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Abstract 

We show that the Bosonic and the Fermionic realization of the ghost 

vertex in the Half-String (HS) Operator approach to Witten's String Field 

Theory (WSFT) are equivalent. In the process we discover that higher 

vertices (i.e., N > 3) can be eliminated in WSFT using only the overlap 

conditions defining the interaction vertex and ghost number counting. 
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The Half-String Formulation (HSF) of interacting string field theory, origi­

nally, motivated by Witten in [1] and formulated in detail in [2,4,5,6] turn out 

to be most efficient when computing interaction vertices of the theory and when 

discussing the invariance and potential anomalies of the theory due to choosing 

a preferred point (a = ~) in Witten's String Field Theory. There is now a 

considerable body of work on the HSF of interacting string field theory of both 

open and closed bosonic string [2,4,5,6,7]. 

In the HSF, one singles out the mid-point of the string thus breaking the 

string into two pieces, X(r)(a) (<p(r) (a)), with r = 1,2 referring to the left-right 

parts of the string, of the orbital (ghost) coordinate of the string . The string 

functional'I/J is, then, a functional'I/J[x(I)( a), X(2)( a), X( ~), <p(I)(a), <p(2)(a), ¢( ~)] 
of x(I)(a),x(2)(a) and X(~)4 (and the corresponding ghost coordinates). We 

have seen, in [3,4,5,6], that in this formulation the basic operations of WSFT, 

the star product (*) and integration (J) become matrix multiplication (.) and 

trace (Tr) respectively and all the axioms of WSFT are seen to be satisfied. In 

this formulation, one has a map F: (Fi) --7 H; (Hen; where F: (Fi) is the com­

plete set of the FS oscillator modes {xo, XI, X2, ···,PO,PbP2, ... } ({¢o, ¢b ¢2, ·.·,pt,
pT, p;, ...} ) and H; (H'f) is the complete set of the HS oscillator modes {X(~ ), Xlr 

) , 

(r) p (r) (r) . _ } ({A.(1r) (r) (r) p¢ ",(r) ",(r) • _ })
X2 , ... , ~,PI ,P2 , ... ,r-1,2 <P"2 ,<PI ,<P2 , ... , 2J:,PI ,P2 , ... ,r-1,2 . 

This map follows from the definition of the HS coordinates 

(r)(a) = _ { X(a) - X(~), if r = 1, 
X X(7r-a)-X(~), ifr=2; aE[O,~] 

(with <p(r)(a) being given by the same definition with X --7 ¢) and it has been 

constructed in [4,5] and is given by an infinite dimensional nonsingular matrix. 

In [5], hereinafter referred to as (I), the ghost sector of the theory was con­

structed using the bosonic formulation as originally presented by Witten [1]. 

There, the precise form of the ingredients of the theory , were constructed in 

terms of HS (first quantized) ghost Fock space states and operators. And there 

was established that the FS ghost Fock space obtained by quantizing the full 

open string is given by a tensor product of the two HS Fock spaces and a Fock 

space of functions of the mid-point ¢( ~). 

In the present paper we wish to establish the bose-fermi equivalence, which 

was not proved at all in (I), in particular, we want to emphasize the role played 

4Another approach in which the mid-point plays a central role has been discussed in ref. [8], 

although in a different context. 
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by the ghost insertion factor eiQ",<fICi) in the HSF of WSFT 5. We will see, in the 

proof of the bose-fermi equivalence in the HSF to be given below, that the ghost 

insertion play a crucial role. Some of the results presented here are obtained in 

the same way as in [5]. Although some computational details are relegated to 

the appendix, this paper is not meant to be self-contained in the sense that we 

rely on (I) for notation and indeed for many other details only alluded to below. 

1. The N-Vertex 

In the Half String approach to string field theory the elements of the theory 

are defined by 8- function-type overlaps 

(1) 


with 

V~,o = II 
N ITl! 8(!p~1)(a) - !p~22l(a» (2) 

p=lO"=O 

The index JL refers to the JLth string (it is understood that JL - 1 = 0 - N) and 

the 1 and 2 superscripts refer to left and right halves of the string respectively. 

