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DISTRIBUTED GAUSSIAN BASIS SETS: SOl\1E 

RECENT RESULTS AND PROSPECTS* 


S. WILSONt 
Rutherford Appleton Laboratory, 


Chilton, Oxfordshire OX11 OQX, England 


Abstract 

Recent years have witnessed a growing interest in the systematic implementation of finite 
basis set expansions using Gaussian basis sets in both non-relativistic and relativistic molecu
lar electronic structure studies. A promising development is the distributed basis set in which 
the exponents and the distribution of the Gaussian functions are generated according to em
pirical prescriptions. A particularly simple distributed basis set is the Gaussian Cell model 
in which the functions are arranged on a regular lattice, with one function centred on each 
lattice point and all functions having the same exponent. Not surprisingly, this simple model 
does not achieve high accuracy. However, recent work on one-electron diatomic and triatomic 
systems has demonstrated that, with simple refinements, it can be very significantly enhanced 
and accuracies approaching 1 fLHartree can be achieved for the total energy. Alternatively, 
a Laplace transform can be used to obtain an integral representation of the elliptical func
tion in terms of Gaussian functions. This Laplace transform provides a prescription for the 
generation of a systematic sequence of distributed basis sets of Gaussian functions from a se
quence of atomic even-tempered sets. The prospects for distributed basis sets in Hartree-Fock 
studies and beyond, for both non-relativistic and relativistic molecular electronic structure 
calculations, are surveyed briefly. 

'Proceedings of the NATO Advanced Research Workshop on New Methods in Quantum Theory, Porto 
Carras, Sithania, Halkidiki, Greece, 14-19 May, 1995, edited by C.A. Tsipis. V.S. Popov, D.R. Herschbach 
and J.S. Avery, Kluwer, Dordrecht. 1995. 

te-mail: s.wilson@rl.ac.uk . 
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I. Introduction 

The controlled reduction of basis set truncation errors is an essential prerequisite of a 
quantitative quantum chemistry and recent years have witnessed a growing interest in the 
systematic implementation of the algebraic approximation 1 2, i. e. finite basis set expansions, 
in both non-relativistic and relativistic studies. 

Basis set truncation effects are widely recognized as the main source of error in contem
porary molecular electronic structure. calculations. Over thirty years ago in 1963, Schwartz3 

emphasized that 

... an orderly plan of attack is... essential for any mathematical analysis of 
the convergence rate. The old habit of picking the "best" (chosen by art) choice 
of a fixed number of terms is to be discarded if one wants to see how the problem 
converges. 

He continued 

One must choose a set of basis functions and then gradually add more... in 
some systematic manner. 

Ruedenberg and his co-workers4 pointed out that even-tempered basis sets1 afforded a 
systematic method for generating atomic orbital basis sets5 - 9 • Feller and Ruedenberg lO and 
Schmidt and Ruedenberg11 showed that sequences of such basis sets can be constructed that 
systematically approach a complete set and thus approach the Hartree-Fock limit. Wilson1 

pointed out that, in spite of this progress, 

The vast majority of contemporary molecular calculations adopt a pragmatic 
approach... The art of selecting a basis set is based on previous experience in 
treating similar systems using basis sets of comparable quality. 

Huzinaga12 has suggested that calculations in which the basis set truncation error is not 
controlled should be termed 

quasi-empirical. 

The same point has been made by Davidson and Feller13 who state that 

the smaller the basis set the more ab initio calculations assume an empirical 
flavor. 

Clementi14 has complained that 

In the seventies a "McDonald's Fast Food" mentality had spread among the 
users of quantum chemistry programs, and the idea of optimizing a basis set ... 
was abandoned because of the heavy labour involved 

and as a result the 

chemical literature ... was flooded with computations which essentially com
pared experiments with basis set superposition error data. 

Recently, Taylor15 has again emphasized the importance of the error associated with 
basis set truncation 

The ultimate accuracy of any calculation is determined by the one-particle basis 
set. This is one of the most obvious, yet one of the most ignored, observations about 
quantum chemical calculations. For example, it is in general just not possible to get 
the right answer for the right reasons using a DZP [dOUble-zeta plus polarization] 
basis. This is not an argument against using such sets, but their limitations must 
be kept constantly in mind. 

