
Technical Report 
RAL-TR-95-009 

CLRC 

Disordered Ground States for Classical 

Discrete-state Problems in One Dimension 

G Canright and G Watson 

May 1995 

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS 



© Council for the Central Laboratory of the Research Councils 1995 

Enquiries about copyright, reproduction and requests for 
additional copies of this report should be addressed to: 

The Central laboratory for the Research Councils 
library and Information Services 
Rutherford Appleton laboratory 
Chilton 
Didcot 
Oxfordshire 
OX110QX 
Tel: 01235445384 Fax: 01 235 446403 
E-mail library@rl.ac.uk 

ISSN 1358-6254 

Neither the Council nor the laboratory accept any responsibility for loss or 
damage arising from the use of information contained in any of their 
reports or in any communication about their tests or investigations. 

mailto:library@rl.ac.uk


Disordered Ground States for Classical Discrete-state Problems 


in One Dimension 

Geoff Canrightl,2 and Greg Watson3 

1 Department of Physics and Astronomy 


The University of Tennessee, Knoxville, TN 37996 


2 Solid State Division, Oak Ridge National Laboratory 


Oak Ridge, Tennessee 37831 


3 Rutherford Appleton Laboratory 


Chilton, Didcot, axon OXll OQX, UK. 


Abstract 

It is known that one-dimensional lattice problems with a discrete, finite set 

of states per site 'generically' have periodic ground states (GSs). We consider 

slightly less generic cases, in which the Hamiltonian is constrained by either 

spin (S) or spatial (1) inversion symmetry (or both). We show that such 

constraints give rise to the possibility of disordered GSs over a finite fraction 

of the coupling-parameter space-that is, without invoking any nongeneric 

'fine tuning' of coupling constants, beyond that arising from symmetry. We 

find that such disordered GSs can arise for many values of the number of 

states (k) at each site, and the range r of the interaction. The Ising (k = 2) 

case is the least prone to disorder: I symmetry allows for disordered GSs 

(without fine tuning) only for r 2 5, while S symmetry 'never' gives rise to 

disordered GSs. 
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I. INTRODUCTION 


The problem of order vs. disorder permeates all of condensed-matter and statistical 

physics. If we ignore thermal fluctuations by setting T = 0, and quantum fluctuations 

as well by viewing matter as composed of massive units interacting via effective classical 

potentials, we have a simpler problem which is still nontrivial. Here we want to consider the 

simplest subproblem of this class: we restrict our units to lie on a one-dimensional chain, 

and allow them only a finite, discrete set of states, whose number we call k. We take the 

(integer) range ofthe interaction among the units to be r, but do not restrict the interactions 

to two-body terms. (We will call the units 'spins'.) The Hamiltonian is then of the form 

H = L f( (J"i, (J"Hl, ... ,(J"H'I") (1) 
i 

where (J"i (the spin at site i) has k states which we label 0,1, ... , (k 1), and we assume an 

infinite chain. 

The question of orderedIdisordered ground states (GSs) for this problem has already 

been answered in principle. Radin and Schulman (RS)l showed that (i) a nondegenerate GS 

is periodic, and (ii) in the case of degenerate GSs, there always exists at least one periodic 

GS. (See also Teubner2 for a different presentation of the same results for the Ising case 

k 2.) In each case the maximum period of the periodic GS is k'l". 

These results may be understood most simply by embodying the information contained 

in the Hamiltonian H in a directed graph G!k) (where k and r have the same meanings as 

above). This is done as follows: 2,3 nodes of the graph are sets of r spins, each taking one 

of the k values. A directed arc points from node Nl to node N2 whenever the rightmost 

(r - 1) values of Nl agree with the leftmost (r - 1) values of N2 • The arc itself may then 

be uniquely labeled with (r +1) sequential spin values, which allow us to associate a unique 

weight (energy) to the arc. Specifically, we can take the weight of the arc joining the node 

G!k) has k'l" nodes, and k'l"+1 arcs. Any configuration of an infinite chain of spins thus must 

involve repeated cycles of arcs in G!k). 
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All cycles in G~k) may be decomposed into 'simple cycles' (SCS)4 having the property of 

non-self-intersection. The result of Radin and Schulman is then equivalent to the following: 

(i) If there is a unique SC of G~lc) with the lowest weight per spin, then a repetition of that 

SC gives the nondegenerate GS, whose period (the length of the SC) is ~ the number of 

nodes of the graph, ie, kf'. (ii) If there are two or more SCs with the lowest weight per spin, 

then there is always a GS consisting of repetitions of only one of them, whose period is again 

~ kf'. 

This logic does not allow a reduction of the upper bound of RS. The graphs G~lc) are 

known as de Bruijn graphs;5,6 and it is known that the set of SCs always includes a 'Hamilto­

nian cycle', that is, one visiting all the nodes. Furthermore, it is clear that case (ii) is 'rare': 

in general-that is, without fine tuning of the couplings to precise values-the Hamiltonian 

H does not give degenerate SCs. 

We also note that, in the exceptional case of degenerate (and minimal-weight) SCs, the 

degeneracy may give rise to disordered GSs if the degenerate SCs share one or more nodes­

since the different SCs may then be traversed in any arbitrary sequence with no energy 

cost. 

Put briefly, we see that, barring fine tuning of the coupling parameters of H, one always 

has a periodic GS for a k-state model. Given such fine tuning, however, one can arrive at a 

degenerate set of GSs, with this set (sometimes, apparently) infinitely large, and including 

disordered configurations. 

Given this background, we note the following: sometimes, 'fine tuning' is 'generic'. By 

this we mean simply that symmetry in fact does tune some parameters to precise values. 

This suggests the following question: might the symmetries of H give rise to disordered, 

degenerate GSs-without any further fine tuning of parameters? 