The QIP is the ghost number insertion at the mid-point which is needed for the 

BRST invariance of the theory [1,9,10,6]. In the Hilbert space of the theory the 8­

functions translate into operator overlap equations which determine the precise 

form of the vertex. The vertex will be given by exponentials of quadratic form 

in the HS creation operators. However, unlike the FS approach [11,12,10] where 

determining the exact form of the vertex involves using Neumann functions and 

(involved) conformal mapping techniques, which are based on the methods in 

[141, here the exact form of the vertex can be read directly from the overlap 

conditions defining the HS ghost coordinates 

(3) 

where the matrix 8 is given by 

81',8 = (sr+1,B 8 + 88+1,1'8 ) 8 pn,1ITn p-l,v v-l,p nm (4) 

5For more details we refer the reader to the original work of Witten [1]. 

3 



It is worth noting that e = eT . At this point it becomes clear that the HS 

approach is most useful when extended to closed string field theory (CSFT) [7]. 

There one needs to construct the exact form of the vertex for N = 1,2,3, ... ,00 

in order to write down the closed string action. 

To emphasize the simplicity of the HS approach it is instructive to derive (4) 

from first principles. The 0- functions defining the HS vertices, in the Hilbert 

space of the theory, translate to the overlap constraints 

(5) 

where the cp~)(o'); r = 1,2; are the HS ghost coordinate defined in (I). The mode 

expansion of cp~)(o') in the HS formulation is given by 

cp~\o') V2 I: cp~~cos(2n - 1)0', (6) 
n~l 

where Cp~~ are canonical ghost coordinates with canonical momenta P~~­

-i~. Thus in terms of HS oscillator modes the overlap conditions read 
Qtp,.n 

[cp~~ - cp~2~]IV~,o >= 0; n 1,2, .... ,00; J-t = 1,2, ... ,N (7) 

Introducing the HS creation and annihilation operators 

b(1') = _~(2n - 1)( (1') 2i (r) (8)
p.n V2 2 CPp.n + 2n _ 1Pp.n 

(with b~~n = b~~t) and using equations (3) and (7) we arrive at (4)6. 
2. The Proof of Equivalence 

Our task now is to show that the bosonizied HS ghost vertices, (1), satisfy 

the c- and b-overlap equations displayed below. To carry out the proof we will 

utilize the bosonization formulas 

61t is important to notice that (5) gives only half the constraints on the Matrix e the other 
half of the constraints is given by the analogous equations for p~)(O"). 
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(with c_(a) = c+(-a), and b_(a) = b_(-a)). However, in the bosonization of 

the fermionic coordinates, using the standard procedure (see ref. 17 in [15]), 

it is not obvious that all ingredients of the theory employing the bosonic field 

4>(a) are equivalent to those constructed using the original fermi fields appearing 

in the left hand side of the above relations 7• It is the purpose of this letter to 

establish this equivalence. We will see that the ghost vertices in the HS operator 

formulation obey the same overlap equations as the fermionic vertices and are 

in fact identical. Consequently one is free to use either formulation of the ghost 

sector of the theory. We have seen, for example, that when discussing the 

Kn invariance of the theory and computing vertices to all orders the bosonic 

formulation was employed [12,5] while when discussing the BRST invariance of 

the theory it was easier to employ the fermionic formulation [9,10,6]. 

To prove the Bose Fermi equivalence we have to show that both realizations 

of the vertex satisfy the same overlap equations. This can be carried out using 

the above bosonized formulas. Now the comparison with the FS formulation of 

WSFT employed in [12,9,10] is of utmost importance, so now we pause to discuss 

this briefly. In the FS approach to WSFT the complexity arises because of the 

complicated scattering geometry involved in the construction of the 3-Vertex. 

On the other hand, in the HS formulation, the situation is very simple due to 

the simple form of the matrix e defining the N-Vertex. It is also useful to 

note that the proof of the c-overlaps on the bosonic realization of the vertex is 

essentially identical to the proof of the cp-overlaps8 given in (I). This is because 

the fermionic ghost field c( a) is an exponential of the bosonic ghost 4>(a) up to 

an infinite ordering factor. An immediate consequence is that the operator part 

of the c-overlaps and the b-overlaps will hold for all a as we shall see. However, 

normal ordering introduces a phase factor when c ghost field or b ghost field acts 

on the bosonic ghost vertex. Therefore it is crucial for the equivalence of the 

two realizations of the vertex that the phase factors obey the overlap equations. 

