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Abstract 

We study the cosmology of the Supersymmetric Standard Model augmented by 
a gauge singlet to solve the JL-problem and describe the evolution of the domain 
walls which are created during electroweak symmetry breaking due to the discrete 
Z3 symmetry in this modeL The usual assumption, that non-renormalizable terms 
induced by gravity (which explicitly break this symmetry) may cause the walls to 
collapse on a cosmologically safe timescale, is reconsidered. Such terms are con­
strained by considerations of primordial nucleosynthesis, and also by the fact that 
by not respecting the Z3 symmetry they induce divergences which destabilise the 
hierarchy and reintroduce the JL-problem. We find that, even when the Kahler po­
tential is 'non-minimal' (Le. when the hidden sector couples directly to the visible) 
the model is either ruled out cosmologically or suffers from a naturalness problem. 

IpPARC Advanced Fellow 



1 Introduction 

The purpose of introducing (softly broken) supersymmetry into the Standard Model is 
to bring under control the quadratic divergences associated with a fundamental Higgs 
boson and make it 'natural' for its mass to be at the electroweak scale [:I.]. Yet the 
minimal supersymmetric Standard Model (MSSM) has its own naturalness problem. Its 
Lagrangian contains a term J-L HIH2 mixing the two Higgs doublets which are now required 
to give masses separately to the up- and down- type quarks. For successful phenomenology 
J-L should also be of order the electroweak scale but this must now be set by hand - the 'J-L­
problem' [2, 3]. To address this problem, the next-to-minimal supersymmetric Standard 
Model (NMSSM) [4] contains an additional singlet Higgs superfield N. By invoking a Z3 

e27risymmetry under which every chiral superfield <P transforms as <P ---+ / 3 <p, the allowed 
terms in the superpotential are now )"NHIH2 - ~N3 (in addition to the usual Yukawa 
terms generating fermion masses) while the Higgs part of the soft supersymmetry breaking 
potential is extended by the inclusion of two additional trilinear soft terms A,\ and Ak to 

vHiggs _ k 3 
soft - ( - + h.c.)-)..A,\ NHIH2 + h.c.) 3"Ak (N 

+mJt1 1Hl 12 + mJt21H212 + m~ INI 2 , (1) 

where HIH2 = HfHg - H- H+. The J-L-term can now be simply set to zero by invoking 
the Z3 symmetry. An effective J-L-term of the form )..(N) will still be generated during 
SU(2h ® U(I)y breaking but it is straightforward to arrange that (N) is of order a soft 
supersymmetry breaking mass. Apart from solving the 'J-L-problem' the NMSSM also has 
interesting implications for supersymmetric phenomenology [5] and dark matter [6]. 

Unfortunately, the NMSSM runs into a cosmological difficulty. The Z3 of the model 
is broken during the phase transition associated with electroweak symmetry breaking in 
the early universe. Due to the existence of causal horizons in an evolving universe, such 
spontaneously broken discrete symmetries lead to the formation of domains of different 
degenerate vacua separated by domain walls [7, 8]. These have a surface energy density 
U ,...." 1/3 where 1/ is a typical vacuum expectation value (vev) of the fields, here the elec­
troweak scale of 0(102 ) GeV. Such walls would come to dominate the energy density of 
the universe and create unacceptably large anisotropies in the cosmic microwave back­
ground radiation unless their energy scale is less than a few MeV [9]. Therefore cosmology 
requires the Z3 walls to disappear well before the present era. Following the original sug­
gestion by Zel'dovich et al[7], this may be achieved by breaking the degeneracy of the 
vacua, eventually leading to the dominance of the true vacuum. This happens when the 
pressure, i.e. the difference in energy density between the distinct vacua, begins to exceed 
the tension u j R, where u is the surface energy density of the walls and R the scale of their 
curvature. When R becomes large enough for the pressure term to dominate, the domain 
corresponding to the true vacuum begins to expand into the domains of false vacuum and 
eventually fills all of space. It was recently argued [10] that gravitational interactions at 
the Planck scale M p1 would explicitly violate any discrete symmetry, causing just such 
a non-degeneracy in the minima of 0(1/5jMp1 ) where 1/ is a generic vev (of O(Mw) in 
our example). In fact, this suggestion had been applied already to the NMSSM in the 
context of string theories [11]. Thus there would appear to be a natural solution to the 
cosmological domain wall problem for the NMSSM. 
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In this paper we study whether this solution is indeed viable. In the following section 
we derive the structure of the walls, and show that the surface energy is approximately 
M~ as expected on dimensional grounds. We go on to describe the evolution of the walls 
under the influence of the tension, the pressure due to the small explicit Zs breaking and 
the friction due to particle reflections. In particular we demonstrate that wall domination 
of the energy density of the universe is avoided if the gravitationally induced terms are 
of order six or less. This is not however the tightest constraint on the domain walls; by 
applying constraints based on primordial nucleosynthesis we show that the magnitude 
of Zs breaking must be ~ 10-70" M-tv / Mpl , in order to make the walls disappear before 
the nucleosynthesis era begining at T 1 MeV. Thus only operators of dimension five I"V 