lEven-tempered Gaussian basis sets were first sugge~ted by R. McWeeny in his D. Phil. thesis (Oxford, 
1948). 
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For about fifty years the algebraic approximation in the form of the Linear Combina
tion of Atomic Orbitals (L.C.A.O.) method was regarded as the poor relation of the finite 
difference methods which have been employed in atomic structure calculations since the pi
oneering work of Hartree16 in the 1930s. In the 1970s, it was recognized that the algebraic 
approximation facilitated the integration over the continuum that arises in the description 
of electron correlation by means of many-body theoriesl7 . In the 1980s, it was shown that 
in studies of the relativistic atomic and molecular electronic structure problem, the algebraic 
approximation affords a representation of not only the positive energy branch but also the 
negative energy branch of the relativistic spectruml8. This facilitates the study of not only a 
relativistic many-body perturbation theory but also the covering theory, quantum electrody
namicsl9. Systematic implementation of the algebraic approximation has allowed, for example, 
the Dirac-Hartree-Fock energies of atoms to be determined to an accuracy which matches that 
achieved in finite difference calculations; typically 10-8 - 10-9 Hartree20 • For molecules the 
situation is far less satisfactory2l and, even in non-relativistic molecular structure calculations,

lthe basis set truncation error is often seen as the largest source of error . 
Over the past decade, fully numerical Hartree-Fock calculations for diatomic molecules 

have been reported using first finite difference methods22- 25 and then finite element tech
niques26 27. Most of these calculations have been formulated within the framework of non
relativistic quantum mechanics. They provide invaluable benchmarks against which finite basis 
set calculations can be compared and facilitate the appraisal of methods suggested for the 

35systematic development of molecular basis sets28 - . 
Atom-centred basis sets have been most widely used in molecular calculations but, in 

calculations designed to match the accuracy achieved in numerical Hartree-Fock studies of 
diatomic molecules, it has recently been shown that they can be usefully supplemented by off
centre sets30 - 33. Indeed, by including bond centred functions in a systematically constructed 
basis set for the ground state of the nitrogen molecule it has been possible to obtain an 
energy that is within a few pHartree of the numerical result. The success of these calculations 
suggests investigation of the construction of basis sets including off-atom basis functions in 
more general terms. 

A promising development is the distributed basis set36 37 in which the exponents and 
the distribution of the Gaussian functions are generated according to empirical prescriptions. 
It should be noted that Gaussian functions are particularly well suited for such a procedure 
since, unlike exponential basis functions, they do not introduce a cusp. This approach is 
distinct from the use Gaussian lobe functions38 and the Floating Spherical Gaussian Orbital 
(F.S.G.O.) model39- 41 in that there is no attempt to mimic higher harmonics directly and 
non-linear optimization is avoided. This allows the use of large basis sets resulting in high 
precision. In this article, we describe two distributed Gaussian basis sets which have been 
discussed recently. 

A particularly simple distributed basis set is the Gaussian Cell model, introduced by 
Murrell and his coworkers in 197442 43, in which the functions are arranged on a regular 
lattice, with one function centred on each lattice point and all functions having the same 
exponent. Not surprisingly, this simple model does not achieve high accuracy. However, 
recent work on one-electron diatomic and triatomic systems have demonstrated how, with 
simple refinements44 - 46 it can be very significantly enhanced and accuracies approaching 
1 pHartree can be achieved. 

An alternative method for generating a distributed basis set is based on a Laplace trans
form. The 'natural' basis functions for diatomic molecules are elliptical functions. A Laplace 
transform can be used to obtain an integral representation of an elliptical function in terms 
of Gaussian functions. This Laplace transform provides a prescription for the generation of a 
systematic sequence of distributed basis sets of Gaussian functions from a sequence of atomic 
even-tempered sets~7. 

In section II, a brief overview of methods for constructing basis sets for atomic and 
molecular electronic structure calculations is provided giving particular attention to systematic 
approaches. The theoretical aspects of the distributed basis set approach are discussed in 
section III concentrating on the Gaussian Cell model and its extensions and on distributions 
determined by a Laplace transform of elliptical functions. Some recently obtained results are 
described in section IV whilst in the final section, section V, the prospects for the distributed 
Gaussian basis set method are assessed. 
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Figure 1: Convergence of the matrix Hartree-Fock energy for the F- ion with increasing size 
of basis set. See text for details. 

II. Basis Set Construction 

A. Atomic basis sets 

Atomic basis sets have traditionally been designed by invoking the variation principle so 
as to obtain the most accurate energy values with the smallest number of basis functions. 
More recently, there has been a growing interest in the development of sequences of basis sets 
which formally approach completeness as the number of functions is increased and which, 
with the power of contemporary computing machines, can be used to obtain atomic Hartree
Fock energies to a very high precision. This approach is illustrated in Figure 1 where a 
systematic sequence of even-tempered basis sets of Gaussian-type functions is used to calculate 
the Hartree-Fock energy for the ground state of the F- ion48 • In this Figure, the notation 
A[B] indicates that system A is studied using a sequence of basis sets originally designed for 
B. [BI] indicates that a diffuse function is added to basis sets [B]. [BII] indicates that two 
diffuse function of each symmetry type are added to the basis set [B]. It can be seen that 
provided one diffuse function of each symmetry type is added to the basis set designed for the 
neutral species, the anion can be accurately described within the Hartree-Fock model within 
the algebraic approximation. 