The fermionic ghost overlap equations are 

7 One has to remember that the equality signs appearing in the above equations are mislead­

ing, they are to be viewed as relationships that have to be verified at the end of the carried 
program. 

8The proof of the ip-overlaps on the bosonic realization of the vertex is identical to the 
derivation of the ghost vertices given at the beginning of the letter. 
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(9) 


(10) 

Note that the c equation is like the momentum overlap and the b equation is 

like the coordinate overlap. To show that the HS vertices given in (1) obey the 

above overlap equations we first express the fermionic ghost fields in terms of the 

bosonizied HS ghost coordinates. Using the bosonizied formula and the results 

of (I) we have 

(11) 

(where tPl'(j) is the mid-point ghost coordinate with canonical momenta, P't = 
- i &1/>: ~ )). The various quantities D, D* , ... appearing in the above expression 

are given by 

D(u) 
1 00 
~ 

- L...J 
2 m=l 2

1 00 00 
~ -2in"'A ~ -2ik",S
L...J e 2m-12n L...J e 2m-12k 

m ­ 1 n=l k=1 

00 10000 
~ ~ 2in",s ~ -2ik",SC(U ) = - L...J 2m _ 1 L...J e 2m-12n L...J e 2m-12k 

m=1 n=1 k=1 

with 

A2m-12n B2m-12n - B2n2m-b S2m-12n = B2m-12n +B2n2m-l 

where 

( _ ) (n+m+1)/2 2m 
Bn,m = (2 2)

7r m -n 
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is the change of representation matrix between the FS and HS ghost coordi­

nates. Notice that this matrix has already appeared in[4,5,6,2,7] for both open 

and closed bosonic string. 

The 1-Vertex 

To establish the bose fermi equivalence we, first, consider the identity oper­

ator II'P >. This is very crucial for the fact that the identity operator is a Fock 

space realization of the integration on the space of string functionals. Setting 

N = 1 in (1) we have 

(12) 

where the factor e-!i,p(l') is the ghost insertion at the mid-point of the string 

that appears in the definition of J in WSFT (see ref. [1]). The overlap equations 

for c and b in the case of Ie are given by9 

C(O") = -c(1r ­ 0") (13) 

and 

b(0" ) b(1r ­ 0"), (14) 

respectively. Again using the bosonized formulas and the results obtained in (I), 

for a single string in the HS formulation, c( 0") and b(0") read10 

(15) 

and 

9P! is the fermionic ghost identity vertex. Therefore to prove that If{) is equivalent to IC we 

have to show that If{) obey the same overlap equations obeyed by IC. 
lONotice that c(0") (b(0")) is the same as c+ (b_) for 0 ~ 0" ~ 7l' and the same as c (L) for 

-7l' ~ 0" ~ O. 
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(16) 

Let us first consider the action of the c(u) fermi field on II'" >. Now our 

task is to commute all the annihilation operators in c(u) through the creation 

operators in II'" >. This is a simple but slightly tedious exercise in using the 

following operator identities 

and 

Hence11 

(17) 

where 

'{ 2~ 1 .u(1 3) 3. ~(_)nsinn(2u)k() -- -z -- L.J +z- - y - -zy L.Ju 
1r n==l (2n - 1)3 2 2 n=l n 

+D 

and lIt > is the exponential of the quadratic form in ghost creation operators 

(see (1)). The operator part in (17) is even under u ---+ 1r-U for all u including 

the mid-point. This is easily seen by replacing u by 1r - u in the explicit expres­

sion for 'Y};){u). This result agrees with the standard result for the FS [1,16]. 

