vacuum expectation values of the Higgs fields vanishes 
(which, as we have seen, mayor may not be the case depending on the details of the Higgs 
sector). Thus we shall assume that baryon number violating transitions will be in eqUilibrium 
in these regions, at plasma temperatures close to the phase transition. As domain walls move 
through space, the time-dependent change of phase of the Higgs fields occurring inside the walls 
will give rise to a non-zero chemical potential for baryon number and baryons will therefore be 
created. 

Cosmology dictates that there is some mechanism which removes the walls and one sug­
gestion, originally by Zel'dovich et al [9J, is that the degeneracy of the vacua may be slightly 
broken, eventually leading to the dominance of the true vacuum. This point of view was recently 
supported by Rai and Senjanovic [17J, who argue that gravitational interactions may explicitly 
break the discrete symmetries causing a slight non-degenaracy in the minima of the Higgs of 

v5order € / Mpl (where v is a generic Higgs VEV of order Mw in this example). This suggestion t'V 

was applied to this particular model in the context of string theories by Ellis et al [18J. 
We should point out two possible problems with this solution to the domain wall problem for 

this particular model. The first is the problem of destablising divergences which may generate 
a large VEV for the singlet, and so destroy the solution which supersymmetry provides for the 

5 




hierachy problem [19]. This is a potential fault in any model which includes gauge singlets. It 
is not clear which operators may be generated at the Planck scale or with what coefficients, 
but we note that the CP-violating gravitationally-suppressed operators which are necessary 
to remove domain walls do not in themselves generate such large singlet VEVs. Connected 
with this problem is the fact that if we break the Z3 symmetry even by gravitational terms, we 
reintroduce the JL-problem since without the Z3 symmetry there is nothing to prevent JL becoming 
large. These points detract from the NMSSM but are unavoidable; unless we are prepared to 
complicate the model by invoking inflation with reheating to a temperature less than the weak 
scale (and probably the AfHeck-Dine mechanism for baryogenesis), we must certainly break the 
Za symmetry explicitly. These are problems for the NMSSM as a whole and are secondary to our 
present more general aim of showing that domain walls can induce baryogenesis with small CP 
violation. We will not discuss .them further, but will simply bear in mind that a full resolution 
of these problems of the NMSSM seems to require a greater understanding of the structure at 
the Planck scale. 

The removal of the false vacua (and therefore the domain walls) proceeds as follows. For 
friction-free motion, the typical curvature scale, R, of the wall structure evolves roughly as 
the time for models with ZN symmetry. Since we are not interested in the precise power law 
behaviour of the curvature scale, we shall neglect the conformal stretching due to the expansion 
of the universe. For detailed discussions of these points see Refs.[20, 21]. We shall also neglect 
the effects of friction on the motion of the walls. In fact this may be important at lower 
temperatures for domain walls associated with higgs fields. This is due to the walls' interaction 
with particles in the plasma, most importantly the bottom quarks, which are reflected off them 
with probability proportional to mUp2 where p is the particle's momentum. Thus friction is 
unimportant for temperatures between Ew and 10 Ge V. When the motion of the walls is friction 
dominated, they reach a terminal velocity determined by their curvature and by the density of 
the plasma. The typical curvature scale of the walls then increases as tl/2 rather than t [22]. 
These points will be discussed in detail in [10]. 

Once the curvature scale has exceeded a critical value, i. e. when the pressure dominates 
over the tension, € > a / R where a is the surface energy density, the domains of true vacuum 
begin to dominate and expand into the two domains of false vacuum. However, since CP is only 
broken spontaneously, any mechanism which removes the walls generates as much matter as 
anti-matter. In this case, the true vacuum, A, invades an equal area of Band C when it finally 
dominates (B and C must be degenerate if CP is not explicitly broken), and the production of 
baryons from negative walls exactly cancels that from positive ones. 

Spontaneous CP violation per se is therefore not enough to generate a net baryon number. 
What is also required is some additional explicit CP violation in the Lagrangian, and this is 
where this paper differs from previous discussions. Previously attention has almost always been 
focussed on the biasing of the baryon number production directly at the collapsing domain walls 
(an exception being the scenario examined in Ref.[8], which bears some resemblances to this 
picture). Thus any explicit CP violation that was added to the Lagrangian was incorporated 
linearly into the production of baryon number. The resultant models required relatively large 
CP violating phases in the higgs sector. 