(suppressed by at most one power of the Planck mass) are permitted. This reduces to 
three the number of possible Zs breaking terms which are allowed in the superpotential 
or Kahler potential and which induce dimension-5 operators in the effective potential. By 
inspection we find that the existence of one or more of these operators implies that there is 
no symmetry (discrete, global, gauged, R-symmetry or gauged R-symmetry) under which 
the low-energy singlet can be charged. This implies that there cannot be any explanation 
for the absence of three allowed low energy operators which include the JL-term itself 
as well as quadratic and linear terms in N. Thus our first conclusion is that not only 
does the NMSSM not solve the JL-problem, it actually makes things worse by introducing 
additional operators and by disallowing any symmetry which would forbid them. 

We then go on to consider the fact that the singlet which appears in the NMSSM may 
introduce destabilising divergences [12]. Essentially the problem is that by introducing 
non-renormalizable terms together with soft supersymmetry breaking, we may produce 
corrections to the potential which are quadratically divergent and thus proportional to 
powers of the cut-off A in the effective supergravity theory. Since the natural scale for this 
cut-off is M Pl , these can in principle destabilise the hierarchy, forcing the singlet vev and 
hence the scale of electroweak breaking to become very large (at least of order .JMWMPl)' 
By examining the possible Zs breaking terms, we demonstrate that the removal of domain 
walls by this mechanism indeed destabilises the hierarchy. We conclude that the two 
constraints, viz. stability of the hierarchy and domain walls, cannot be simultaneously 
satisfied by any gravitationally suppressed operators which one can add to the Lagrangian. 

We consider alternative ways for dealing with the domain walls. One possible solution 
is to reintroduce the JL term in the superpotential in such a way as to avoid the introduction 
of the dangerous non-renormalisable operators. If we drop the assumption of minimality 
in the Kahler potential by allowing certain couplings of the hidden sector fields to the 
visible sector (as in Ref.[3D, we can retain Zs symmetry in the full theory but break it 
spontaneously when supersymmetry is broken. In this way the hierarchy is not destabilised 
by tadpole diagrams. However the naturalness problem cannot be solved even for these 
more general models. 

Finally we consider how gauge singlets may be accommodated in super symmetry, 
without invoking these problems. There appear to be only a few possibilities, none of 
which yields a phenomenology bearing any resemblance to the NMSSM. 
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2 Domain Walls in the NMSSM 

When a discrete symmetry is spontaneously broken as the universe expands and cools, 
'domains' of the different degenerate vacua form, separated by narrow regions of higher 
potential called 'domain walls' [9]. The structure of these walls may be determined by find­
ing time-independent solutions to the classical field equations after imposing the boundary 
conditions that at the endpoints the fields should be in distinct vacuum configurations. 
This has been done using numerical methods for the NMSSM potential [13] and we re­
iterate the essential features of the Z3 walls. As might be expected from dimensional 
arguments and by analogy with the analytically soluble case of a single real scalar field 
in a Z2 symmetric potential [9], the thickness and energy density of the walls are of order 
v-I and v 3 respectively, where v is a typical vacuum expectation value. For naturalness 
reasons one would tend to assume that all three vacuum expectation values are of the 
same order; however, it is also possible that the singlet vev, x, is much larger than the 

usual v = j v{ + v~ = 174 GeV. This is in fact quite likely in the light of recent analyses 
where unification of soft terms and gauge couplings is imposed at the GUT scale; the only 
viable scenarios are then found to have x/v ~ 10 with especially large values when the 
Higgs sector Yukawa couplings are very small [14]. In such cases, we would expect the 
wall to have a much higher surface energy 0"; indeed we find that this is well approximated 
by 