In relativistic atomic structure calculations systematically constructed sequences of basis 
sets can yield Dirac-Hartree-Fock energies of an accuracy comparable with that obtained in 
finite difference studies. This is illustrated in Table 1 for the ground state of the argon atom l 

!). 

Relativistic effects are at their most important for the heavy elements. For such systems it 
is important to take account of the finite size of nuclei. It is only in recent years that it has 
become widely recognized that once the point nucleus model is abandoned in favour of the 
more physical finite nucleus model the Gaussian function becomes a more appropriate choice 
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of basis function 21 • 

Table 1 

Matrix Dirac-Hartree-Fock calculations for the Ar ground state using a systematic sequence 


of exponential-type basis setst 

N Q !J. -E 

9 0.500 1.550 528.64394819 
10 0.484 1.516 528.68336415 
11 0.470 1.486 528.68431173 
12 0.458 1.462 528.68428973 
13 0.447 1.440 528.68443068 
14 0.437 1.421 528.68443246 
15 0.429 1.404 528.68444856 
16 0.421 1.389 528.68444990 
17 0.413 1.376 528.68445050 

Efinite difference 528.68445077 

t All energies are given in Hartree units. 

Taken (with correction) from the work of Quiney, Grant and Wilson19 


B. Molecular basis sets 

Molecular basis sets are almost invariably constructed from atomic basis sets. In 1960, 
Nesbet49 pointed out that molecular basis sets containing only basis functions types necessary 
to reach the atomic Hartree-Fock limit, the so-called isotropic basis set, cannot possibly 
account for polarization in molecular binding. Two approaches to the problem of designing 
molecular basis sets can be identified:

a) the addition of atom-centred polarization functions to the atomic basis sets 
b) the addition of off-centre functions of the same symmetry as the atomic 

Hartree-Fock basis set. 

In the early sixties, Reeves, Harrison and Fletcher50 - 52 established important elements 
of the current 'mainstream' usage of Gaussian basis sets. They concluded that53 

no significant advantage was gained by letting the basis functions float away 
from the nuclear centres, that orbital exponents should be distributed approximately 
in geometric progression, and that it is not advantageous to optimize separate sets 
of Gaussians for the description of individual shells. 

These conclusions support approach a) and form the foundation of the majority of current 
mainstream practice (see the review by Shavitt53 for a masterly overview). However, these 
conclusions were drawn from calculations using basis sets consisting of a small number of 
functions ('" 10 - 102). Today, the so-called 'direct' algorithms54 , which avoid the storage of 
the two-electron integrals over the basis functions, have enabled calculations using in excess of 
103 to be carried out on a workstation and calculations using basis sets of a size approaching 
104 to be seriously contemplated. It is, therefore, timely to reconsider approaches a) and b) 
in the light of these developments. We note that these approaches are not mutually exclusive 
in that hybrid prescriptions for basis set design can be adopted. 

The idea of using of bond functions in molecular structure calculations is an old one55 • In
deed, a number of authors have advocated the use of basis functions located at the bond centre 
in both self-consistent field and in calculations taking account of correlation effects56 - 65 . Such 
functions were introduced to provide the same effects as the addition of a set of polarization 
functions but at a considerably lower cost. Davidson and Feller13 point out that 

For first-row diatomics the introduction of a single (s,p) set at the centre of the 
bond provides 90% of the energy lowering obtained with a single set of d functions 
at the nuclear centres. 

In 1980, Carsky and Urban noted that general rules for selecting exponents and positions 
of the bond functions are still lacking66 • 
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In previous work on the ground state of the nitrogen molecule30 31 a basis set designated 
[30s15p15d15! : 27s12plOd be] (the notation [A: B be] is used where A denotes the atom
centred basis sets and B the bond-centred basis sets) was found to lead to a total energy that 
is within 2.3 pHartree of the finite difference result. This basis set contains a total of 510 atom 
centred basis functions, 255 functions on each atomic centre, and 113 functions in the bond 
centred subset, making the total number of basis function 623. Of these 250 atom-centred 
functions contribute to the description of the ground state of the nitrogen molecule in the 
Hartree-Fock ansatz as do 93 of the bond centred functions. 