However, even tiny (of order v5 /Mp1 ) CP violating terms will clearly effect the way the 
domain walls collapse, and, as argued in Ref.[17], there is no reason why gravitational terms 
that break the Z3 should not also break CPo What we propose therefore, is that no two of the 
vacua are degenerate, so that C has a higher vacuum energy than B, which has a higher vacuum 
energy than A. As the walls collapse therefore, A domains will invade both B and C, B domains 
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will invade C but be invaded by A, and C will be invaded by both A and B. In order to show 
that this can generate a significant baryon asymmetry, consider the extreme case, in which the 
C phase has 'much' higher vacuum energy than B. Then the first pressure driven process to 
operate as the scale of the wall network increases is the collapse of C domains to be replaced 
by A and B. Both positive and negative walls will quickly accelerate to the speed of light, and 
the net baryon number generated will be close to zero. Now there will be only A and B phases 
left. The remaining B is finally removed when the non-degeneracy in A and B vacua becomes 
dominant. But the only walls which can do this are the positive B -t A ones, and so there is 
clearly the potential for generating net baryons. 

Simulation of the Z3 Wall Networks 
The number which we need in order to be able to estimate the baryon number is the average 
number of positive and negative walls which pass through a given point during the whole process. 
In order to show that this number can be close to one, we have simulated a Z3 domain wall 
network evolving in 2 dimensions, in Minkowski space (i. e. neglecting the conformal stretching). 
We did this following Kawano [20]. First we begin with an arbitrary distribution of the three 
phases. The probability for each phase is PA = PB = Pc 0.33 which interestingly is barely 
enough for them to percolate in three dimensions. Simulations on a cubic lattice give the 
percolation threshold to be 0.31 and simulations in continuum percolation theories give 0.295 ± 
0.02 [23]. Thus the structure is expected to be tenuous and highly convoluted (i.e. 'spaghetti' ­
like). The walls are then divided into small lengths and released from the (in this case square) 
lattice. The evolution at each time step is determined by applying the equations of motion 
locally, taking the mass (proportional to the length) of the walls to be concentrated at the 
vertices between straight sections. In this we differ slightly from Kawano, who calculated the 
local curvature, since this enabled us to treat vertices with two and three walls attached on the 
same footing. In addition we did not include toroidal boundary conditions but let the ends of 
the walls slide along the edge of the box. We therefore do not expect our results to be accurate 
when the curvature scale is of the same order as the size of the box. Our basic unit for the 
simulation is shown in figure 3. A typical point, To, is connected to up to three other points. 
Each line has a perpendicular vector flj associated with it which describes the magnitude and 
direction of the pressure acting on it.The rest mass of the vertex is given by half the sum of the 
lengths multiplied by the surface density 0"; 

(7) 

The force is given by - VE at the vertex 

(8) 

where, = (1 r~)-1/2 and 8 is proper time, so that the acceleration is given by 

d2 To ( -2 Ti - To fOi,-3)
dt2 = I: 2, I. _ I+ --IT" - Tol II: ITj - Tol· (9) 

I ~ ~ 0" j 

It is easy to verify that the continuous case is recovered in the limit as the size of the straight 
sections goes to zero. For example, consider the polygon made of N equal straight lengths, 
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-0.-_--' ­

whose vertices are at r from the origin, and whose internal vacuum energy density is E. The 
equation of motion above leads to 

ey-3 7r 
- -- cos - (10)

r a N' 

which is that of a cylinder of radius r in the limit N ~ 00 [24]. It is convenient to scale 
everything in terms of the initial curvature scale Ro, so that Pi rdRo, and T = tiRo, so that 
eq.(9) becomes, 

2 
d Po _ "(2. -2 Pi - Po + EOiRoI'-3 1 I) I" 1 1 - L....t I' Pi - Po L....t Pi - Po • (11)

i-PO a i 

The only free parameters in the simulation are therefore the two pressure variables, EBRola and 
EcRola. All our results are presented with Ro normalised to 1cm. 

