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Abstract 

The spinless Falicov-Kimball model on a two-dimensional square lattice is studied 
using the method of restricted phase diagrams constructed in the grand canonical 
ensemble. The results are compared with the one-dimensional model. Although the 
two-dimensional phase diagrams are more complex, with several distinct families of ion 
configurations occurring as ground states, there are surprising similarities with the one
dimensional case. Within each family of configurations, the ground states form a devil's 
staircase structure and the configurations are constructed according to a composition 
rule identical to that in one dimension. It is also found that, as in one dimension, 
segregation occurs in the non-neutral model for large ion-electron interaction strength. 
Some features of the phase diagrams are understood by examining the effective two
body ion interaction. 

Introduction 

There are several reasons for the continued'interest in the Falicov-Kimball model (FKM) 
over the past several decades. The model was originally proposed [1] as a model of metal
insulator transitions in mixed-valence compounds of rare earths and transition metals. Since 
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then, it has been studied as a model of crystallization due to effective interactions mediated 
by band electrons, as a variant of the Hubbard model [2], and as a model of binary alloys 
[3]. Our interest is motivated by the fact that the FKM is the simplest known model 
with nontrivial many-body correlation effects. It is amenable to analytical treatment and 
controlled approximations, and the solutions typically show a form of charge-density-wave 
order in the ground state. Therefore, we view the FKM as a tool for studying the tendency 
for charge-density-wave formation in more general interacting fermion systems, as well as 
a model of physical interest in its own right. Work on applying results from the FKM to 
more general contexts includes the construction of a strong-coupling mean field theory of the 
Hubbard model [3, 4], an investigation of the breakdown of Fermi liquid theory [5], a study 
of electron-phonon interactions [6], and a study of the asymmetric Hubbard model [7]. 

In this paper we study the ground state phase diagram of the spinless FKM on a two
dimensional square lattice. Our study is based on the restricted phase diagrams constructed 
in the grand canonical ensemble for various values of interaction constant U. 

Previous work on the Falicov-Kimball model has concentrated on the one-dimensional 
case, and there the phase diagram has been found to have a very rich structure [3, 8, 9, 10]. In 
particular, in the limit of large values of U only domains of the so-called most homogeneous 
configurations of the ions appear in the phase diagram constructed in the grand canonical 
ensemble [9, 11, 12]. The effective interactions between ions are repulsive in this case. On 
the other hand, for small values of U, other periodic phases appear in the phase diagram as 
well as the most homogeneous configurations. If additionally the density of the ions is close 
to zero (or unity) then the formation of molecules containing two or more ions (or vacancies) 
is observed [9, 10]. 

Much less is known about the two-dimensional system. In [13] the method of restricted 
phase diagrams was applied to the two-dimensional lattice, but only a few of the possible ion 
configurations were taken into account. Later, some general properties of the phase diagrams 
were established, and rigorous results were obtained in the limit oflarge values of U [14, 15]. 
In particular the ground state configurations of the ions were found for the neutral case 
(pi = Pe) and P 1/3,1/4 and 1/5, and a characterization of the ground states for densities 
in the range 1/4 < P < 1/2 was given. In addition, an argument has been proposed [8, 16] 
suggesting that the phase diagram in the canonical ensemble for the two-dimensional case 
should be qualitatively the same as that for the d = 00 model, which has been solved exactly 
[17]. 

The two-dimensional FKM is much more difficult to study that the one-dimensional 
one because the analytical formulae for the total energy of a one-dimensional system do not 
generalize to two dimensions, except for a few special classes of configurations. Thus the total 
energy of the system for an arbitrary configuration can be found only from direct numerical 
diagonalization of the Hamiltonian. Another complication is that a much larger set of ionic 
configurations have to be taken into account to construct a reliable phase diagram. 

In the next section we calculate the effective interaction between two ions mediated by 
itinerant electrons. We also review some rigorous results on the two-dimensional model which 
provide a skeleton phase diagram, and discuss the solution of the model for periodic ion con
figurations, on which our numerical work is based. In Sec. 3 we supply some computational 
details, followed by the results in the form of restricted phase diagrams for various values of 
the interaction strength U. Sec. 4 contains discussion of the results and our conclusions. 
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2 Analytical results 

2.1 	 The model 

The spinless Falicov-Kimball model describes the interaction of two species of particles: a set 
of spinless fermions, conventionally termed electrons and represented by fermion operators 
a! and ai on lattice site i, and a set of infinitely massive classical particles, termed ions, 
described by classical occupation variables Wi taking the values 0 or 1 on each site. In other 
words, Wi 1 if site i is occupied by an ion, and Wi 0 if site i is vacant. Each particle does 
not interact with particles of the same species, but there is an on-site interaction between 
electrons and ions, whose strength is given by the dimensionless constant U. Thus we write 
the Hamiltonian 

H 	 E a!aj - U E Wini N(Pe - Uj2)Pe - N(pi - Uj2)pi' (1) 
(ij) 

where (ij) means that sites i and j are nearest neighbours, nt = alai is the electron occu
pation of site i, N is the number of lattice sites, and pe = Nej N and Pi = NijN are ion 
and electron densities, respectively. The energy scale has been chosen to be the electron 
bandwidth, so that the electron hopping rate is unity; then U is the energy of the electron
ion interaction in these units. The last two terms are included when we are working in the 
grand canonical ensemble, and then pe and Pi are the chemical potentials. The independent 
parameters in the model are U, pe, Pi in the canonical ensemble and U, pe, Pi in the grand 
canonical ensemble. 

The problem of constructing the ground state phase diagram in the grand canonical 
ensemble is formulated as follows. For a given point (Pe, pd in the plane of chemical poten
tials, consider all possible ionic configurations, given by all possible values of the variables 
Wi. For each configuration, the electron Hamiltonian He is given by the first two terms of (1) 
and represents free electrons moving in a fixed potential created by the ions; the resulting 
single-particle states of He are filled up to the Fermi level EF , and the total electronic energy 
ET(w, EF ) is then to be minimized over all ion configurations and over the Fermi leveL 

The EF minimization is trivial and gives, of course, 

(2) 

The subsequent minimization over the ion configurations is the nontrivial aspect, and leads 
to a form of many-body behaviour. 