Given the success of calculations using off-atom basis functions, we were led to investigate 
approach b) in more detail. Very recently, Moncrieff and Wilson67 have demonstrated that 
the Harlree-Fock ground state of the N2 molecule can be described to an accuracy of "" 
50 J.LHartree using a basis set of sand p functions only. The functions were distributed along 
the line passing through the nuclei. They also considered electron correlation effects using 
these basis sets. In other recent work, distributed basis sets for molecular electronic structure 
calculations have been considered in rather more general terms44 - 46 and this work will be 
discussed in section III. 

c. Systematic generation of atomic basis sets 

In the algebraic approximation, the atomic self-consistent field orbitals 

4>i(n,l,m) = !nt(r) ri Yl"(O,cp) (1) 

are approximated as a linear combination of N primitive basis functions, X~m' 

N 

4>f(n,i,m) = L C~nt X~m (2) 
k=l 

These basis functions can be written 

(3) 

where the Y£m(B, cp) are normalized spherical harmonics. If the basis functions are chosen to 
be Gaussian-type functions then the radial factor has the form 

(4) 

with normalization constant 

(5) 

Klahn68 has presented a generalized Miintz-Sza.sz theorem69- 74 which essentially states 
that a set of Gaussian-type functions is asymptotically complete in L (R+), if and only if and 

(6) 

where 
~ (ft
L.J Vi (7) 
k=l 1 + (,~)2' 

Now it has been observed that exponents which have been carefully optimized for atoms 
often form a good approximation to a geometric progression4 50 51 

(~= af (!31')k,!31' > I, k, 1,2, ... ,N (8) 

Conversely, if it is assumed that the exponents do form a geometric progression and the 
parameters af and !3f' are optimized for atoms then there is found to be little lost in accu
racy4 5. Basis sets developed in this way are termed even-tempered basis sets and open up 
the possibility of constructing the large and flexible basis sets that are inevitably required for 
calculations of high precision. 

As the number of basis functions, N, is increased we require that our basis set approach 
a complete set. The generalized Miintz-Sza.sz theorem68 can be used to show that this is not 
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the case if 0:1 and f31 are held fixed as N is increased. One possible choice which does lead to 
a complete set as N -+ 00 is 

o:f -+ 0 (9) 

f3r -+ 1 (10) . 

(f3f)N -+ 00 (11) 

These limits ensure that the lowest exponent for each l value tends to 0 

(min,1 = 0:£f3£ -+ 0 (12) 

the largest exponent for each l tends to 00 

(max,t 0:1 (f31)N -+ 00 (13) 

and the spacing between the exponents is successively reduced 

f31 -+ 1 (14) 

The limits can be guaranteed by generating successive basis sets according to the following 
empirical recursions75 

(15) 

and 

(16) 

which are essentially the expressions first given by Schmidt and Ruedenbergll . 
The prescription given above for generating atomic basis sets in a systematic fashion is, of 

course, not unique. Amongst the alternative, but closely related approaches, are the universal 
basis sets76 and universal systematic sequences of basis sets75 , geometric basis sets77 , and well
tempered basis sets 78. The approach of Haywood and Morgan79 should also be mentioned. 

D. Systematic generation of molecular basis sets 

Most work on the design of molecular basis sets has concentrated on the development 
of polarization sets which can be added to atomic basis sets to described the molecular en
vironment. Our recent work comparing finite difference with finite basis set calculations has 
demonstrated that a sub-J.Lhartree level of accuracy for the total Hartree-Fock energy can be 
achieved when a systematic design of a molecular basis set is undertaken28~35. It should be 
emphasised that there is no unique solution to the problem of designing molecular basis sets. 
Formally, a one-centre expansion can be made but this will be poorly convergent for heavy 
atoms located off the expansion centre2. 

III. Distributed Gaussian Basis Sets 

Off-atom functions effectively introduce linear combinations of higher harmonics centred 
on the atom. Partial wave expansions of an off-centre Is-type Gaussian function have been 
discussed, for example, by Christoffersen et af'o and by Kaufmann and Baumeister81. 

A modified form of the Rayleigh expansion82 may be written 

exp(rl,r2) = I:
00 

(21+1) i£(rh r2) P1(COS,) (17) 
1=0 

in which i£ (x) is a modified Bessel function and P1 (cos,) is a Legendre polynomial of order 
i. , is the angle between the directions rl and r2. Using the expansion (17) in an s-type 

Gaussian function, exp ( -( Ir - r>l) , with rl assigned to rand r2 assigned to r)" gives 

exp[-(r2+r~)] I:
00 

(21+1) i1(2(rr)')P1(cOS,) (18) 
1=0 
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The addition theorem for surface spherical harmonics allows equation (18) to be written 

00 +£ 
exp (-(lr- r .x12) =47r exp[-(r2+r~)] L L i£(2(rr.x) Ytm(S1r) 1'l~(S1rJ (19) 

£=0 m=-£ 

which is the expansion of an off-centre Gaussian function. 
Gaussian functions are appropriate functions for electronic structure calculations not 

only because of the widely recognized mct that they lead to molecular integrals which can be 
evaluated efficiently and accurately but also because they do not introduce a cusp into the 
approximation for the wave function at a physically inappropriate point. It should also be 
noted that Gaussian functions are suitable for the description of wave functions in the vicinity 
of nuclei once the point nucleus model is abandoned in mvour of a more realistic finite nucleus 
model. 