For the phase factor we have first to evaluate the various quantities and sums 

in the expression for k{u). These sums are potentially divergent and have to be 

treated with care. Here we only give the final results, the technical details are 

given at the end of the paper. Hence 

11We have- put a factor y in the ghost insertion in the identity operator to emphasize the 

importance of the coefficient ~. 
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0, if 10'1 < ~ 
k(a) -11", if ~<a<1I" (18){

11", if - 11" < a < -!!:2 

11" 11" 
k(-) = -­

2 2 

This means that eik(u) is odd under a ---+ 11" - a except at a = ~ as expected. 

We notice that this result has been obtained in the original work of Witten [1]. 

This completes the proof of the c-overlaps for the identity vertex. It remains to 

show that the b-overlaps are satisfied as well. Repeating the same procedure, 

for the b-overlaps, we obtain for the phase factor (we call it eik(u») 

a, if 10'1 < ~ 
h(,,) = { -211" + a, if ~<a<1I" (19) 

211" + a, if -11" < a < -!!:2 

11"k( 11") = 
2 2 

which means that eik(u) is even under a ---+ 11" - a including a = ~ as expected. 

This is again the standard result obtained in the literature. With this we con­

clude the proof for the two realization of the identity vertex. 

The 3-Vertex 

We now turn to the question of the 3-Vertex. However, we find it more 

instructive to consider a general vertex of order N (VN ). The reason for this 

is that discussing a general vertex makes manifest the fact that higher vertices 

(Le. N> 3) can be excluded from the theory without having to impose BRST 

invariance by using only the overlap equations defining the ghost vertex and 

ghost counting12• It has been shown in [1] that BRST invariance requires the 

insertion factor of e±!i¢(~) at the string mid-point. To include higher vertices 

(N > 3) in WSFT we need to change the ghost insertions at the string mid­

point, if we change the insertion factor to construct a BRST invariant N-Vertex 

(N > 3) the ghost number counting comes out wrong [1,12,13]. Furthermore, 

changing the ghost insertions to cure this problem breaks in turn the BRST 

l20ne has to remember that these two conditions are necessary for the proof of the BRST 
invariance. 
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invariance (for more details on this point we refer the reader to the following 

references [1,12,13]). 

To establish the bose-fermi equivalence of the two versions of the vertex we 

have to show that the bose realization of the N-Vertex, (1) satisfy the c and b 

overlap conditions given in (9) and (10). Recall 

IVk >= ei9
1" "E:=l tPl"(~)IVko > , 

where gp, is the ghost number insertion at the mid-point of the string to be 

specified later13. The action of Cp, ( 0") on the above vertex gives 

(20) 

where 

D + D* + C + :2 t. (2n ~ 1) 8;,n~!(0") - ~f'e(}, 
(with e~II(p.) a~8p,1I)' The operator part of c-overlaps is satisfied for all 0" as 

noted earlier. It is not hard to show that (re( = O. Evaluating the remaining 

terms in the above expression (as we have done for the case of the identity, see 

appendix) we have 

1r
--(1

2 

13g has to be chosen to ensure that the overlap equations are satisfied and the ghost counting 
is correct. It was shown in [1,9,1O,13,6} that BRST invariance restrict severly the choice of g. 
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Note that the above results are independent of the string index JL. To satisfy 

the overlap equations in (9) the phase factor has to satisfy 

We see that the above condition is true for 

gl' = 2n - 2"
3 

JL = 1,2,3, ... , N (21) 

(n integer) except at the point (j = j as expected. In the case of interest 

(i.e. N = 3), gl' = ! which amounts to n = 1. Thus we have shown that 

the bosonized realization of the ghost 3-Vertex obey the c-overlaps, except at 

the mid-point, as expected. To complete the proof we need to show that the 

b-overlap equations (10) are also satisfied by the bosonized realization of the 

vertex. Following similar steps to those employed for the c part we discover 

that the b overlap equations hold as well for all values of (j, including the point 

(j = j, as expected. 

3. Conclusions 

It is satisfying to see that (21) depends on the ghost insertion eigatPa{ f) . 