The chemical potentials have been chosen so that the Hamiltonian is invariant (up to a 
constant) under a transformation consisting of particle-hole inversion of both electrons and 
ions, followed by P -+ - p. It follows that the phase diagram of the model is symmetric with 
respect to inversion about the origin, in the sense that the ground state phases at (Pe, Pi) 
and (-Pe, -Pi) are related by a particle-hole transformation. 

Performing a particle-hole transformation- on the ions only yields an equivalent Hamilto
nian but with U -+ -U and Pi -+ -p.;. In other words, the attractive and repulsive models 
transform into one another. Hence it is sufficient to consider a single sign of U; we choose 
the attractive case, U > O. Physically, one imagines the electrons and ions as having equal 
and opposite charges, and therefore the case pe = Pi is referred to as neutral. 
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2.2 Effective interaction 

A feature of the FKM is the division into 'fast' quantum mechanical degrees of freedom and 
'slow' classical ones, and it is natural to imagine 'integrating out' the electrons, leaving only 
ions interacting through effective classical potentials [2]. Here we calculate these effective 
potentials for the case of two ions in an infinite lattice. The calculation is restricted to neutral 
systems, since this type of analysis has been found to be useful for the one-dimensional model 
[10, 12]. 

The use of an effective two-body interaction derived from isolated ions in an infinite 
empty lattice neglects the influence of other nearby ions on the pair potential of the two 
ions in question, that is, it neglects three-body and higher order potentials. Nevertheless, 
this approach yields important qualitative information. An immediate example is that the 
effective potentials may be divided into repulsive and attractive behaviour. In the former 
case, the ground state would be expected to be homogeneous in the distribution of ions, 
while in the latter, one would expect the ions to clump together, which is the phenomenon 
of segregation [3]. For the one-dimensional model, the boundary between the two regimes 
defines a metal-insulator transition [10], and Lemberger [11] has shown that in the large U 
limit the homogeneous and segregated configurations exhaust the possibilities for the ground 
state. 

The electron motion in the presence of one or more ions may be thought of as an defect 
or impurity problem. The electron Hamiltonian is written He = T +V, where T is the 
kinetic energy and V is the potential of the ions. If V is attractive, its effect on the energy 
spectrum of T, if any, is to create one or more bound states, while the extended electron 
states in the band of T are not perturbed in energy by the ions (in the limit of an infinite 
system). For two ions at sites 0 and 1', the bound state energies are solutions of the implicit 
equation 

Go ± GT' -l/U, (3) 

where GT' = (OI(E - T)-ll1') are matrix elements of the lattice Green's function, and U is 
the strength of the (attractive) defects. Hence there may be zero, one, or two bound levels 
depending on U, the ion separation 1', and the dimension of the lattice. 

In one dimension, below the band, 

(4) 

where E = -2 cosh el, and thus GT' has an inverse square root divergence at the band edge. 
Also, GT' - Go tends to the limit 11'1/2 at the band edge, and we find that there is a critical 
value, Uc = 2/11'1, such that strong attraction (U > Uc ) gives two bound states and weak 
attraction (U < Uc ) only one. The value of Uc decreases with increasing distance between 
ions, and for nearest neighbour sites Uc 2, so if U > 2 there are always two bound states. 

In two dimensions, there is no longer a simple expression for GT' in terms of special 
functions (although specific cases can be written in terms of complete elliptic integrals). 
However, the behaviour is qualitatively the same as in the one-dimensional case, with a 
critical U below which there is only one bound state. For U > 4, there are always two bound 
states. 

If now two electrons are added to make a neutral system, these will occupy the lowest 
two electronic states. Hence we define the total electronic energy, identified as the effective 
ion interaction, as the sum of the bound state energies if there are two bound states, and as 
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Figure 1: The effective pair potential of two classical ions, mediated by two mobile electrons 
in a infinite two-dimensional square lattice, plotted as a function of the ion separation r 

along a lattice axis. The data points are joined by lines as a guide to the eye. Three values 
of the ion-electron interaction constant U are used: continuous line, U = 3; dashed line, 
U = 3.3; dotted line, U = 3.5. 

Eo 4 if there is one bound state. (In the latter case, the second electron occupies a state 
at the bottom of the band.) 

For the two-dimensional problem the effective potential depends on the two-dimensional 
vector r, but we have found that in most cases the angular dependence is very weak, so the 
potential has approximate circular symmetry. Deviations from circular symmetry occur due 
to the discreteness of the lattice, when the length scale of variations in the effective potential 
matches the lattice spacing. This occurs only near U 3.5, and does not affect the general 
picture. Therefore, in Fig. 1, we display results for the effective ion potential 'VeU(r) with r 
lying along a lattice axis, for various U. The energy origin is chosen such that 'VeU(oo) = O. 

The effective potential may be described as having three kinds of qualitative behaviour 
as U varies. For U > Uc2 ~ 3.47, the potential is purely repulsive, in the sense that the ions 
may always lower their energy by moving away from one another. In an intermediate range, 
Uc1 < U < Uc2 , with Ucl = 3.26, the potential is repulsive in the sense that it is minimized 
for infinite separation, but there is a short-range attractive part which may result in the 
trapping of the ion. Finally, for U < Uc1 , the potential remains attractive when the ions are 
near each other and repulsive when they are far apart, but the dominant behaviour is now 
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attractive since the global energy minimum occurs when the ions are nearest neighbours. 
These results are very similar to the one-dimensional case [10], except that there the 

critical values are Ucl = 2/..;3 ~ 1.15 and Uc2 ~ 1.61. 
The essential features of the effective potentials may be understood by the following sim

ple argument. When the ions are well separated, the electrons reside in the approximate 
single-ion bound levels, i.e. J each ion traps one electron to form an atom. The long-range 
interaction is therefore repulsive, because Pauli exclusion resists the overlapping of electron 
wavefunctions that occurs when the atoms are brought together. Using a variational wave
function constructed from single-defect states, it is easy to show that this repulsive tail of the 
effective potential is proportional to re-ar 

. Conversely, when the ions are sufficiently close 
together, only one electron is trapped in a "molecular" bound level, and the other electron is 
delocalized. Here, the energy is reduced by bringing the ions closer together in order to bind 
the former electron more strongly. Therefore, if the ions were moving in a continuum, the 
effective potential would always be attractive at short range [12, 18]. However, the range of 
the attractive part decreases rapidly with increasing U as the wavefunctions become more 
tightly bound, and since on a lattice the ions cannot approach closer than nearest neighbour 
sites, one finds a completely repulsive regime for large U. 