A. The Gaussian Cell model 

The original Gaussian cell model42 43 is a distributed Gaussian basis set in which the 
basis functions have a single common exponent and are arranged on a regular lattice. The 
normalized basis functions may be written 

.a 

Xm (r) (~) 4 exp ( -( Ir - r.x12) (20) 

where ( is the orbital exponent. r{.x} is a point on a regular lattice defined by 

rp} {±m:vA.x,±myAy,±mzAz}, 

m:v = 1,2, ... ,n",jmy 1,2, ... ,ny;mz = 1,2, ... ,nz (21) 

n:v,ny,nz are taken to be odd and the lattice point {O,O,O} is taken to coincide with the 
mid-point of the bond. It will be assumed that 

(22) 

Furthermore, the nuclei will be taken to lie on the z-axis and positioned on one of the lattice 
points, so that 

(23) 

where i is an integer. Murrell et ar2 43 emphasized the importance of ensuring the coincidence 
of a lattice points with each of the nuclear positions. 

B. Laplace transform of an elliptical function 

The 'natural' basis functions for calculations on diatomic molecules are elliptical func
tions. They have been employed in diatomic molecular electronic structure studies by a 
number of authors83 - 92 and may be defined as follows 

(24) 

where a: and {3 are screening parameters and 8 and t taken integer values 0,1,2, .... (A, /1, r.p) are 
the usual prolate spheroidal coordinates A = 2k (ra + rb), 1'::; A .::; 00; /1 = 2k (ra - rb), -1 .::; 
/1 ::::; 1; r.p, 0 .::; r.p .::; 27r. R is the nuclear separation and ra (rb) is the distance from nucleus 
a(b). v = 0,±1, ... determines the angular symmetry of the function: cr,7r,6, ... Elliptical 
basis functions have been employed in electronic structure calculations for diatomic molecules 
and have been shown to afford high accuracy28 88 90-92. 

The approximation of elliptical functions by a finite expansion of Gaussian-type functions 
has been investigated recently47. Attention was restricted to the use of 18 Gaussian-type 
functions to approximation the simplest elliptical basis functions with s = t = 0 and v = 0, 
that is 

1 
X (A, /1; a:,{3, R) = J2;R3 exp(-a:A) exp(-(3/1) (25)

27rR3 
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The 18 Gaussian-type functions centred on the point p are now written as 

(211/1r)i exP(-11r!) 	 (26) 

where 11 is a screening parameter. Expressing X in terms of the coordinates r a R(A + p.» 
and rb R(A - p.» gives a product of two exponential functions 

1 
X (ra,rb;(a,(b,R) = J21iR3exP(-(ara)exP(-(brb) 	 (27)

21rR3 

where the screening constants for the exponential functions, (a and (b. are related to those 
for the elliptical function, a and {3, by 

(28) 

and 

(29) 

An exponential function can be related to an integral over Gaussian functions by means 
of the Laplace transform82 

( roo (2 
exp(-(r) = 2..jir io d1111- i exp( - 411) exp(-11r2 ) (30) 

The discrete representation of this integral may be written 

N 

exp(-(r) ~	 2::>1' exp(-11pr2 
) (31) 

1'=1 

and this relation has been used by Silver93 and, more recently, by Kutzelnigg94 to develop 
approximations for exponential functions in terms of Gaussian functions. In the work of 
Silver93 , the exponents 111' were chosen to be the points of a Gaussian quadrature scheme and 
the coefficients, cp , are related to the corresponding weights. On the other hand, Kutzelnigg94 
took the exponents, 111" to be an even-tempered set. 