This was established in the original work of Witten on interacting string field 

theory [1]. Now the interesting thing here is that the above formula is true for a 

general vertex of order N which enables us to discuss the points we raised earlier 

regarding BRST invariance and higher vertices (N) 3). H we consider N = 4, 

the ghost number is given through the relation V;'" l'" vt. Recalling the fact14 

that l'" changes the ghost number by - i and V;'" has a ghost number equal to i, 
we deduce that the natural ghost number for V4 is 3 and therefore g = ~ (where 

we have made use of the fact15 that q,l(V = q,2(j) = q,s(j) = q,4G)). Now the 

point to observe is that this value of g is not a solution of (21) which amounts 

to the violation of the overlap equations for c for all values of (j. Repeating the 

procedure for other vertices (N > 4) we see that eq. (21) is always violated 

if the ghost counting is correct (Le. deduced from the fact VN - 1 = I VN ). 

In conclusion all the ghost number values given by the above formula, which 

satisfy the overlap equations, by virtue of the derivation, do indeed spoil the 

ghost number counting for all n (integer) apart from n = 0 (identity vertex) and 

n = 1 (3-Vertex). Changing the insertion to cure this problem violates in turn 

the overlap equations. Therefore the important point to note here is that we 

14A derivation ofthis statement has been given in [1]. 

15this is the case because of delta functions in the definition of the vertex. 
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did not need to impose either the Kn or the BRST (Q) symmetry to exclude 

higher vertices16 
• Hence we see in the HS formulation of interacting string field 

theory, the only possible vertex is the 3-Vertex and all higher (N > 3) vertices 

are excluded by the requirement that both the overlap equations (defining the 

interaction vertices in the theory) and ghost number counting are satisfied. This 

result was precisely established in the work of Witten [1]. The fact that we can 

establish this conclusion, using the HS operator formulation of WSFT, for all 

N 1,2,3, ... , 00 (unlike in the case of the full string operator formulation 

of (12,10,13] where only up to N = 4 vertices were constructed), is not only 

satisfying, but makes manifest the calculating power of the HS operator approach 

to interacting string field theory. 

An interesting question arises. In closed string field theory the vertices are 

constructed as the product of two open string vertices, one for the left and one 

for the right moving modes. For the orbital degrees of freedom this was seen to 

be a consequence of the string overlaps defining the vertex in reference [7]. In 

the light of the results found in this paper, it is interesting to see if the bose­

fermi equivalence has any implications when one includes the ghost degrees of 

freedom in formulating the field theory of closed strings. This is currently under 

investigation. 

Appendix 

In this appendix we give the steps in evaluating k(u). Recall that 

2 00 1 3. ~ (_)n sinn(2u)
k(u) -i{ - '" (2 1)3 + i~2(1 3y) - -'ty L..... 

7r t:i n n2 n=l 

+D+D*+C (22) 

To evaluate the above expression, first, consider 

D + D* + C = 2 Re(D) + C 

Substituting the explicit expressions for D and C and then making use of the 

following identity, 

16It was shown in ref. [1,9,10,13,6] that changing the insertion to fix this problem breaks 

both Kn and Q (BRST) symmetry, since the phase factors contribute critically to the mid-point 

anomalies. 
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the above expression reduces to 

D+D* 

where 
ES ( ) = ~ m(-)msinm(2a) 

n a L.,; m 2 _ (2n-l)2
m=l 2 

The sums in the above expression are potentially divergent and have to be 

handled with care, however there is no need to evaluate all of them since there 

are contributions with opposite signs coming from the other terms in (22) as we 

shall see bellow. The 0:~1)0:~2) term gives 

00 

'" 0:(1)0:(2)
L.,; n n 
n=l 

001 
1) (8 EC (a))2 _ ! ~ 1 e-2i(2n-l}u

2 E(2n u,n n 2 L.,; 2 - 1271" n=l n=1 n 

where 

Putting everything together we arrive at 

a(1 ) 3 ~ (-)nsinn(2a) 4i ~ 1 i ~ 1k(a ) -
_ 

- - 3y - -y L.,; + - L.,; - - L.,; ­
2 2 n=1 n 71"2 n=l (2n 1)3 2 n=l 2n 

_~ f cos(2n - 1)(2a) + 1 f sin(2n -1)(2a) 
(23)