On the basis of these results we may make some predictions concerning the appearance 
of neutral phases in the ground state phase diagram. When U is greater than about Uc1 , we 
would expect the repulsive interaction to give rise to neutral phases with the ions distributed 
homogeneously in the lattice. For smaller U, it is possible that the ions would come together 
to form nearest neighbour pairs, i.e. J molecules. The fate of these molecules would then 
depend on the effective inter-molecular forces: the molecules may adopt a homogeneous 
distribution, or may come together to form larger aggregates; if the interactions between 
aggregates of any size are attractive, segregation would occur. This picture is similar to that 
found for the one-dimensional model [10]. 

Another important trend in the form of Veff is the widening of the potential well as 
U decreases. A consequence is that for small U the effective potential depends relatively 
weakly on the ion separation within the well: for instance, the difference in energy between 
the nearest neighbour and second-nearest neighbour ions may be slight compared with the 
energy scale of the depth of the well. This accords with the observation (Sec. 3) that the 
phase diagram becomes increasingly complicated as U decreases, as small changes in the 
parameters are capable of altering the energy balance between a large number of nearly 
degenerate configurations. 

These trends predicted by considering the effective ion-pair potentials are generally borne 
out by the numerical data (see Sec. 3). However, as indicated, the present analysis is a fairly 
crude tool in understanding the behaviour of the model, and rather than attempting to refine 
it, we move on to other approaches. 

2.3 Skeleton phase diagram 

In an elegant analysis, Gruber, J($drzejewski and Lemberger [14] have derived a number 
of exact bounds which provide a global picture of the phase diagram of the FKM for a 
cubic lattice in any dimension. The analysis considers three specific configurations: the full 
configuration, in which every site is occupied by an ion, the empty configuration, in which 
every site is vacant, and the checkerboard configuration, in which one sublattice is full and 
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Figure 2: Schematic phase diagram obtained by Gruber et al. [14]. Lines divide the plane 
of electron (Pe) and ion (Pi) chemical potentials into regions (+) and (-) in which the full 
and empty configurations, respectively, have been proved to be the ground states, and V, 
in which any translationally non-invariant ground states must be contained. V includes the 
shaded domain, in which the checkerboard configuration has been shown to be the ground 
state. 

the other is empty. 
Their results are summarized schematically in Fig. 2, for the two-dimensional case with 

U < 8. The diagram is divided into three principal regions. In the upper right region, the 
ground state ion configuration is full; in the lower left, it is empty. The exact analysis does 
not describe the structure of the central region, which we denote V, except to say that there 
is a domain containing the point Pi = Pe 0 in which the checkerboard configuration is the 
ground state. 

In the one-dimensional case, the central region V has been found to contain a very 
complex structure [9, 10]. In addition to the checkerboard configuration, a wealth of other 
periodic configurations are ground states in certain regions of the diagram. In fact, it is 
believed that configurations of arbitrary period occur in domains arranged to form a fractal 
structure, and that the dependence of ion density on chemical potential is a devil's staircase 
[3, 9, 10, 19]. If a similar structure occurs in the two-dimensional model, then, it must be 
confined to V. 

Another question concerns the behaviour near the upper left tip of the region V. The 
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horizontal line extending to the left separates empty and full ground states having electron 
density equal to zero (in which case all ion configurations are degenerate). For the one
dimensional model, it is found [9] that this line continues inside V, separating full and 
empty configurations with nonzero electron density, and therefore on the coexistence line 
itself the ground state may be an incoherent mixture of full and empty configurations, 
which is termed the segregated phase [3]. The structure of the phase diagram near the 
tip, therefore, is connected with the phenomenon of segregation. On physical grounds, 
segregation is expected to be a general phenomenon, but to our knowledge there are no 
general results on this question in more than one dimension. 

The appearance of the phase diagram is somewhat different for U > 8. In this case, it 
can be shown [2] that for any ion configuration the electronic spectrum has a gap containing 
the interval [4 - U, -4], which we term the principal gap. Then in the strip IPel < U/2 - 4 
all the ground states are neutral, and have the Fermi energy lying in the principal gap, so 
the transport properties of the system will be those of an insulator; the phase boundaries 
here are straight lines inclined at 45 degrees. It is expected that, as in one dimension, the 
occurence of insulating neutral phases will begin somewhat below the rigorous bound, U = 8. 

We now turn to results obtained by Kennedy [15] using rigorous perturbation theory for 
large U. This work investigated the neutral phases, which in the one-dimensional problem 
for large U are known to have as ground states the most homogeneous configurations (in a 
technical sense defined in [11]). Kennedy determined the ground states for ion (and electron) 
density Pi = 1/5, 1/4 and 1/3, and proved that for 1/4 :::; Pi :::; 1/2 the ground states have 
a one-dimensional character, as described below. The results confirmed the predictions of 
previous investigations [13], but showed, somewhat surprisingly, that the large U ground 
states are not the most homogeneous configurations in any reasonable sense. 

The configurations shown by Kennedy to be neutral ground states for large U are shown 
in Fig. 3, for Pi = 1/2 (the checkerboard [2]), 1/3, 1/4 and 1/5. Each of these configurations 
consists of parallel lines of occupied sites, with all other sites empty. For instance in the 
density 1/5 structure one may draw lines of slope 1/2 such that every intersection of the 
line with the lattice is an occupied site, and all occupied sites lie on such a line. Each 
structure can be described by such lines in more than one way. However, the P = 1/4 and 
P 1/3 structures have a common description: they both consist of equally spaced lines of 
occupied sites of slope 1/2, but differ in the spacing of the lines. Then the following result 
[15] holds for the density range 1/4 :::; P:::; 1/3: all the ground state ion configurations may 
be described by lines of slope 1/2 (but their spacing may not be uniform). We denote the 
structure of the density 1/4 state by (1000), which means that it is a periodic repetition of 
one occupied line followed by three unoccupied linesi the density 1/3 state is then (100), and 
at all intermediate P the ground state is given by a binary sequence of appropriate density. A 
similar result [15] exists for 1/3 :::; P :::; 1/2, stating that the ground states consist of parallel 
lines of slope I, ranging from (100) at P = 1/3 to (10) at P 1/2. 