Use of the Laplace transform for the elliptical function provides an exact representation 
of X by means of a continuous distribution of Gaussian functions over the variables 11a and 11b: 

1 (a(b roo roo _.:I 

X (ra,rb;(a,(b,R) = J21rR3 41r io d11b11a 11bd11aio 
2 

1 [(~ (t]) ({ 2 	 (32)2})
( -'4 11a + 11b exp - 11ara + 11brb 

Equation (32) can be converted into a finite expansion in terms of Gaussian-type functions by 
performing the double integration with anyone of a number of numerical quadrature schemes. 
In the expansion 

N N 

X (ra, rb; (a, (b, R) ~ 2:::: 2:::: Cap Cbp exp(-11pr~) exp(-11qr:) (33) 
1'=1 q=1 

the parameters 111' and Cp are specified by the chosen quadrature. Using the Gaussian product 
theorem95 , (33) may be written 

N N 

X (ra, rb; (a, (b, R) ~ 2:::: 2:::: CapCbp7pq exp(-11pqr;q) (34) 
1'=1 q=1 

where the coefficients tpq are given by 

7pq 	 (35) 

and the screening parameters are 
11pq = 111' + 11q (36) 

The coordinate rpq is defined with respect to the point (xpq, Ypq, Zpq) where 

11pxa + 11q Xb xpq = 	 (37)
111' + 11q 

with similar relations for Ypq and Zpq. 
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IV. Some Recent Results 

A. The Gaussian Cell model revisited 

The original Gaussian Cell model basis set, with one function centred on each lattice 
point and all functions having the same exponent, may be written 

(38) 

or 
s ~ =SlP,P) (39)Ga.." .... ian Cell Model L....J "" 

pE{L} 

where 
(40) 

The convergence behaviour of this method is illustrated in Table 2 where some results 
recently obtained by Ralston and Wil80n44 are reproduced. Not surprisingly, this simple model 
does not achieve high accuracy; indeed, the lowest energy reported in Thble 1 is in error by 
"'" 7705 /Lhartree. However, more recent work on one-electron diatomic44 45 and triatomic46 

systems has demonstrated that, with simple refinements, it can be very significantly enhanced 
and accuracies approaching"'" 1 /LHartree can be achieved for the total energy. 

Thble 2 

Calculations for the H; ground state using a regular cubic 


lattice distributed basis sett 

Lattice N i. E ~ .d 

5x5x5 125 1 -0.582046 1.4074 1 
5x5x5 125 2 -0.577133 0.6184 1 

'2 
7x7x7 343 1 -0.591606 1.5452 1 
7x7x7 343 2 -0.587718 0.6752 ! 

7x7x7 343 3 -0.586792 0.6163 ~ 
'3 

9x9x9 729 1 -0.592429 1.5568 1 
9x9x9 
9x9x9 
9x9x9 

llxllxll 

729 
729 
729 
1331 

2 
3 
4 
2 

-0.593043 
-0.592283 
-0.590744 
-0.594929 

0.9072 
1.5568 
0.7474 
1.1749 

1 

¥ 
I 
1 
2 

Exact -0.602634 

t All energies are given in Hartree units. 

The internuclear distance is set at its equilibrium value of 2.0 bohr 


B. Molecular lattice basis sets 

It is clear that the major failing of the Gaussian Cell model is its lack of flexibility 
particularly in the regions close to the nuclei. However, methods for constructing basis sets 
for accurate atomic Hartree-Fock calculations are well established. Ralston and Wilson44, 
therefore, introduced the molecular lattice basis sets which may be written 

or 

SMolec:ular Lattice Basis Set = ( L ffi S~),p») ffi ( L ffi S<;4~~Yn) (42) 
\vE{L'} qE{A} 

where atomic basis sets are centred on lattice points which coincide with nuclei and a single 
function is centred on each of the lattice points which do not coincide with nuclei with all of 
these functions having the same exponent. If {A} denotes the atomic nuclei and {L} the full 
set of lattice points then 

{L'} {Ll- {A} (43) 
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The atomic basis set may be chosen to be even-tempered sets. 

S};:::m = {(2(k/7r)i exp(-(kr;)i(k = Q(N,.tom).BtN,.tom); k = 1,2, ... ,Natom } (44) 

The convergence behaviour of these molecular lattice basis sets is illustrated in Table 3 
where results, taken from the work of Ralston and Wilson44 , show that this approach can 
yield an accuracy of '" 27 J,tHartree for the Ht ground state at its equilibrium geometry. In 
these calculations, Natom was set to 10 and the atomic even-tempered parameters were taken 
from the tables of Schmidt and Ruedenbergll . 