We offer an answer to this question here. The symmetries we consider are two: spm 

inversion (S) symmetry, and spatial inversion (1) symmetry. We choose these two because 

they are both (particularly the latter) very common in physical applications. (We should 
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also point out that our entire analysis, like that of RS, assumes translational invariance of 

the Hamiltonian as well; put differently, we are seeking disordered GSs in the absence of 

quenched disorder in the Hamiltonian.) 

Our approach is as follows. We will construct, for a given symmetry X (= S, I, or 

combinations of the two), a symmetry-reduced graph x G which will play the same role in 

the case of a symmetry-constrained Hamiltonian HX as is played by the full graph G for the 

generic Hamiltonian H. That is, we define a graph x G, and its SCs, such that the set of SCs 

of x G is the set of GSs of HX. This will allow us to enumerate explicitly those (k, r) values 

for which there are disordered GSs in the set. The results (for X S and I) are shown in 

Table I, which is the principal result of this paper. A second result is that our construction 

of x G enables an explicit, algorithmic enumeration of all the GSs of a given HX. 

Finally, a technical point, which is implicit in the preceding discussion. Following 

Teubner,2 we define a GS to be a spin configuration which is the lowest-energy configuration 

over a finite subvolume of coupling-parameter space. That is, we only include configurations 

which do not require fine tuning of the parameters (beyond that coming from the assumed 

symmetry). Such configurations may also be termed zero-temperature phases, since they 

occupy a finite region in parameter space. 

II. BROKEN SYMMETRY AND DISORDER 

Broken symmetry is by now a well-known idea, with a canonical example from our own 

problem class: the near-neighbor Ising problem (k 2, r 1) in zero field is S-symmetric, 

but may have two degenerate ferromagnetic GSs, each breaking the symmetry. There is 

however in this example no obvious connection to disorder: one does not find a disordered 

mixture of the two phases in the GS manifold, because the two GSs have a finite 'surface 

tension' between them-which translates to the fact2 that the two SCs do not share nodes 

. 0(2)
In l' 

To find disordered GSs, then, we seek symmetry-degenerate SCs of x 0 which do share 
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nodes-that is, degenerate GSs with zero surface tension. One can of course readily find pairs 

of SCs in G~Ie) which are symmetry-related (hence degenerate under a symmetric Hamilto­

nian) and which share one or more nodes. The problem is then to determine which (if any) of 

these pairs are ground states, by our definition. What we find is that the imposition of sym­

metry, while nicely enforcing the degeneracy of pairs of cycles over the entire (symmetric) 

coupling-parameter space, can also-due to the degeneracy of parts of the pairs-suggest 

the 'decomposition' of the pair into two or more other cycles, which are not related by sym­

metry, and one of which must be lower in energy than the degenerate pair. Decomposition 

in this sense of a degenerate pair of cycles, when it occurs, excludes that pair from our set 

of GSs of HX. 

Hence the problem is to find symmetry-related pairs of cycles which share one or more 

nodes but do not decompose. (We will give explicit examples of decomposition below.) Our 

construction of x G~Ie), and our definition of its SCs, are designed to solve this problem. 

Below we show in detail how this is accomplished, for various combinations of spin (S) and 

space (I) inversion symmetry. 

A. Spin inversion (S) 

By spm inversion for k-state problems we mean the following: the states, which we 

formally label (0,1, ... , k 1), map under S to (k -1, k - 2, ... ,0). Nodes, arcs, and cycles 

of the graph G~k) also map to their spin-inverses: .N --+ lV, are --+ arc, and eye --+ eye. We 

recall that the energetics of our discrete problem is reflected in the weights w assigned to 

the arcs of the graph G~Ie); the symmetry of H is then reflected in w(are) = w(are) and 

hence w(eyc) w(eye). 

The SCs of G are of course unchanged by the application of symmetry; but the set of GSs 

is reduced in number. The GSs of the general problem G~Ie) are vertices of a convex polytope 

pjk) in a d-dimensional space (where d is the number of independent spin correlations, and 

hence coupling parameters, in H); these vertices are in one-to-one correspondence2 with 
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the SCs of G. Applying S symmetry to H then amounts to constraining H to move in a 

lower-( dS)-dimensional subspace. The GSs of the symmetric Hamiltonian H S are then the 

vertices of the section1 of p,pc) defined by the lower-dimensional space; we call this section 

Sp;1c). The vertices of Sp;1c) correspond to either a symmetric SC, or an S-related pair of 

SCs. In the latter case, if the pair shares one or more nodes, it will give rise to an infinite 

set of degenerate GSs, 'most' of which are disordered mixtures of the two SCs. 

Hence our original question may now be rephrased as: for which k and T values is there 

at least one vertex of Sp;1c) corresponding to a pair of SCs sharing at least one node? To 

answer this question, we turn to the graph SG~1c), which is more readily visualized. 

We would like to find a graph SG!1c) with the same properties, with respect to H S, that 

G!1c) possesses with respect to H: all GSs are SCs, and all SCs are GSs. We consider the 

following construction8 (Fig. 1). We identify the equal-weight arcs aTe and aTe of G!1c) with 

the single arc aTes of SG!1c); similarly, we merge the nodes .N and Jl to a single node .Ns . 

The resulting graph, for k 2, has the nice property (as may be guessed from Teubner2
) 

that SG!2) '"'-' (is isomorphic to) G!:?l' For larger k, SG!1c) is in general no longer a de Bruijn 

graph, since it includes parallel arcs. 

We define a SC of SG~1c) in precise analogy to a SC of G~1c): it is a cycle which visits no 

node in SG!1c) more than once. 