These ground states, then, have essentially a one-dimensional character. Let us define 
the characteristic configuration, Cn, as the neutral ground state of density l/n as U tends 
to infinity. Then Kennedy's result can be phrased as follows, with n 2 and 3: for densities 
l/(n + 1) < P < l/n, the neutral ground state as U -+ 00 is a "mixture" of Cn and Cn+b 

in the sense that it is described by a sequence of occupied and vacant parallel lines of the 
slope shared by the lines defining Cn and Cn+!' It would be natural to conjecture that the 
statement holds for all n, but on the other hand, as Kennedy observed, configurations follow
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• • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • 
• • • • • • • • • • • 

• • • • • • • • 

• • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

p = 1/2 p = 1/3 p = 1/4 p = 1/5 

Figure 3: Characteristic configurations derived by Kennedy [15], which are neutral ground 
states for large U for the given densities. Large dots: occupied sitesj small dots: vacant 
sites. The lines indicate the characteristic slopes discussed in the text. 

ing this pattern are not the most homogeneous, which appears to contradict the predictions 
made on the basis of the effective interaction (Sec. 2.2). Since the effective interaction takes 
account only of two-body terms, we expect it to be relevant at low (or high) density, and this 
suggests that Kennedy's rules break down at low (or high) density. We shall find (Sec. 3.2) 
that this is precisely what occurs: the above statement is valid only for n = 2, 3 and 4. In 
particular, the characteristic configuration for density 1/6 does not follow the pattern. 

2.4 Periodic ion configurations 

Our numerical work is based on the construction of the restricted phase diagram, which 
means that we restrict the search for the lowest-energy state to periodic ion configurations 
with a unit cell having fewer than Nc sites, where Nc is a cutoff value depending on the 
available computer time. The reason for the restriction to periodic states is simply that this 
case is numerically tractable for motion in an infinite lattice. A similar approach has been 
very successful in the study of the one-dimensional Falicov-Kimball model [3, 9, 10], as well 
as other models with competing interactions [20]. 

The analysis of periodic configurations in two dimensions lacks the simplifying identities 
available in one dimension [21]. The key point is then the reduction of the model to a 
finite-dimensional eigenvalue problem, and the construction of the density of states, electron 
density and electronic energy as a function of electron chemical potential. 

A two-dimensional periodic configuration is described by two primitive vectors al and 
a2, and the area of the unit cell is No = al X a2. If the electron wavefunction is 1/;.. , as a 
function of lattice site r, Bloch's theorem states that under translation by a lattice vector 
R = mal + na2 with m and n integers, it satisfies 

nl. ik·Rnl. 
'fI ..+R = e 'fI", (5) 

where k = (krll' ky) is the Bloch wavevector. The electron motion is thus reduced to a 
No-dimensional eigenvalue problem, whose eigenvalues we denote Evk , with branch index 
v = 1,2, ... , No. The wavevector k is restricted to a parallelogram-shaped Brillouin zone 
of area (27r-)2 / No. All quantities of interest are calculated from the (normalized) density of 
states, 

Z(E) = L r dk 8(E - EVk)j (6) 
v JBZ 
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in particular, the electron density 

j 
P.-U/2 

Pe(P,e) = -00 Z(E) dE (7) 

and total electronic energy per site 

(8) 

as a function of the Fermi energy (2). The energy per site in the grand canonical ensemble 
is defined as 

(9) 

These formulae are the basis of the numerical treatment in Sec. 3. 
The electronic spectrum is divided into No branches. For the one-dimensional model, it 

can be shown [21] that the branches do not overlap and each forms a separate band, but in 
two dimensions this is not the case. It is easy to see, in fact, that the generic situation is 
that bands do overlap, and that many branches fuse into relatively few bands. 

For some configurations, such as the checkerboard, the discrete eigenvalue problem is 
simple enough that some further progress can be made analytically [la, 13]. An interesting 
class is the stripe configurations, which we define as those having (0,1) or (1, 0) as primitive 
vectors. These have the appearance of vertical or horizontal stripes (see, for example, Fig. 9), 
and may be regarded as degenerate cases of Kennedy's characteristic configurations, with 
zero slope. The eigenvalue problem here reduces immediately to a one-dimensional one, and 
we find 

(10) 

where Zl is the density of states of the one-dimensional system obtained by taking a "slice" 
perpendicular to the stripes. Zl consists of No bands with inverse square root singularities 
at the edges. The two-dimensional density of states is obtained by a convolution with 
(4 - z2)-1/2, which eliminates most of the gaps. 

The location of gaps in the electronic spectrum determines the transport properties of 
the corresponding state, and it is therefore informative to gain a qualitative understanding of 
the occurence of gaps by considering the limiting cases of small and large U, for any periodic 
ion configuration. For small U we may treat the ion potential as a perturbation of the single 
U = a band, and then gaps do not open unless there is an electron density for which the 
Fermi surface is nesting, as at Pe = 1/2 in the checkerboard configuration. (The fact that 
nesting always occurs in one dimension is responsible for the opening of gaps in that case.) 
In fact, it is easy to see that the checkerboard structure is the only configuration which has 
precise nesting. With this one exception, therefore, there are no gaps for sufficiently small 
U. 

For large U, gaps are expected, since at U = 00 the electron states are localized. For 
U > 8, the principal gap is opened and has minimum extent [4 - U, -4], but there are 
frequently other gaps as well, and these may be understood by large U perturbation theory. 
The splitting of bands below the pricipal gap is given in first order degenerate perturbation 
theory by the projection of the kinetic energy onto the degenerate subspace, which is an 
operator describing nearest-neighbour hopping restricted to the sublattice of occupied sites 

10 




in the given configuration. If this sublattice permits no open orbits, forming a potential 
well which traps the electron, then the energy shifts are discrete and when broadened by 
higher-order perturbations form separate bands; we find then that the lower band is split into 
subbands. The number of subbands is at most equal to the number of full sites in the unit 
cell of the ion structure, but is sometimes fewer, when symmetry and higher-order splittings 
need to be taken into account. In contrast, if hopping on the full sublattice permits extended 
motion, the corresponding band is usually not split. Similarly, the splitting of bands above 
the pricipal gap is found by considering hopping on the empty sublattice. 

As examples, we observe that the characteristic configurations in Fig. 3 have unbounded 
motion on the empty sublattice, and only one full site per unit cell, and therefore no splitting 
for large U; for small U there are no gaps. Therefore, we expect no gaps for any U) apart from 
the principal gap opening somewhere below U = 8. The same holds for the checkerboard 
structure, except that the pricipal gap opens at U O. Similarly the stripe configurations 
discussed above have no gaps other than the principal one. An example of a structure with 
other gaps is Fig. 15( a). 