In figure 4 we can see how the network behaves without the effects of pressure. The scale 
of the structure evolves at roughly the speed of light (with about one wall per horizon) growing 
proportionally to the time. (This case, together with more general ZN cases has been examined 
in more detail by Press et al [21].) The important point here is that (as remarked upon in 
Ref. [22]) , without pressure, the evolution of the walls is mostly a question of topology. Those 
regions which are connected to two or four external walls tends to collapse, while those which are 
connected to eight or more external legs expand, due to the tension of the external legs pulling 
outwards. One can see this by considering any three leg vertex. A three leg vertex minimises 
its wall energy by trying to adopt a position in which the angles between the legs are equal and 
1200 Squares with four external legs do this by the vertices falling inwards trying to increase the• 

internal 900 angle. Octagons with eight external legs expand, trying to decrease a 1350 angle. 
Hexagonal structures (i. e. honeycombs) are stable. In fact for a general N sided polygon with 
N external legs, the equation of motion is easily found to be 

(12) 


where we have normalised r RIRo, where R is the perpendicular distance from the centre to 
the edges of the polygon, and T = tiRo. E is the difference in vacuum energy between the inside 
and outside of the polygon, and Ro is its initial size. 

We now introduce pressure by switching on the E above. This becomes dominant over the 
tension when 

(13)IE:I ~1 

which for typical values of vacuum expectation values happens for 1cm < Ro < 1m in cases 
where E is induced gravitationally. The evolution of the system with pressure is shown in figure 
5, where we have taken ~ = 0,0.25,0.5 for the phases A, B, C respectively. As mentioned 
earlier, the evolution of the network in terms of r = RIRo is the same for constant ERo. As in 
the Z2 case, larger structures are affected much more by the pressure. Since the structure of the 
walls is always increasing, once the pressure becomes dominant, collapse happens very quickly 
(between 10-10 and 10-8 seconds). Thus provided that the walls do not dominate in density 
before they collapse, and also that the entropy released into the plasma is properly thermalised 
(both of which we shall assume), there is no danger of disturbing nucleosynthesis which begins 
at fV 1 second. 
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The ratio of area cleared by positive walls to the total area we find to be 0.6, so that definining 

""BG as 
area of positive transitions - area of negative transitions 

(14)
""BG = total area 

the global production of baryons is ""BG ~ 0.2 of what it would be for maximal CP violation. 
For values of Ec much larger than this, ""BG rapidly approaches 1. 

Discussion. 

From this point, the analysis closely follows that in Ref.[4]' and of course the same caveats apply. 
That is, we assume that the wall thickness is large enough to allow anomalous processes to occur. 
These may take the form of short range interactions of typical size (g2T)-1, where the electroweak 
symmetry is completely restored, or if the temperature is close to the phase transition one would 
expect sphaleron-like configurations straddling the domain wall to be possible. (Ideally one 
would like to be able to find these by constructing a non-contractible loop around the domain 
wall background.) Assuming that the sphaleron rate inside the walls is 

(15) 

the final production of baryons is given by 

(16) 

where g. is the number ofrelativistic degrees offreedom contributing to the entropy, and A(81 + 
82 ) is the phase change of the higgs fields which is orthogonal to the Goldstone mode. This factor 
is to be multiplied by a coefficent of order 1 (see Ref.[3]). Note that in contrast to 'spontaneous 
baryogenesis' scenarios in which there is a possible suppression by a factor m; jT2 [25], here there 
is no suppression, because the relevant equilibrium densities to use are the ones obtaining outside 
the domain wall where mt has its physical value. Notice that the production of baryon number 
is due to the translation of the walls, which contrasts with the case of electroweak strings, in 
which it is due to a decrease in the total volume covered by strings as they collapse; because of 
this there is no volume suppression factor (SF). The change in higgs phase is 

(17) 

so that 
(18) 