Now we want to show that only SCs of SG!1c) can be GSs of HS. Clearly it is sufficient 

to restrict our attention to non-SCs of SG~1c) which are SCs of G~1c), since we have already 

ruled out non-SCs of G!k). A SC of G~1c) (visiting no node in G!1c) twice), which is however 

a non-SC of SG~1c), will visit at least one node .Ns in SG!1c) exactly twice [Fig. 2( a)]. In 

G!k), this non-simple cycle of SG!1c) represents a SC eye, and its partner eye. Schematically 

[Fig. 2(b)] we can represent these cycles as 

.N b/1 Jl a/l).Neye: (2) 

eye: Jl b/1.N a./l) Jl (3) 

Here the long arrows each represent a path (a composition of arcs), and the energy per 
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b c 


(b)(a) 
a d 

FIG. 1. The graphs (a) G~2) and (b) SG~2). Arcs which have equal weight by S symmetry are 

given the same label. Note that the latter graph is isomorphic to Gi2
) (Fig. 6). 

spin of each path is placed above the arrow. The energy per spin of eye and eye is then 

(a + b) / (l + m). It is apparent from Fig. 2(b) that eye and eye together define two other 

cycles: one with energy/spin all, the other with b/m. We assume that a/l < b/m. We then 

use the fact that 

all < (a + b)/(l + m) < b/m (4) 

to deduce that the non-SC eye/eye of SG~k) is not a GS of H S : barring fine tuning of 

parameters (as would be needed to set a/l = b/m), one of the symmetric cycles is always 

lower in energy. Alternatively, we say that the non-SC eye/eye decomposes to the two cycles 

with intensive energy a/land b/m. This conclusion holds without any restriction on the 

number of nodes which may be shared between the a/l and b/m paths-which therefore 

also may decompose. 

Hence we find that all cycles of SG~k) which are not SCs of SG~k) are not GSs of H S . 

Now we wish to show that all the SCs of SG~k) are GSs of HS . It is helpful to recall the 

generic case first, since the argument is then readily generalized to the case of S symmetry. 
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FIG. 2. (a) A (schematic) non-simple cycle of SG~k), composed of two simple cycles (SCs) 

whose per-spin weights are marked. (b) How the non-SC appears in G~k): as two, asymmetric but 

symmetry-related, SCs (one solid, one dashed), each of net weight/spin (a+ b)/(l+ m). The single 

shared node in (a) becomes two symmetry-related nodes Nand N in (b). The asymmetric SCs 

are never ground states of an S-symmetric Hamiltonian (see text). 

We consider the graph G~k), and the corresponding polytope F..(k). The vertices of Fjk) 

represent extrema of the Hamiltonian and hence GSs. Since the polytope Fjk) is defined2 

by the intersection of a set of inequalities (of number nl) on the correlations of H, the faces 

of FJk) are a set of nl equalities. As shown by Teubner,2 the inequalities for the correlations 

may be derived from the simpler inequalities for the densities nO". The density nO" is simply 

the average occurrence of the arc cr {crl 0'2 ••• cr"+1} in a given infinite configuration of 

spins O'i. The inequality is then 

(5) 

Hence nl is simply the number of distinct densities, where 'distinct' means 'not constrained 

to be equal'. 

Constraints on the densities arise in the following way. Since the 'flow' in the graph G~k) 

is 'incompressible', densities for the case where a single arc enters a node, and a single arc 

leaves it, are forced to be equal. This flow-induced constraint must be accounted for in order 

to count correctly the faces of the correlation polyhedron.2 
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Now consider a SC of G~k). Since it cannot visit every arc, it satisfies a set of equalities of 

the form no-; = 0, i 1; ... )ne(SC) (where ne(SC) is the number of distinct, unvisited arcs). 

Hence the SC is represented in p;k) by the locus of points satisfying that set of equalities. 

This locus lies on the surface of p;k) because ne(SC)~ 1. Furthermore, the locus is a point, 

since all densities in a SC are fixed (to lip, where p is the period of the SC); and, since 

varying any nonzero density of a SC requires the inclusion of arcs whose density was zero, 

every neighborhood of the point represented by a SC violates one or more of the equalities 

satisfied at the point. Therefore, the SC corresponds to a vertex of pJk), hence to a es of 

H. 

Now consider the restriction to H =Hs , with corresponding polytope S pJk). A further 

constraint on the densities arises when we project pJk) to the lower-dimensional, symmetry­

invariant subspace. In this subspace, a configuration and its symmetry-related partner 

give rise to the same point, since they have the same symmetric correlations. Put more 

simply, a correlation (ufl~2 ... u:q 
) and its symmetry partner (obtained from Ui -7 Ui) 

represent the same coordinate in the projected subspace. Since the densities represent a 

linear transformation on the correlations, it follows that the densities no- and nc; are also 

identified in the invariant subspace. Hence no- and nc; cannot be considered distinct when 

we work in the invariant subspace. 

Now consider a SC of SG~k). The argument is essentially the same as for the generic 

case. The (locus of the) SC lies on the surface of S Pr(k) , since the SC cannot visit all 

the arcs of SG~k). And the distinct (with the above constraint, no- not distinct from nc;) 

densities of the SC are fixed by the fact that the SC represents an unambiguous path in 

SG~k). Finally, varying the densities from those of a SC again requires violating one or more 

further equalities. Hence, SCs of SG~k) are vertices of Sp;k), and so are ess of H S. 

Hence we have shown that the SCs of SG~k) are the ess of HS. Our sear~h for disordered 

ess now takes the form: when does a SC of SG~k) represent a pair of node-sharing SCs of 

G~k)? 
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The question in this form can be answered, and the answer is simple. We call a 'node­

sharing' pair in G!k) (which is represented by a single SC of SG!k») a 'D-pair', where D stands 

for 'degenerate and disordered'. Then a SC of SG!k) represents a D-pair only if it includes 

an S-invariant node N*. Such a cycle (excluding the 'ferromagnetic' SC which uses the arc 

N* --+ N*) maps to a pair of cycles in G!k), sharing the node N*. All other SCs of SG!k) 

map to either a single, symmetric cycle (of twice the period) in G!k) , or to a pair of SCs 

sharing no nodes. (As shown above, no SC of SG~k) maps to a pair sharing two or more 

nodes.) 