3 The restricted phase diagram 

3.1 Computational method 

Here we briefly describe the numerical procedure by which we have constructed the restricted 
phase diagrams in the grand canonical ensemble for a range of values of the interaction 
strength U. 

The first step is to select a set of ion configurations to be taken into account. We have 
chosen to use the periodic configurations for which the (minimal) number of sites per unit 
cell, No, is less than or equal to a specified value, Nc . 

The number of allowed cofigurations increases rapidly with Nc • In addition, the computer 
time required for diagonalization increases with No, so the total computer time increases 
very rapidly with Nc• The number of configurations can be reduced somewhat using the 
symmetry of the problem under rotation and reflection, and using the particle-hole symmetry, 
which implies that only configurations with ion density less than 1/2 need be diagonalized. 
Nevertheless, the number of configurations approximately doubles with each unit increase 
in Nc. We have chosen Nc 15, for which there are 10383 distinct allowed configurations. 

It is not possible to enumerate here all the configurations in our trial set, and in fact 
it is not even possible to list all configurations that occur as ground states in our phase 
diagrams. Instead, in the following sections, we list a limited set of configurations occurring 
in the ground state phase diagram which, we believe, illustrate the full range of behaviour 
of the modeL 

For each value of U and for each periodic configuration in our trial set, we have performed 
a numerical solution of the corresponding eigenvalue problem (see Sec. 2.4). This involves 
finding the eigenvalues of an No-dimensional matrix for each value of k in a two-dimensional 
grid covering the Brillouin zone. The use of a grid of k-values amounts to considering the 
electron motion in a finite lattice, and imposes a finite resolution on the resulting total energy. 
In order to minimize this source of numerical error, we have chosen a k-space grid which is 
not aligned with the Cartesian axes, to avoid clustering of eigenvalues due to symmetry of 
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the grid, and we have employed an interpolation procedure in the calculation of integrated 
density of states and total energies from the eigenvalues. 

Our calculations were performed with a k-space grid of 12100 points for each configura
tion. By varying the resolution of the grid, we may estimate the resulting truncation error 
in the total energy calculation as less than 1 part in 104 

. 

Finally, the phase diagram is constructed using the calculated total energies. For each 
value of the electron chemical potential /-Le, the electronic energy ET(/-Le) determines the 
energy in the grand canonical ensemble, Eq. (9), for all values of ion chemical potential /-Li. 
This determines the range of /-Li, if any, in which the configuration has lower EGG than any 
other considered so far. Repeating this calculation for all /-Le and all configurations in our 
trial set yields the restricted phase diagram, namely the ground state ion configuration and 
electron density for each (/-Le, /-Li) point. The minimization of energy as a function of Pi for 
fixed pe is aided by the fact that EGG is a concave function of chemical potentials, which 
implies that the ground state ion density is a non decreasing function of Pi for fixed Pe [14]. 

3.2 Large U and neutral configurations 

The phase diagrams for large U have a relatively simple structure, and so we begin our 
description of the numerical results by presenting, in Fig. 4, the restricted phase diagram for 
U B. With one exception described below, the diagram for U > Bis qualitatively the same 
as this one, and thus we expect U B to be sufficiently large for the perturbation theory of 
Refs. [14, 15] to apply. 

Only one quadrant of the plane of chemical potentials is represented, as the full diagram 
is symmetric about the origin, and the large domains occupied by full and empty phases 
need not be displayed. The diagram plots the phase boundaries which divide the plane of 
chemical potentials into domains, in each of which a single ion configuration is the ground 
state. The upper region corresponds to the full configuration, the lower region to the empty 
configuration, and the largest of the remaining regions is the checkerboard phase. 

The phase diagram is fully consistent with the rigorous results (Fig. 2 and Sec. 2.3): 
the plane is divided by a central portion into regions in which the full (+) and empty (-) 
configurations are ground states. For large U the exact results guarantee also the existence 
of a strip of /-Le in which all ground states satisfy the neutrality condition Pe = Pi. However 
the rigorous bound on the width of this strip vanishes for U = 8, and so the numerical results 
allow a stronger statement: for U > 8 all ground state phases, apart from full and empty, 
are neutral, have EF in the principal gap, and have phase boundaries which are diagonal 
straight lines. 

The central portion is divided into diagonal stripes in which various periodic ion con
figurations are ground states, in a similar manner to the one-dimensional case. (Some of 
the stripes are too narrow to be clearly resolved.) The sequence of ion densities, reading 
from right to left at fixed Pi, is 1/2, 4/9, 3/7, 5/12, 2/5, 1/3, 4/13, 3/10, 2/7, 1/4, 3/13, 
2/9, 3/14, 1/5, 1/6, l/B, 1/10, 1/11, 1/12, 1/14, the Pi = 1/2 phase being the large region 
containing the origin. 

In Sec. 2.3, we defined the characteristic configurations On as the U ---t 00 neutral ground 
states for densities equal to the reciprocal of an integer, and some of these may be obtained 
directly from our numerical data. For P = 1/5, 1/4, 1/3 and 1/2 they are in agreement with 
those derived rigorously by Kennedy [15], while for other densities they are the configurations 
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Figure 4: Calculated restricted phase diagram for U = 8. The upper and lower areas 
correspond to full and empty ground states, respectively. Various neutral ground states 
exist in the other domains, the largest (which includes the origin) corresponding to the 
checkerboard phase. 
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Figure 5: Neutral ground states for selected densities, taken from the U = 8 phase diagram 
unless otherwise indicated. Except for the first configuration, these are conjectured to be 
characteristic configurations, i. e., neutral ground states in the limit of large U with density 
equal to the reciprocal of an integer. 

depicted in Fig. 5. Most of the configurations given in the figure are present in the U = 8 
phase diagram. The first exception is due to the fact that the neutral ground state for 
density 1/6 changes with U; this is a new feature of the two-dimensional model, since in one 
dimension the neutral ground states have never been observed to change with U. In the 
figure the ground states for U = 8 and U = 20 are given; the latter is then the characteristic 
configuration Cs. The second exception is that the density 1/15 configuration is taken from 
the U = 7 phase diagram, since it was not found for U = 8, perhaps because of the limited 
resolution. 