2 n:;:::l 2n - 1 2 n=l 2n - 1 
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In performing the remaining sums in the above expression we have to specify the 

range of u as those sums will have different analytical expressions for different 

ranges in u. Making use of 

EC (u) 
n 

2 
(2n ­ 1)2 

7r( )n+ cos(2n
2n ­ 1 

1)u, if 

E~(u) = 
7r( _)n

2 sin(2n 1)u, if 

eq. (23) reduces to 

_ i ~ 1 . ~ cos2(2n - 1)u ~ ~ cos(2n 1)(2u) if lui ~ k(u ) -- L...J-+zL...J 2L...J 2 -1' <2'2 n=l 2n n=l 2n - 1 n=l n 

where we have made use of 

00 7r(_)n+l sin(2n + 1)u 
7r ';f--u lui s 2:; (2n + 1)2 4 ' 

h 

Making use of the trig. identity cos 2A = 2 cos2 A - 1 we obtain 

7r
k(u) 0, if (24)lui < 2 

letting u ---+ 7r U in (23) and going through similar steps as above we arrive 

at 

7r 
(25)k(7r - u) = 2(1 - 3y), if 

For u ---+ u - 7r, (23), gives 

(26) 

It remains to evaluate k(u) at the mid-point. Thus setting u ~ in (23) we get 

k(~) = -~(1- 3y) (27) 

Setting y = 1 in (25) and (26) and combining eqs. (24), (25), (26) and (27) we 

arrive at eq.(18). 

The work of A.A. has been supported by the SSR, Tripoli, Libya. The work 

of J .B. has been supported by CICYT under grant number 93-0234. 

14 




References 

[1] 	 E. Witten, Nucl. Phys. B268 (1986) 253. 

[2] 	 J.L. Gervais, Nucl. Phys. B276 (1986) 253. 

[3] 	 H. M. Chan and S.T. Tsou, Phys. Rev. D35 (1987) 2474; D39 (1989) 555. 

[4] 	 J. Bordes, H.M. Chan, L. Nellen and S.T. Tsou, Nucl. Phys. B351 (1991) 

441; 

J. Bordes, A. Abdurrahman and F. Anton, Phys. Rev. D49 (1994) 2966. 

[5] 	 A. Abdurrahman, F. Anton and J. Bordes, Nucl. Phys. B397 (1993) 260. 

[6] 	 A. Abdurrahman, F. Anton and J. Bordes, Nucl. Phys. B411 (1994) 693. 

[7] 	 H. M. Chan, J. Bordes, S.T. Tsou and L. Nellen, Phys. Rev. D44 (1991) 

1786; 

F. 	Anton, A. Abdurrahman and J. Bordes, Phys. Lett. B327 (1994) 234; 

F. 	Anton, A. Abdurrahman and J. Bordes Phys. Lett B333 (1994) 337; 

F. Anton, A. Abdurrahman and J. Bordes, Rutherford Appleton Labora­

tory preprint RAL-94-065. 

[8] 	 T. Mo 


rris, Nucl. Phys. B297 (1988) 141; 


R. Potting, C. Taylor and B. Velikson, Phys. Lett. B198 (1987) 184; 

J. L. Manes, Nucl. Phys. B303 (1988) 305; 


R.Potting and C. Taylor, Nucl. Phys. B316 (1989) 59; 


M. Maens, Osaka University preprint OU-HET-136. 

[9] 	 D. Gross and A. Jevicki, Nucl. Phys. B287 (1987) 225. 

[10] K. Itoh, K. Ogawa and K. Suehiro, Nucl. Phys. B289 (1987) 127. 

[11] E. Cremmer, A Schwimmer and C. Thorn, Phys. Lett. B179 (1986) 57; 

S. 	Samuel, Phys. Lett. B181 (1986) 225. 

[12] D. Gross and A. Jevicki, Nucl. Phys. B283 (1987) 1. 

[13] A. Jevicki, Int. J. Mod. Phys. A3 (1988) 299. 

[14] S. Mandelstam, Nucl. Phys. B64 (1973) 209. 

15 




[15] W. Siegel and B. Zwiebaeh, Nucl. Phys. B263 (1986) 105. 

[16] Z. ffiousek and A. Jevicki, Nuel. Phys. B288 (1987) 131. 

16 