The graph G~/c) contains no S-invariant nodes for k even, and one such node [consisting of 

r consecutive occurrences of the invariant spin value (1'* (k -1) /2J for odd k. Furthermore, 

given odd k, there is always (ie, for any r) at least one SC of sG~/c) which uses the node N*. 

Hence we conclude the following: 

For even k, S symmetry never gives rise to disordered GSs; for odd k and for every r , S 

symmetry does give rise to disordered GSs. 

B. Space inversion (1) 

1. Preliminaries 

The arguments and conclusions with respect to I symmetry are somewhat more involved 

than those for spin inversion. However, the basic outline of the argument is the same: we 

wish to define a graph IG~/c) whose SCs are the GSs of HI (that is, the Hamiltonian H 

constrained to be invariant under I). We will then seek D-pairs among the SCs of I G~/c). 

The definition of I G~/c), and of its SCs, will be developed in this subsection, along with a 

number of auxiliary concepts which are useful for the argument. We follow this subsection 

with a search for D-pairs, arising from I symmetry, in k-state problems with k > 2. Finally, 

in the last subsection, we treat the special (Ising) case k 2. 
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Classification schemes and representations:- We begin by developing a classification 

scheme for the nodes and arcs of G~Ie) according to their behavior under I. All the nodes of 

G~Ie) may be classified, according to their behavior under I, into three sets: a 'left-handed' 

set given the label L, their space inverses R, and an invariant or symmetric set labelled with 

S. Since the arcs of G~Ie) are in one-to-one correspondence with the nodes of G~~l' the same 

holds true for the arcs. 

Clearly there are, in general, many ways of choosing the Land R sets. Each such 

choice can be taken as a constraint on how the graph G~Ie) is to be represented in a planar 

drawing (eg, R nodes on the right, L nodes on the left). We are of course most interested in 

those properties of G~Ie), and of I G~Ie), which are independent of the choice of representation. 

However we will find two types of representation (or rep, for brevity) to be most convenient. 

First we define the 'recursive' representations. (For k 2 there are two; for general 

k there are many.) In these representations the handedness of all nodes and arcs of G~Ie) 

are determined, as much as possible, from the handedness of the arcs of Gile). Hence, one 

must first choose a classification for the arcs of G~Ie). (The nodes, of length r = 1, are all 

inversion-invariant and so S.) 

One then exploits a representation-independent procedure6 for constructing G~~l from 

G~Ie). [Such a procedure gives (by recursion) G~Ie), for any r, from Gile)]. The arcs of G~Ie), 

representing all the possible kr+1 sets of r +1 spins, become the nodes of G~~l' Arcs of G~~l 

then represent adjacent sets of r + 2 spins, which may be traced back to adjacent pairs of 

arcs in G~Ie) (where 'adjacent' means meeting at a node, with one arc of the pair incoming, 

the other outgoing). 

Our 'recursive' reps then use the following rules. Since nodes of G~~l come from arcs of 

G~Ie), we carry the handedness through unchanged. The handedness of the arcs of G~~l is 

then determined from that of the corresponding arc pairs of G~Ie) as follows: 

RR-+ R (6a) 

SR or RS -+ R (6b) 
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LL ---+ L (6c) 

SL or LS ---+ L (6d) 

SS ---+ S, L, or R inverse of intervening node) (6e) 

RL or LR ---+ S (if Rand L are related by I) (6f) 

RL or LR ---+ J otherwise (6g) 

The last line needs of course clarification. We use the symbol J to mean a 'joining arc' 

(JA): an arc that joins an R node to an L node, but is not symmetric itself. We note that 

symmetry, or lack of same, is rep-independent; however whether or not a given arc is J is 

rep-dependent, since one can always move one of the nodes. Joining arcs will be significant 

in many parts of our discussion of I symmetry. Specifically, the proper treatment of JAs 

is an essential part of our definition of IG~k) and its SCs; also, the concept of JAs is the 

simplest way to understand our results for k 2, for which we will distinguish the cases 

r < 5 from those with r 2: 5. Note that, for the purpose of proceeding with a recursive rep, 

the handedness of a JA must be chosen arbitrarily to be Lor R. 

This completes our description of recursive reps. We now define a second type of repre­

sentation, a 'minimal' rep, as follows. In a minimal rep the number nJ of J As is minimized. 

That is, all minimal reps have the same nJ, and every rep that is not minimal has a larger 

We can always draw the graph G~k) in the plane such that it is reflection symmetric 

abou t a line I (the reflection accomplishing L +-t R for both nodes and arcs). If there are no 

J As, the line I then partitions G~k), drawn in this way, into disjoint sets of arcs and nodes, 

with Rand L arcs/nodes on opposite sides of I, and only S arcs/nodes touching I. Thus if 

nJ 0 (in any rep), we call the graph "I-disjoint". If nJ =J 0 in a minimal rep, the graph 

is non-I-disjoint. Obviously, I-disjointness is a property which is independent of rep, but 

most easily ascertained in a minimal rep. 

Not all minimal reps are recursive. For example, for the case k = 2, and in the absence 
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of JAs, there are only two recursive reps. These two reps are trivially related, since there are 

only two arcs in GF) (cf Fig. 8) which are not S-and they must have opposite handedness. 

Since the relation of the two is trivial, then, as long as J As do not appear to introduce 

ambiguity in going from (r - 1) to r, we can refer to a 'single' recursive rep for k = 2. We 

find, by construction, for k = 2 that 'the' recursive rep is also minimal for all r ::; 5. [This is 

the reason for the rule for SS combinations, Eq. 6(e).] However, for r = 6 there are multiple 

recursive reps due to the appearance of JAs at r = 5; and no recursive rep is minimal. These 

results, besides demonstrating that minimal reps are not in general recursive, will be useful 

in our discussion of the k = 2 case below. 

The graph I G and its SCs:- We now seek the graph I G~k) which will serve the same 

purpose, in the case of I symmetry, as was served by SG~k) for S symmetry. Unfortunately, 

it is impossible8 to draw consistently a graph strictly analogous to S G~k), that is, a graph in 

which arcs and nodes related by I are identified. 