Our numerical procedure does not, of course, determine the characteristic configurations 
rigorously, since there may be lower energy configurations of higher period. In addition, 
there are missing members of the series, notably those with density 1/7 and 1/9. It is likely 
that these phases would appear if the limit on unit cell area were increased, but our results 
to date leave certain characteristic configurations undetermined. 

The characteristic configurations in Figs. 3 and 5 can be described as consisting of parallel 
lines of occupied or vacant sites. However, Cs appears anomalous, as its structure has two 
ions per unit cell, and cannot be described by uniformly spaced lines of occupied sites. (It can 
be viewed as uniformly spaced half-occupied lines of slope 1.) Also, it does not share a slope 
with C5 , and therefore it does not appear possible to describe the U -+ 00 neutral ground 
states with 1/6 < p < 1/5 by in a similar way to Kennedy's [15] result for 1/4 < P < 1/2. 
However, due to our limited set of trial configurations, we are not able to study the density 
range 1/6 < p < 1/5: this question warrants further analytical study. 
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Figure 6: Neutral phases with 1/3 < P < 1/2 in the U = 8 restricted phase diagram. 

In the density range 1/5 < P < 1/2, our results for densities intermediate between 
characteristic configurations are fully consistent with the "conjecture" formulated in Sec. 2.3: 
the ground state configurations consist of parallel lines of occupied or vacant sites at a fixed 
slope. The configurations for l/(n +1) < P< l/n have the same characteristic slope, which 
we denote 8 n . Our numerical data yield 82 1, 83 = 1/2 and 84 = 1/2, of which the first 
two agree with Kennedy's results [15J. 

In Fig. 6 we list the numerically determined ground states for the density range 1/3 < 
P < 1/2, which are characterized by the slope 82 1/2. The configurations are perfectly 
described by a surprisingly simple composition rule, with the structure of the Farey tree 
[9, 10). Consider, for example, the density 2/5 state. In the Farey tree, 2/5 is a 'descendant' 
of 1/2 and 1/3, whose structures are given by the patterns (10) and (100), respectively, 
with slope 1. The pattern of the P = 2/5 ground state is (10100), which is simply the 
concatenation of the parent patterns. Similarly, the density 3/7 state (1010100) descends 
from 1/2 and 2/5, the density 4/9 state (10101010100) descends from 1/2 and 3/7, and the 
density 5/12 state (101010010100) descends from 3/7 and 2/5. This kind of hierarchical 
composition rule is typical of one-dimensional systems with competing interactions, such as 
the axial nearest-neighbour Ising model [22). 

To summarize, we have found that the pattern established by Kennedy is obeyed for 
neutral phases in the density range 1/5 < P < 4/5, and that all the ground state ion 
configurations are described by a simple composition rule applied to the characteristic con
figurations. For densities outside this range, including the anomalous case p = 1/6, the 
pattern is not obeyed. 

Let us now describe how this picture changes on reducing U. As already mentioned, 
the density 1/6 neutral configuration changes, as depicted in Fig. 5. Two further qualita
tive changes take place. First, new families of ground states, not satisfying the neutrality 
condition Pe = Pi, begin to appear. Second, at rather low U, the neutral phases undergo a 
dramatic change. That is, although the existence of a region of neutral phases, with Fermi 
energy in the principal gap, persists to small U, the corresponding ion configurations no 
longer have the structure described above, and all the characteristic configurations disap
pear, except for the checkerboard. For example, in the U 1 phase diagram we observe a 
sequence of neutral phases with ion densities 1/2, 7/15, 3/7, 5/12, 2/5, 3/8, 5/14, 1/3; four 
of them are pictured in Fig. 7. Here, the ions adopt arrangements constructed by introducing 
homogeneously spaced lines of vacancies, aligned with the lattice axes, into the checkerboard 
structure. Configurations in this family have a principal gap even at rather low U, and when 
they are ground states have EF in the gap. Once again, the ground states are regular and 
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Figure 7: The sequence of neutral ground states in the U = 1 restricted phase diagram. 

essentially one-dimensional in character. 

3.3 Stripe configurations 

Figure 8 shows an enlargement of a region of the restricted phase diagram for U = 6, at the 
tip of the domain of neutral phases. (The remaining phase diagram is similar to the U 8 
c~se.) There appear two features not present at U = 8. One is a new phase adjoining the 
(+) region, marked B in the figure, which will be described in Sec. 3.5 below. The second 
is an entire family of new phases at A, adjacent to the neutral region and the segregated 
phase. 

This new family consists of stripe phases, which were defined in Sec. 2.4 as those with 
a one-dimensional unit cell, with unit period along the perpendicular direction. The ion 
densities of the stripe phases in region A of Fig. 8, reading from right to left, is 1/3, 4/13, 
3/10, 2/7, 3/11, 4/15, 1/4, 3/13, 2/9, 3/14, 1/5, 2/11, 1/6, 2/13, 1/7, 2/15, 1/8 and 1/9. 
This sequence contains all fractions in the range [1/9,1/3] with denominator less than or 
equal to 15, in decreasing order. The configurations themselves also obey a regular hierarchy, 
as illustrated in Fig. 9, which lists the ground state stripe configurations with ion densities 
1/3, 2/7 and 1/4. Once again, the structure is that of the Farey tree: the density 1/3 and 
1/4 states are described as (100) and (1000), respectively, and their 'descendant' state of 
density 2/7 has the concatenated structure (1001000). The descendant of 1/3 and 2/7 has 
the structure (1001001000) with density 3/10, and so on. 

In all the restricted phase diagrams we have constructed for U ::; 6, namely U = 6, 
4, 2 and 1, we have found a region in which stripe configurations are the ground states. 
Invariably, the sequence of phases is that of the Farey tree with the simple composition 
rule. However, they differ in the range of densities which is represented; for example for 
U = 2 only densities in the range [1/4,1/2] are found in the stripe region, and for U = 1 
only [1/3,1/2]. Thus, extrapolating to arbitrarily high period, we may conjecture that the 
sequence of stripe phases forms a devil's staircase, but that the staircase is not complete, 
since a limited range of densities appears. This incompleteness, especially for low U, occurs 
also in the one-dimensional model for the neutral phases [9, 10]. 