'l8.ble 3 

Calculations for the Ht ground state using a molecular 


regular cubic lattice distributed basis sett 

Lattice J::l.. i E { ~ 

5x5x5 143 1 -0.602462 0.6919 1 
5x5x5 143 2 -0.602462 0.5182 1 

2 
7x7x7 361 1 -0.602508 0.7381 1 
7x7x7 
7x7x7 

361 
361 

2 
3 

-0.602536 
-0.602532 

0.6881 
0.6228 

1 

¥ 
"3 

9x9x9 747 1 -0.602515 0.7184 1 
9x9x9 
9x9x9 

747 
747 

2 
3 

-0.602593 
-0.602586 

0.8317 
0.7325 

1 

i 
9x9x9 747 4 -0.602570 0.6738 ~ 

'4 
llxllx11 1349 1 -0.602517 0.7066 1 
llxllxll 
11xllx11 

1349 
1349 

2 
3 

-0.602607 
-0.602597 

0.8801 
0.7488 

1 
j 
3 

Exact -0.602634 

t All energies are given in Hartree units. 

The internuclear distance is set to its equilibrium value of 2.0 bohr 


c. Systematically extended molecular lattice basis sets 

The molecular lattice basis set, although a considerable improvement on the original 
Gaussian Cell model, does not afford an accuracy approaching the 1 J.tHartree level even for 
the simplest of molecules, the hydrogen molecular ion. The molecular lattice even-tempered 
basis set was, therefore, introduced45• This is defined as 

or 

SMolecular Lattice Even-tempered Basis Set = ( I: Ee S~:~uce) Ee (I: EeS};"q.:m) (46) 
pE{L'} qE{A} 

where atomic basis sets are located on each of the nuclei and " lattice" basis sets are centred on 
each lattice point. The "lattice" basis sets are identical and may be taken to be even-tempered. 

S~:!'ioe { (2(k/7r) i exp(-(kr;); (k = Q(Nldtiee).BtNldtiee)i k = 1,2, ... ,Nlattice} (47) 

The convergence behaviour of these systematically extended molecular lattice basis sets 
are displayed in Table 4 for a 5 x 5 x 5 lattice where it can be seen that the lowest energy is 
in error by just 4 J,thartree. The convergence pattern for three difference lattices are shown in 
Figure 2. 
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-+- 1x1x21 lallice """"*- 5x5x51atlice 5x5x7 lattice 

Figure 2: Convergence of the ground state energy of the hydrogen molecular ion for a dis
tributed Gaussian basis set of s-type functions using a regular linear lattice and a regular 
cubic lattice together with systematic sequence of even-tempered functions on each lattice 
point. 

Table 4 
Calculations for the H; ground state using a 5 X 5 x 5 molecular regular cubic lattice 

of systematically constructed distributed basis sets with i = 2t 

Nlattice N M Eo ~ 
1 143 143 -0.602052 582 
2 266 255 -0.602592 42 
3 389 368 -0.602621 13 
4 512 476 -0.602629 5 
5 635 591 -0.602630 4 
6 758 705 -0.602629 5 
7 881 820 -0.602630 4 
8 1004 933 -0.602630 4 
9 1127 1047 -0.602630 4 
10 1250 1165 -0.602630 4 

Exact -0.602634 

t All energies are given in Hartree units and energy differences in p:Hartree. 
The internuclear distance is set to its equilibrium value of 2.0 bohr 

Calculations using a molecular lattice distributed basis set have also been carried out46 

the linear Hi+, a simple polyatomic system for which the results of finite element studies 
have recently been pUblished96 • 
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D. Laplace-transform based distributed basis sets 

The prescription for distribution of the basis set obtained by considering the analytical re
lation between elliptical functions and Gaussian functions using a Laplace transform provides 
an alternative technique for the construction molecular distributed basis sets. It provides a 
method for generating systematic sequences of molecular basis sets from systematic sequences 
of atomic basis sets. Here, we shall consider a systematic sequence of even-tempered atomic 
basis sets. 

The exponents for an atom-centred even-tempered basis set of Gaussian-type functions 
are defined by the geometric series 

'fJP a{3P, p= 1,2, ... ,N (48) 

For this choice of generating formula, the exponents in the expansion (34) are given by 

7Jpq a({3P + fJl), p, q 1,2, ... , N (49) 

and, for a diatomic system with nuclei placed on the z-axis, the coordinate Tpq is defined with 
respect to the point (0,0, zpq) where 

{3p-q Za + Zb > 
Zpq {3P-q + 1 ,p - q 

Za + pq-Pzb > 
Z = 1 +{3q-p ,q - p 

p,q 1,2, ... , N (50) 