We can however construct I G~k) by broadening our notion of a graph (and of a cycle). 

We draw G~k) to be reflection-symmetric about the symmetry line 'L as described above, 

with L arcs and nodes to the left, R to the right, S nodes on 'L, and S (and J) arcs crossing 

'L. We then construct I G~k) by simply erasing everything to one side of 'L (Fig. 3). The 

resulting 'graph' (we will drop the quotes) has the odd property that some arcs begin and 

end on 'L, rather than on a node. We define a 'cycle' of I G~k) to be one of two types: (i) a 

closed path as in a conventional digraph, or (ii) a path which begins and ends on 'L. A cycle 

of type (i) will map to two distinct (I-related) cycles in G~k). A type-(ii) cycle becomes a 

cycle in G~k) by simple reflection about 'L. 

Our prescription for I G~k) is still not complete; joining arcs in G~k) require special han­
+-- +-­

dling. Assume the J A arc connects nodes NL ---+ NR in G~k), that NR f= NL (where N is 

the spatial inverse of the node N), and that we want to build I G~k) by erasing the right 

half of G~k). We then represent arc by drawing a heavy line (to distinguish the J A from the 
+--

non-JAs) from NL to NR (which is in the left half). Furthermore, in IG~k), arc is a 'sink': 
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FIG. 3. (a) G~3); (b) IG~3). See text for a definition of cycles and simple cycles of IG~k). 

+-­
it leaves both NL and NR . (Had arc entered NL, it would be a 'source'; it would also enter 

~.) The resulting construction is shown in Fig. 4, using G~2) as an example. 

This new feature of I G~k) requires yet further broadening of our definition of a cycle. 

The rule is, two paths flowing (in the same direction) from a single source to a single sink 

also constitute a cycle. We also allow the possibility that I can act as a source or sink. For 

bookkeeping, we label the paths leaving a source (and entering a sink) with distinct 'colors' 

(hence only two colors are needed). We allow further sources and/or sinks (ie, JAs) in each 

path-with the path changing color (and apparent direction) when crossing a JA-with the 

constraint that the colors must match at every node that is neither source nor sink. 

Clearly, a type (i) (closed in IG~k)) cycle which does not touch I must then include an 

even number of J As, so that the path directions (colors) match everywhere away from the 

JAs. A type (ii) can include an odd number, in which case it uses I either as a source or as 

a sink. 

Since sources and sinks in I G~k) merely amount to crossing I in G~k), it is perhaps clear 

that our specification of cycles of I G!k) will yield, upon 'unfolding' to G!k) , cycles of the 

latter as well. 
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(a) 

(b) 

FIG. 4. ( a) G~2) i (b) I G~2). Note the appearance of the joining arcs (JAs-asymmetric arcs 

crossing the central line of symmetry) in both ( a) and (b); in the latter, JAs appear as heavy lines 

with double arrowheads. 
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This completes our construction of 1G!lc), including the definition of its cycles. However 

we still need an appropriate definition of a simple cycle of the graph 1G!lc). We will classify 

the SCs of 1G!lc) into four topological types. First we consider those that use no sources or 

sinks, ie, a single color. Such SCs include: (1) A simple closed loop in IG!lc), which does not 

touch I [Fig. 5(a)]. (2) Same as (1), except one node (and only one) is on I [Fig. 5(b)]. (3) 

A non-self-intersecting path from one node on I to another [Fig. 5(c)]. 

We now consider SCs using one or more sources/sinks. We can add an even number of 

JAs to a type (1), and will include the resulting SCs in type (1). A type (2) can add an 

even number of JAs by having only one color at I, or an odd number by having X serve as 

source or sink. The same holds true for type (3). 

The final step is to consider allowing paths of differing color to touch. Such a rule makes 

sense, since, when unfolded, such paths are on opposite sides of G!lc) and so do not intersect 

in G!lc). Assume two paths of different color ('red' and 'blue') touch in a contiguous sequence 

of nodes. Call this part a 'red/blue contact' or RBC. We allow only a single RBC in a SC 

of 1G!lc); furthermore, there are constraints on how the paths terminate (meet) at each end. 

The red and blue paths may diverge before annihilating at a JA in 1 G!lc)-but, once diverged, 

may not recontact, by the 'one-RBC' rule. In contrast, if, at either end, the two annihilate 

at X, then no separation of the two is allowed; that is, the RBC must include X. 

How do these new possibilities alter our topological types? We add a single RBC to 

type (1), 'pinching' it somewhere such that red meets blue. We call the result type (4); it 

is an RBC terminated by JAs at both ends [Fig. 5( d)]. By the above rules, we can only 

pinch a type (2) starting from Ii the result is still a type (2), but with an RBC 'neck' 

of more than one node [Fig. 5(e)]. Finally, we can either pinch a type (3) not at all, or 

everywhere-however a type (3) that is all RBC is equivalent to one which has no RBC. 

Thus, the addition of RBCs augments our list of topological types of SCs by one. 

Our specification of SCs of 1 G~lc) is considerably more involved than that for S G!lc). This 

is because of two complications: the treatment of I as a node, and the use of two colors, 
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(a) (b) (c) 

(d) (e) 

FIG. 5. The SCs of IG~k), presented in shematic form as four topological types. (a) A type 

(1) SC. (b) A type (2) touches I at a single node. (c) A type (3). (d) A type (4) SC. This is an 

example of a SC consisting of two paths ('red' and 'blue') running from source to sink. The red 

and blue touch at one or more contiguous nodes (an RBC, marked by a single large dot) in the 

center. (e) A type (2) which uses I as a source, and has an RBC (the upper heavy line) which 

includes I. 
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with the consequent possibility of RBCs. However, our overall criterion for a SC of I G~le) is 

the same as that for a SC of sG~le), or of G~le): a SO ofIG~le) is one for which there is no 

ambiguity as to which arcs of I G~le) are to be traversed. As we will see, it is this 'no-ambiguity 

rule' (implicit in the above detailed rules) which prevents SCs of IG~le) from decomposing. 