A very surprising feature of the stripe configurations in the phase diagram is that the 
boundaries between them are very nearly parallel. This is also a feature of the phase diagram 
of the one-dimensional model, where it is due to the fact that the Fermi energy lies in a gap of 
the single-electron density of states, and hence the phase boundaries are straight lines of the 
same slope. Here, however, the explanation must be different, since the phase boundaries are 
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Figure 8: Detail of the calculated restricted phase diagram for U = 6. Domains labelled 
A correspond to the stripe configurations (Sec. 3.3), and B points to an unusual insulating 
phase discussed in Sec. 3.5. 
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Figure 9: The ground state stripe configurations with ion densities 1/3, 2/7 and 1/4, from 
the U = 6 restricted phase diagram. 
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curved, but appear to be parallel nevertheless. Furthermore, the stripe configurations have 
no gaps in the range of U under consideration (as expected from the qualitative arguments 
of Sec. 2.4). Instead, it happens that the density of states is such that the ratio of electron to 
ion density is very nearly independent of the configuration (although dependent on electron 
chemical potential), so that all the phase boundaries at fixed pe have the same slope. 

3.4 Molecules, multiple and staggered stripes 

In Fig. 10 we present a detail of the calculated phase diagram for U = 2. Although we 
expect the diagram to be accurate in that the precision of our calculation is sufficient to 
resolve energy differences between configurations, it is likely that for this low U there are 
inaccuracies due to the limit on the period of the trial configurations. In other words, 
we do not expect the restricted phase diagram to represent fully the true phase diagram. 
Nevertheless, we may identify some regular families of ground states: in the lower part of the 
figure, we have the neutral phases discussed in Sec. 3.2, the intermediate shading corresponds 
to stripe configurations (Sec. 3.3), the light shading corresponds to staggered stripes (see 
below), and in the dark shaded area we find molecule formation. Other unshaded areas do 
not fit into one of these categories, and may correspond to genuine ground states (Sec. 3.5) 
or to artefacts of the finite set of trial configurations. 

The heavily shaded area in Fig. 10 contains a variety of configurations consisting of 
molecules. Some examples are listed in Fig. 11: these occur with increasing IPe I in the phase 
diagram. In (a) to (c) we observe the formation of dimers, which then repel each other 
resulting in dimer lattices with various orientations, or in mixed lattices of dimers and single 
ions. Fig. 11( d) demonstrates the formation of a lattice of molecules of four ions. There 
exist also ground states consisting of linear molecules of three or more ions. Similar types of 
molecule configurations are grouped together in the phase diagram. In Fig. 10, the molecular 
phases lying below the staggered stripe domain are various lattices of dimers, the phase in 
the extreme tip is the four-ion molecule of Fig. l1(d), and the molecular phases lying furthest 
to the right and adjacent to the full configuration involve molecules of vacancies. 

For many of these molecular configurations the density of states has a gap, and the Fermi 
energy lies in a gap when the configuration is the ground state. However, this gap is not the 
principal gap, and the resulting phase is not neutral: instead, invariably, the electron density 
is very close to one electron per molecule. (This phenomenon has been observed previously 
in the one-dimensional FKM [10]). There appears to be some regularity in the structure of 
this family of ground states, but our resolution is not sufficient to explore this in detail. 

When U is reduced further to 1, the restricted phase diagram appears as in Fig. 12. 
Here, the problems associated with finiteness of the set of trial configurations is most serious, 
but it is possible to make some general statements. The various families of ground states 
indicated in the U = 2 phase diagram (Fig. 10) also appear here, with the staggered stripe 
configurations (described below) particularly prominent. An additional family occurs in the 
extreme tip of the nontrivial portion of the diagram, between molecular lattices and the 
segregated phase. This is the family of multiple stripe configurations, illustrated in Fig. 13. 
These patterns resemble the molecular lattices of the one-dimensional model [10]: lines of 
ions in a stripe configuration attract each other, forming stripe pairs which subsequently 
repel, resulting in a regular array of pairs. As with other stripe phases, these do not have 
gaps in their single-electron densities of states. 
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Figure 10: Detail of the restricted phase diagram for U = 2. Light shading: staggered stripe 
phases; medium shading: stripe phases; heavy shading: molecular lattices. Phases labelled 
C and D are discussed in Sec. 3.5. 
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Figure 11: Selected molecular lattices occurring in the U = 2 phase diagram. 
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Figure 12: Calculated restricted phase diagram for U = 1. The shaded areas correspond to 
the staggered stripe phases (Sec. 3.4). 
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Figure 13: Selected multiple stripe configurations occurring in the U = 1 phase diagram. 
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Figure 14: Selected staggered stripe configurations occurring in the U 1 phase diagram, 
given in left to right order in Fig. 12. 

The regions indicated by light shading in Figs. 10 and 12 contain a further regular family 
of configurations, which we term staggered stripes. A part of the full sequence occurring for 
U = 1 with increasing /-le is given in Fig. 14. All the configurations have ion density 1/2, and 
the sequence begins with the Pi 1/2 stripe configuration and ends with the checkerboard, 
the intermediate phases being, in a sense, interpolations between the two structures. In other 
words, as /-le is increased from the stripe phase, increasing numbers of regularly spaced faults 
appear in the stripes, until the checkerboard is gradually reached. Thus, with changing /-le, 
the system undergoes a (presumably infinite) sequence of transitions between configurations 
of the same ion density. Another interesting property of this family is that for low l/-le I 
('nearly checkerboard' configurations) the Fermi energy lies in a gap and the dependence of 
electron density on /-le forms a devil's staircase, while for larger l/-lel the configurations no 
longer have gaps and the staircase becomes smeared out. 

3.5 Other configurations 

There are a number of configurations appearing as ground states in the restricted phase 
diagrams, particularly for low values of U, which do not fall into any of the above families. It 
is not practical to list all of them; rather, we wish to mention only one class of configurations 

21 




4 

· · • · · • · · • · · · • · · · • · • · • • · • · · •
• • · • • · • • · • • • . • • • . • · • · · • · · · • 

· · • · · • · · • · · · • · · · • · • · · · • · · • · 

· · • · · • · · • · • · • · • · · • · • • · •

• • · • • · • • · • · • • • · • • • · • • · • · · • · 
· · • · · • · · • · • · • · • · · • · · · • · 

· · • · · • · · • · · · • · · · • · · · · • · · • · •

• • · • • · • • · • • • . • • • . • · · • · • • · • · 

· · • · · • · · • · · · • · · · • · • • · • · · • 

(a) (b) (c) 

Figure 15: Miscellaneous configurations occurring in the restricted phase diagrams: (a) for 
U = 6; (b) and (c) for U = 2. 

which seem important simply because they do not seem to fall into readily identifiable 
families, and do not have any of the one-dimensional properties characteristic of the families 
considered previously. In other words, we describe configurations which have an essentially 
two-dimensional character. 