In this way, a systematic sequence of atomic even-tempered basis sets can be used to generate 
a sequence of molecular basis sets. Convergence of the calculated energy of the hydrogen atom 
and the hydrogen molecular ion observed with a systematic sequence of even-tempered basis 
sets of Is Gaussian functions is displayed in Figure 3. For the Hi ion the energy obtained with 
the basis set distributed along the line passing through the nuclei according to the Laplace 
transform of an elliptical functions is compared with that obtained with atom-centred Is 
Gaussian functions. The atom-centred basis set exhibits smooth behaviour with increasing 
number of functions but is not capable of describing the Hi ground state49. The Laplace 
transform based distribution, on the other hand, displays a smooth convergence pattern with 
increasing basis set size and monotonically decreasing energy values. 

v. Prospects 

Basis sets capable of supporting high precision calculations (i.e. total energies approach
ing the 1 J.£hartree level of accuracy) for molecules within the Hartree-Fock model are now 
a reality. Such basis sets can be efficiently constructed if the usual approach in which basis 
functions are taken to be atom centred is abandoned' and functions centred on, for example, 
the bond centre are introduced. The distributed basis set concept provides a general approach 
to the construction of basis sets which include off-atom functions. Just as the introduction of 
even-tempered basis sets showed that it was not necessary to exhaustively optimize exponents 
if schemes are devised for their systematic extension (indeed, for atoms such an approach can 
yield an accuracy comparable with that achieved in finite difference calculations), so the intro
duction of distributed basis sets provides systematic schemes for the placing of the functions 
in space. The two distributions described in this article, the Gaussian Cell model and its 
extensions and the Laplace transform of an elliptical function, have been shown to be capable 
of an accuracy approaching 1 J.£hartree. 

Basis sets capable of supporting high precision electron correlation calculations are under 
development97 . The accurate approximation of the solutions of the Hartree-Fock problem for 
a molecule is a necessary precursor for any treatment of correlation effects. Not only is the 
correlation energy defined with respect to the total Hartree-Fock energy but the solutions of 
the Hartree-Fock equations define the quasi-particles in terms of which a description of the 
many-body system is developed98-104 . 

Basis sets capable of supporting high precision in non-relativistic studies can be easily 
modified to serve as a basis for relativistic molecular structure calculations. Essentially, addi
tional contracted basis functions are required in the relativistic case to describe the contraction 
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Energy difference 
1.0E+07.,---------------------, 

1.0E+06 

1.0E+05 

1.0E+04 

1.0E+03 

1.0E+02 

1.0E+01 

1.0E+OO 

1.0E-01 

1.0E-02 L-__..L-__-"-........~ __--L__--"'--_---' 

o 5 10 15 20 25 

Number of basis functions 

Hatom -+-- Atom-centred set 

""*- Distributed set 

Figure 3: Convergence of the calculated energy of the hydrogen atom and the hydrogen 
molecular ion observed with a systematic sequence of even-tempered basis sets of 1s Gaussian 
functions. For the molecular systems the basis sets are either atom-centred or distributed 
along the line passing through the nuclei according to the Laplace transform of an elliptical 
functions. 
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of the single particle state functions in the core region whilst additional diffuse functions are 
needed to account for the expansion of the valence single particle state functions. In relativis
tic electronic structure calculations within the algebraic approximation matched basis sets 
must be employed for the large and small components of the wave function. The large and 
small components of the relativistic wave function must be approximated in terms of basis 
functions which satisfy the condition19 

(51) 

There is a one-to-one correspondence between the large and small component basis functions. 
If the large component basis set contains s functions then the small component basis sets 
must contain p functions with the same exponents; if the large component basis set contains 
p functions then the small component basis set must contain functions which are a linear 
combination of sand d functions; in general, if the large component basis functions have the 
form 

xfml< Ni,.rl exp(-(ir2 )O;:<I<) (0, cp) (52) 

then the small component basis functions have the form 

(53) 

where K is the usual angular quantum number, 2j = 21KI- 1, -j ~ m ~ j. The restriction 
of the large components basis set to functions of low symmetry when using distributed basis 
sets imposes corresponding restrictions on the small component basis set105• 

By restricting basis sets to functions of low symmetry distributed basis sets lead to effi
cient integral evaluation algorithms; an essential ingredient of the 'direct' self-consistent field 
procedures54 which are required for both non-relativistic and relativistic calculations using 
large basis sets. Furthermore, when basis sets are systematically constructed and extended 
there is considerable scope for integral approximation. 

Finally, it should be mentioned that distributed Gaussian basis sets provide a natural ve
hicle for the determination of point charge models of molecular systems which are required for 
hybrid quantum mechanical/classical calculations. Many of the techniques suggested by Hall 
and his coworkersl08-108 for obtaining point charge models from floating spherical Gaussian 
orbital electronic structure calculations can be applied to the results of distributed Gaussian 
basis set studies109. Hybrid methods offer considerable scope for the study of molecules in 
different environments, e.g. on surfaces, in solution and in cages. 
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