Our definition of I G~le) and its SCs is complete. We now proceed to show that the SCs 

of I G~le) are the GSs of HI. 

SOs ofIG = GSs ofHI:- First we show that non-SCs ofIG~le) are not GSs of HI. Our 

specification of SCs of IG~le) as a list of possibilities amounts to forbidding three things: (a) 

self-intersection with the same color (b) more than one RBC, or (c) improper termination 

of a single RBC. We next consider violating these three prohibitions, in order. Our goal is 

to show that violation of any of (a)-(c) means the resulting cycle is not a GS of HI. 

(a) Assume self-intersection by paths of the same color in a cycle of I G~le). We recall 

that cycles of IG~le) in general give rise to pairs of cycles of G~le), with each half of the pair 

related by I. Clearly, a necessary condition for cycle of IG~le) to be a GS of HI is that the 

resulting pair in G~le) be a pair of SCs (related by I). The pair must also not decompose, in 

the sense described in Section A above (on spin inversion symmetry). 

Most cases of violation of (a) will give pairs in G which are not SCs and so fail the first 

test. An exception is a same-color contact occurring on I, as shown in Fig. 6(a). (This 

represents a same-color contact because I is a single 'node', which here is visited twice.) 

This type of cycle unfolds in G as shown in Fig. 6(b), and decomposes to two symmetric 

cycles in a manner similar to that seen in the case of S symmetry. A variation on this 

violation, which also represents (and also decomposes to) a pair of type (3) SCs in I G~le), is 

shown shematically in Figs. 6( c )-(d). 

(b) Consider a cycle of I G~le) with two RBCs. We suppose that the two RBCs, which are 

connected by aredJblue 'bubble', are terminated by a JA at one end [a 'stirrup'-cfFig. 7(a)] 

and by I at the other. The resulting set of arcs in G [Fig. 7(b)] may be viewed, with some 

care, as a symmetry-related pair of SCs, of intensive energy (a+b+c)J(l+m+n). However, 
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because the no-ambiguity rule is violated, this pair also defines two other (symmetric) SCs 

of (intensive) weight (2a + c)j(2l +n) and (2b c)j(2m n), respectively. Now assume the 

pair represented by Fig. 7 ( a) is a GS, so that 

a+b+c 2a+c c 2b+ c -------- < ----- and -------- < --- (7)
l+m+n 2l+n l n 2m+n 

If we multiply out each of these inequalities (assuming l, m, and n positive) we obtain a 

contradiction; Hence the non-SC in Fig. 7(a) cannot be a GS; it decomposes [Fig. 7(c),(d)]. 

The same arithmetic and conclusion, with slightly different pictures, applies when the pair 

of RBCs is terminated by stirrup + stirrup, or by I I. Therefore, any SC of G~1e) which 

is not a SC of I G~1e) by virtue of violation of (b) is not a GS of HI. 

(c) We finally consider improper termination of an RBC, by divergence before termination 

on I. It is easily seen by simple sketches that, regardless of the other termination of the 

RBC (stirrup, or properly on I), the resulting pair are not SCs of G and so fail to be GSs 

of HI. 

Summarizing the above, we find that, for any conceivable violation of the rules for a SC 

of I G~1e), the resulting cycle is not a GS of HI. Turning this around, we find that all GSs of 

HI are SCs of IG. 

We note in passing that Morita9 previously obtained results which foreshadow ours. He 

assumed I symmetry of H, and found necessary conditions for cycles of G to be GSs of HI. 

In our language, he found that such allowed cycles must touch I no times [type (1) and 

type (4)], or once [type (2)] or if twice, must be I-symmetric [type (3)]. These conditions, 

which are satisfied by our SCs, are not sufficient to ensure a GS. Specifically, Morita's rules 

encapsulate our rule (a) (no same-color contact), but fail to capture (b) and (c) (which give 

constraints on RBCs). 

Finally, we need the converse: that all SCs of IG~1e) are GSs of HI. Here the argument 

is essentially unchanged from that for the case of S symmetry: densities (arcs) related by I 

are considered not distinct, and it readily follows that SCs of IG~1e) are vertices of I Pr(1e)-the 

intersection1 of P (1e) with the I-invariant subspace. r
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FIG. 7. (a) A cycle ofIG~k) with two RBCs. (b) We view (as always) the cycle ofIG~k) [in (a)] 

as representing two symmetry-related cycles in G~k) shown here. Where the two cycles differ, one I 

is dashed and the other solid. We take the net intensive weight of all arcs outside the 'bubbles' to 

be c/n-which is the same for both cycles by symmetry. Each of the two cycles is a SC of G~k) 

but neither is a GS of HI (see text). (c), (d) The decomposition of the cycle of (a) to two [type 

(2)] SCs ofIG~k), each with a single long RBC. Both (c) and (d) represent GSs of HI. 
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2. k > 2 

We are now ready to seek D-pairs in I G~k). To this end we can use our established 

classification of the SCs of I G~k) into four types. A type (1) SC gives rise to a pair of 

nonintersecting SCs in G. Such a as thus represents spontaneous breaking of I symmetry 

(SSB), but not a D-pair. All type (2) SCs represent D-pairs in G~k), sharing one or more 

nodes which straddle I. Type (3) SCs of IG map to symmetric SCs of G, and so are not 

D-pairs. Finally, type (4) SCs give D-pairs sharing one or more nodes which do not touch 

I. 

Hence our search for D-pairs is a search for SCs of type (2) or (4) in I G. We first consider 

r = 1. For this case, all nodes are on I. Hence all SCs of 1Glk) are of type (3), and there 

are no D-pairs. 

We now use the fact that (in this section) k > 2, and consider r > 1, in a recursive rep. 