Several examples are given in Fig. 15. Configuration (a) appears in the phase diagram 
for intermediate U, and its ion-vacancy inverse is the phase marked B in Fig. 8. Although 
this could be considered a lattice of dimers, it does not occur adjacent to other dimer con
figurations, and in fact it appears at much larger U than any other dimer states. Therefore, 
we view it as forming a class of its own. Finally, we mention the configurations of Fig. 15(b) 
and (c), which occur in regions marked C and D, respectively, in the U = 2 phase diagram 
(Fig. 10). 

Discussion 

Let us briefly summarize the changes that occur as the interaction constant U is varied. As 
in the one-dimensional case, and in accordance with the general discussion of Sec. 2.2, the 
phase diagram becomes increasingly complicated as U decreases. For large U, the only phases 
appearing (as finite regions) are neutral ones (Pe pd and the full and empty configurations. 
All the neutral phases are insulating. For densities in the range 1/5 < P < 4/5, they 
have ion configurations obeying a simple set of rules (Sec. 3.2). Outside this range their 
structure has yet to be completely characterized, but consideration of the effective two
body ion interactions (Sec. 2.2) suggests that the ground states for low or high density 
are homogeneous in the distribution of ions. When U is decreased to about 6, the stripe 
configurations (Sec. 3.3) begin to appear, and these obey a composition rule identical to that 
observed in the one-dimensional model. At the same time, the first of a class of configurations 
which must be considered essentially two-dimensional (Sec. 3.5) appears. On decreasing 
U further, we observe new families of ground state configurations, the molecular lattices, 
multiple stripes and staggered stripes (Sec. 3.4). 

There are many similarities in behaviour between the models in one and two dimen
sions. Some of them are quite general, and independent of dimension, as has already been 
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established by Gruber et al. [14]. Our work has identified other features common to both 
one-dimensional and two-dimensional cases: 

1. 	 The only non-translationally invariant phases for large values of U are the neutral ones. 
All neutral phases which appear on the ground state phase diagram are insulating (with 
the Fermi level in a gap). As a consequence, the boundaries between different neutral 
phases are stright line segments with unit slope. 

n. 	Configurations of the ions corresponding to the main families of ground state phases 
are described by a simple composition rule, with the structure of the Farey tree. 

111. 	 There is a critical value of U = Uc , such that for U < Uc , there is an interval of ionic 
densities, (Pi(U), 1- Pi(U)), with Pi(U) > 0, to which the neutral phases are confined. 

IV. 	 The formation of molecules takes place for small enough values of U. 

v. 	 The effective potential between two ions in the neutral case is purely repulsive for large 
U, while for intermediate and small U it is attractive at short range and repulsive at 
long range. 

There are, however, important differences between the one-dimensional and two-dimensional 
phase diagrams. In particular, we find that in the two-dimensional case: 

1. 	 The neutral phases, for at least a range of densities, do not correspond to the most 
homogeneous distributions of the ions over the lattice, as already proven by Kennedy 
[15] 	for some cases. 

11. 	 The distribution of the ions for some neutral phases changes with U. This phenomenon 
was not observed in the one-dimensional model, where the ground state neutral con
figuration for a given Pi persists for all values of U. In two-dimensions it appears in 
two ways. First, for density 1/6 there is a transition between two different ion configu
rations at fairly large U. Second, for smaller U the sequence of neutral phases changes 
completely, with only a set of checkerboard-like configurations remaining (Sec. 3.2 and 
Fig. 7). 

Ill. 	In one dimension, any periodic ion configurations has an electronic spectrum split 
into as many bands as the number of sites in the period. With the exception of full 
and empty phases, all phases found as ground states are insulating, and all the phase 
boundaries are straight line segments. In two dimensions, however, many non-neutral 
ground state phases which appear on the phase diagram for intermediate and small U 
are conducting, and in fact have no gaps at all in their energy spectrum. Consequently 
the boundaries between these phases are not straight line segments. Surprisingly, 
however, the boundaries are nearly parallel for the family of stripe configurations (see 
Sec. 3.3). 

For the one-dimensional model, an explanation for the composition rule which describes the 
construction of ground state phases for small U [3] involves the stabilization effect of the 
gap created at the Fermi level when the ions adopt a suitable periodic arrangement. The 
most stable configuration is that with the largest gap. (For large U, the same rule can 
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be justified on the basis of an effective ion interaction which is repulsive and convex [23].) 
In its simplest form, this argument is restricted to one dimension, since in that case the 
Fermi surface consists of two points and always has perfect nesting. The striking property 
of the two-dimensional model that several families of phases are described by a form of one
dimensional composition rule, even when there are no gaps, must then be related to partial 
nesting of the Fermi surface. In other words, a periodic ion arrangement is stabilized by the 
opening of a gap over part, but not all, of the Brillouin zone. 

We now turn to the question of segregation. In the terminology of Sec. 2.3, we have found 
that the boundary between the full and empty phases does continue inside the domain f;, and 
therefore that there is a range of densities for which the ground state is the segregated phase. 
This is a (phase-separated) mixture of the full configuration containing all the electrons, 
and the vacuum (the empty phase without electrons). The same feature has been proved 
rigorously in one dimension [11]; our work supports the conjecture that it occurs for any 
dimension. A complication of models in more than one dimension is that one can imagine 
the segregated phase with various shapes of boundaries between the full configuration and 
the vacuum. It would be interesting to study the optimal shape of the boundary for a given 

Pi and Pe· 
The phase diagram in the canonical ensemble (Pe-Pi plane) for large U is dominated by 

segregated and neutral phases, in both one and two dimensions, in the sense that "most" of 
the phase diagram corresponds to a segregated ground state, a sequence of special phases 
occur on the neutral line Pe = Pi, and the remaining region (containing mixtures between 
neutral phases and mixtures of neutral phases with full or empty configurations) shrinks to 
zero in area as U tends to infinity. The detailed comparison of canonical phase diagrams 
for the full range of U can in principle be carried out using our results, but it is not trivial 
to transform from one representation to the other, and we leave this topic for a future 
publication. 
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