Bearing in mind our earlier discussion, there is the possibility of a much larger biasing of 
the potential. We note that this mechanism works for more general E, provided firstly that the 
amount of explicit CP violation is of the same order as the explicit Z3 breaking, and secondly 
that they are both not so large that the walls collapse immediately on forming. Thus we are in 
the novel position of being able to place (albeit extremely weak) lower and upper bounds on the 
amount of explicit CP violation allowed. The mechanism works only when the scale at which 
the pressure dominates is larger than the size of the protodomains (~(g~T)-l) during the phase 
transition which gives, 

(19) 
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For typical values of (T we find, 
(20) 

which not surprisingly is just less than Mtv. In addition we require that the temperature be 
close to the weak scale, for the anomalous processes to be operative inside the wall. How­
ever the domain sizes grow at speeds comparable to the speed of light. FRW cosmology gives 
t =2.42 g;1/2(T/MeV)-2 secs. For T i'V Mw we find t i'V 10-10 secs. Thus it is possible for 1 cm 
size structures to grow at temperatures close to the weak scale, implying that even CP violation 
induced by gravity could be the driving force behind baryon production for weak scale phase 
transitions. 

In fact the following exercise is instructive. Suppose that the anomalous processes are 
effective down to a temperature T. < Tc , and that the pressure and surface energy terms are 
given by 

(21) 

where v O(Mw) is the VEV of the higgs fields, and M is the mass scale of the physics which 
is responsible for the CP violation. Suppose also that the curvature scale increases at some 
sizeable fraction, (:J, of the speed of light, R = (:J(t - t,) Then in order for this mechanism to 
work, we require that the pressure is dominant over the surface tension for t t., 

(22) 

This gives an upper bound onM, 

(23) 

So unless T. is extremely close to Tc , gravitational couplings could be responsible for this mech­
anism, giving a lower bound on € of, 

(24) 

When this bound is saturated, on dimensional grounds one expects the contribution to the 
electric dipole moment of the explicit CP violation, to be of the order of 6dn < 10-42ecm [6]. 

Finally, we note that this mechanism is possible for any model with a spontaneous CP 
breaking transition occuring at an energy scale, v, which is higher than the electroweak scale, 
provided that some domain walls remain at the time of the electroweak transition. In this case 
anomalous processes are guaranteed to be in equilibrium when the wall network collapses. The 
same considerations apply here. That is 

2 4 > > 10-sG V4 (25)gv e.rv€i'V 

In this case the lower bound is less than what would be expected to be induced by gravity, since 
we require simply that the domain walls collapse before the electroweak phase transition whilst 
anomalous processes are still in equilibrium. 
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Figure Captions 
Figure Ia 

Absolute magnitures of the fields as a function of position for the parameters >. = k = 0.2, 
A.\ Ak = 100GeV, tanIJ 2, r 2. The three lines show, from top to bottom, P3, P2, Pl' 

Figure Ib 
Phases of the fields as a function of position for the same parameters as Figure 1a. The three 
lines show 6+ = 61 + 62 (solid lines) ,6_ = 61 62 (long dashed lines), 6., (short dashed lines). 

Figure Ie 
Surface energy density of the wall as a function of position for the same parameters as Figure 
1a. 

Figure 2a 
Absolute magnitures of the fields as a function of position for the parameters>. = k = 0.1, 
A.\ = Ak = 250GeV, tanIJ = 2, r 5. The three lines show, from top to bottom, P3, P2, Pl' 

Figure 2b 
Phases of the fields as a function of position for the same parameters as Figure 2a. The three 
lines show 6+ = 61 + 62 (S9lid lines) , 6_ = 61 - 62 (long dashed lines), 6., (short dashed lines). 

Figure 3 
Basic unit for wall simulation. 

Figure 4 
Wall evolution without pressure. The four time-slices shown have time 0.5 1O-10s, 1.5 10- lOs, 
2.5 1O-l0s, 3.75 10- lOs, for upper left, upper right, lower left, lower right respectively. /'i,BG is 
less than 0.01 always. 

Figure 5 
Wall evolution without pressure. The four time-slices shown have time 0.6 1O-l0s, 1.5 1O-l0s, 
2.4 1O-10s, 3.75 1O-10s, for upper left, upper right, lower left, lower right respectively. /'i,BG is 
-0.009, -0.004, 0.023, 0.104. Final value of /'i,BG after all walls disappeared was around 0.2. 
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