In this case, there are always SCs of G whose nodes are of the form L ... LS (where ... 

is a string of L's). Specifically, a cycle of the form LiS (nodes) in G~k) may be built, in a 

recursive rep, from a cycle in Glk} whose arcs (all nodes being S) take the form Li-(r-2}sr-l. 

The I-partner of such a SC in G~k) is then of the form RiS. A pair of SCs of G, of this form, 

is a type (2) SC of IG, with a single node (and a single color) at I; and the pair is aD-pair. 

For example, in G~3), one can build LLLS (nodes) SCs from LLLS (arcs) of Gl3
); these 

form D-pairs in G~3) with their partners RRRS. There are three such pairs-(2210)/(0122), 

(2110)/(0112), and (2100)/(0012)-as may be seen in Fig. 3(b). For larger k and/or r, the 

number of such D-pairs increases (and other types appear). Hence we find that 

Disordered GSs occur in the case of I symmetry for any k-state problem with k > 3 and 

r ~ 2. 
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FIG. 8. G~2). The choice of handedness for the two nonsymmetric arcs of G1k
) is really no 

choice, since the two must be opposite. Hence, until JAs occur at r = 5, there is effectively only 

one recursive rep for k = 2. 

3. k 2 

The Ising case (k = 2) has some special properties. In particular, G~2) (Fig. 8) has a 

single L arc and a single R arc. This makes it impossible to make any cycle in G12
) in which 

an L arc follows another L (similarly with R), so that our above argument-by-construction, 

using a recursive rep for k > 2, fails for k 2. In fact, even with multiple S arcs [(11) or 

(00)] after a given L, it is clear that the first non-S arc after the L must be an R. In other 

words, all cycles of G12
), of any length, are of the form 

... R ... L ... R ... L ... R ... L ... (8) 

where ... is a string of S's of any length. 

From this we can deduce another property which is peculiar to the Ising case in the 

recursive rep. The property (8) implies that every cycle of G~2) [except the two ferromagnetic 

cycles (1) and (0)] crosses I an even (2: 2) number of times. One can easily show that the 
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same is true for G~2), for any r ~ 5, in the recursive rep.1O We then note the following: (i) 

the recursive rep is a minimal rep for r ~ 5; (ii) in the recursive rep, G~2) has nJ 0 for 

r < 5, and nJ > 0 for r ;:::: 5; (iii) hence G~2) is I-disjoint for r < 5 and non-I-disjoint for 

r 5. (These statements may be verified by explicit construction of the recursive rep.) 

Our 'even-crossing rule', plus (i )-(iii) of the previous paragraph, suffice to ensure that 

there are neither D-pairs nor SSB in G~2) for r < 5, as follows: Type (1) cannot occur in 

the recursive rep due to even-crossing plus I-disjointness; hence it cannot occur in any rep. 

Type (2) is similarly ruled out. Type (4) requires JAs; this type is ruled out by (iii) for 

r < 5. Thus all SCs of IG~2), for r < 5, are of type (3)-symmetric cycles of G-and hence 

represent neither D-pairs nor SSB. 

We next consider the case r = 5. Here we find four JAs (Fig. 4) in the recursive rep 

(which is still minimal). The presence of these JAs is sufficient to allow three of the four 

types of SCs in IG~2). For example, a type (2) SC, and its unfolding, are shown in Fig. 9. 

An example (the only one) of SSB in G~2) is the pair (101100) and its inverse (001101); this 

pair gives a type (1) SC of IG~2) which uses both of its JAs. 

Given that G~2) is non-I-disjoint, one can show that G~~l is also. (In fact, this is true 

for any kY) Furthermore, even in a minimal rep, nJ increases with increasing r. The result 

is that types (1)-(3) occur for all l' ;:::: 5. We also find (aided by a computer search) that 

type (4) D-pairs12 occur for l' ;:::: 7. Hence we find that 

Both SSB and diso.rdered, degenerate GSs occur in the Ising problem with I symmetry for 

l' ;:::: 5. Neither occurs for l' < 5. 

c. S I symmetry 

S I symmetry may be handled very much like I. (The symmetry line in this case is a 

horizontal line SI through the center of the graphs.) Here we just note the conclusions. 

The results for k = 2 are the same (an 'even-crossing rule' in the recursive rep, non-SI­

disjoint for l' ;:::: 5, and disordered GSs for r ;:::: 5). G~3) is non-SI-disjoint for l' ;:::: 3; G~k) 
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(a) 

(b) 

FIG. 9. (a) A D-pair (heavy solid, and heavy dashed lines) in G~2). Such a pair of cycles gives 

rise to a degenerate set of configurations, including disordered ones, which are GSs over a finite 

volume of coupling-parameter space. (b) The appearance of the two SCs of (a) as a type (2) SC 

in IG~2). The two 'legs' going from the symmetry line I to the JA have different 'colors' (here 

represented by solid vs. dashed lines). 
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is non-SI-disjoint for any k ~ 4 and r ~ 1. There are disordered GSs for any k ~ 3 and 

r ~ 1. 

D. (S + 1) symmetry 

We finally consider the case where both S and I are good symmetries of H. We construct 

the graph S+IG~k) by applying I symmetry to SG~k) (erasing half of it, and correcting for 

JAs). We can then use arguments like those above to show that the SCs of S+I G~k) (defined 

similarly to those of I G~k») are the GSs of HS+I. (In particular, the same arguments, used 

in Section B to eliminate SCs of G~k) which are not SCs of I G~k), may be used to eliminate 

SCs of SG~k) which are not SCs of S+IG~k); and the usual argument shows that all SCs of 

S+I G~k) are GSs of HS+I.) 

For what values of rand k do we find disordered GSs of HS+I? Again we just give 

our conclusions here. Combining the two symmetries eliminates some D-pairs, and creates 

others. With one exception, however, we find that, wherever (in r and k-~see Table I below) 

S or I alone gives disordered GSs, the combination S + I also gives disordered GSs. The 

exception is G~2). Here we find (as noted above) that S G~2) f"V Gi2
). Since the latter graph 

has no D-pairs, application of I to S G~2) gives a graph S+IG~2) f"V I Gi2) which also has no 

D-pairs. We note finally that S + I does not give disordered GSs where neither S nor I 

does. 

III. DISCUSSION, EXAMPLE, AND SUMMARY 

We summarize our findings in Table I. Each X entry means that there are D-pairs in 

G~k), arising from the the appropriate types of SCs in x G!k). This in turn means that for the 

given rand k, the corresponding k-state problem has degenerate, disordered GSs, arising 

from X symmetry, over a finite region of coupling-parameter space, without any fine tuning 

(beyond that coming from the symmetry). 
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TABLE LOne-dimensional k-state models which allow for disordered ground states, with no 

fine tuning of coupling parameters other than that demanded by symmetry. Rows are indexed 

by the number of states k, and columns by the range r (in lattice constants) of the interactions. 

An entry is made whenever spin inversion (8) or spatial inversion (1) symmetry gives rise to one 

or more pairs of degenerate ground states, with zero surface tension between the two states of 

the pair. It is this combination (degeneracy plus zero surface tension) which allows for disordered 

ground states. 

r=l 2 3 4 5 6 

k=2 1 1 

3 8 8,1 8,1 8,1 8,1 8,I 

4 1 1 1 1 1 

5 8 8,I 8,I 8,1 8,1 8,1 

6 1 1 1 1 1 
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FIG. 10. (a) G13 
}; (b) sG13

). In the latter, a pair of energetically distinct arcs connects the 

node - / + to itselfj in general, SG~k) has parallel arcs such as these for k > 2, and so is not a de 

Bruijn graph·. 

We give here a simple example to illustrate the above (sometimes rather complicated) 

logic. The simplest entry from Table I is k = 3, r 1. We give both G~3} and SG~3) in 

Fig. 10; for convenience, we let the three states [formally labelled (0,1,2)J take the values +1, 

0, and -1 (so that S(1' = -(1'). The dimension of H is d = 6; the independent correlations 

are 81 = ((1'2), 82 ((1'i(1'i+1), 83 = ((1';(1';+1)' 84 = ((1'), 85 ((1';(1'i+1), and 86 = ((1'i(1';+l)' We 

then write the per-spin Hamiltonian, for an infinite chain, as 1£ = -J . s. 

Since none of the arcs in G~3) are constrained by either flow or symmetry, they represent 

9 distinct densities, giving the 9 faces of the polytope PI(3) which lives in 6-dimensional 

clidean space. (We will not give the relationships between the densities and the correlations 

here; they are readily generalized from those given by Teubner2 for k = 2.) 

Now, guided by Table I, we apply S symmetry, and seek disordered GSs. This means 
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J4 = J5 = J6 = °in 1l; hence the polyhedron S p?) is the three-dimensional 'slice' of p?) 

given by 84 = 85 86 0. The five arcs of Sa~3) give rise to five densities: n-o = n+o =nzo; 

no- = no+ noz ; n+_ = n_+ =n~~; n++ = n __ =n~~; and noo. However only four of these 

are distinct, since the structure of Sai3) constrains noz = na:O by conservation of flow. Hence 

S Pl(3) is a polyhedron in 3D with four faces: it is a tetrahedron. The vertices of S p?) are the 

four SCs of saia): (0), (+)=(-), (+-), and (0+)=(0-). The last is of course the D-pair, 

sharing the invariant node N* = 0. Each of these SCs sets 3 of the 4 distinct densities to 

zero, hence shares dS = 3 of the 4 (= nf) faces of SPl(a). In s coordinates, these vertices 

are, respectively, (0,0,0), (1,1,1), (1,-1,1), and (1/2,0,0). The SCs (0-+) and (0+-) of 

ai3) are not SCs of saia
); they lie on the edge in S Pl(a) joining (0+)/(0-) to (+-). This is 

a geometric version of decomposition (recall Fig. 2 and the associated discussion); one can 

verify graphically that (0-+)/(0+-) decomposes to (0+)/(0-) and (+-). 

The (single) D-pair for this case is the lowest-energy SC in the subvolume bounded by the 

planes Jd2 + J2 + Ja < 0, Jd2 - J2 + Ja < 0, and J1 > 0. For illustration, a representative 

point in this subvolume is 1l _(0'2) + (O'!O'l+l)-that is, J1 = +1, J2 = 0, and Ja = -1. 

It would be of some interest to find an analogous neighborhood for the smallest-r Ising 

(k = 2) problem with disordered GSs: r = 5 for I symmetry, and r = 6 for S + I symmetry. 

This task however is considerably more tedious than the above simple example; hence we 

do not attempt it here. 

Table I is striking in the near-ubiquity of its entries, which stands in strong contrast to 

the simple result of Radin and Schulman. 1 Given that I symmetry is ubiquitous as well, 

we might expect disordered GSs for a number of interesting problems. However, both the 

present results, and those of RS, remain somewhat academic in the absence of a convincing 

physical application. It may, or may not, be the case that the regions of parameter space 

giving disordered GSs are in general too 'weird' (ie, unphysical) to be visited by physical 

problems. Only further work can answer this question. The answer is however of considerable 

interest since it has relevance to the Third Law of thermodynamics. l3 
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We note finally that there is at least one physically-motivated problem, namely the 

problem of stacking polytypes in crystals,14 which should be well modelled by an effective 

Ising Hamiltonian with medium-15 or long-range16 effective interactions between the stack­

ing units (layers). Materials showing polytypism do show very-long-period and disordered 

structures, even down to low temperatures. It is possible-perhaps likely-that all these 

complex structures are metastable configurations, trapped at low temperature by a 'rugged' 

energy surface. However, given our present results (and the S +I symmetry of the problem), 

we believe that the possibility that some of the disordered structures are ground states (in 

the more common sense of the term: minimal-energy configurations) cannot be ruled out a 

priori; hence such a possibility deserves further study. 
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