0"~5X107GeV3(0\) (5 
Xv) 3 

, (2) 

when x is at least a few times larger than v. (This formula is accurate to about a factor 
of 2 in practice and is very good for large x, relative to both the trilinear soft terms and 
to v.) Similarly the thickness of walls is given by 

k ) -1 I 
b ~ 2 X 10-2 GeV-I - (~)- (3) 

. ( 0.1 5v 

which again is most accurate when x » v and x » Ak , Ax. We show an example of a 
wall with large x in Figure 1. In comparison to the cases shown in Ref.[13]' we see that 
the wall is thinner and the surface energy higher, as expected. (We note that if both Ak 
and Ax are zero, then the Z3 symmetry of the scalar potential becomes a U(l) symmetry, 
so the wall energy falls to zero and its width becomes infinite; in this limit however we 
have an axion problem. We find that if Ak or A>. are greater than a few Ge V then the 
wall energy is insensitive to their exact values.) 

Immediately after the electroweak phase transition the universe is filled with equal 
volumes of the three degenerate phases. These are correlated on a length scale which 
depend on the nature of the phase transition, varying from ~ "-' Tc- I for a second-order 
transition to ~ "-' H-1 for a strongly first-order transition [9, 15]. Since the probability 
for each vacuum (0.333) is just above the percolation threshold (which for continuum 
percolation theories is found to be 0.295 [16]), the universe is then filled with highly 
convoluted, infinite regions separated by stable domain walls of typical curvature scale ~, 
which rapidly grows to the size of the horizon. 

Let us now turn to the dynamics of cosmological networks of such walls. As discussed 
in Ref. [7], the most important forces acting on the walls are surface tension, friction and 
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pressure. The equation of motion for a quasi-spherical piece of wall moving with velocity 

R (with 1 =1/-/1 - R2) and having local radius of curvature R, is 

2 (npv) e 
(4)R12 - (J'13 - (J'13 • 

The first term on the RHS reflects the fact that it is energetically favourable for the 
wall network to reduce its surface area through surface tension, and hence small domains 
will collapse, irregularities in the surfaces will straighten out, and the correlation length 
will increase. This term expresses just the conservation of energy in the absence of pressure 
and friction. 

The second term on the RHS corresponds to friction arising due to the interactions of 
the wall network with the thermal plasma. As particles reflect off the walls, they exert a 
force given by the thermally averaged momentum transfer (npv), where n is the particle 
density, v the particle velocity relative to the wall, and p the momentum perpendicular 
to the wall. (Actually the friction is ex: v only when v « c.) Friction is clearly important 
at times very close to the electroweak phase transition if the top quark and gauge boson 
fields are still in equilibrium in the plasma. At later times, when the number density of 
these particles is exponentially suppressed, the main source of friction is the interaction 
of the walls with lighter fermions in the plasma. The constant difference in phase in 
the mass terms on either side of the wall (i.e. 7r/3 or 27r/3) does not by itself cause 
any reflection but rather just a phase shift in the fermion masses (as can be checked by 
equating transmission and reflection coefficients at the Wall). In order to estimate the 
reflection coefficient, it is useful to describe the space dependent mass by the inverted 
bell-shaped function 

2 2 .\(.\- 1)
m 2(x.d = m - a , (5)

cosh2 
ax..L 

where X..L is the perpendicular distance from the wall, and m is the mass given to the 
reflecting particle by the Higgs fields which comprise the domain wall of width a-I. The 
task of finding the reflection coefficient (using the Klein-Gordon equation) then reduces to 
a known problem, the modified Poschl-Teller potential, which can be solved analytically 
(see for example Ref.[17]). We take the depth of the well to be m2 and the width a-I rv 

Mw . The depth parameter is .\ = (1 + m 2
/ M'fv) and the reflection coefficient is then 

found to be 
2 4 4 

IRI2 = 7r m ~ m ( ) 
7r2m4 + Mar sinh2 7rpa p2 M'fv ' 6 

where we have taken Mw» p » m as is appropriate once the gauge bosons and top 
2quark have fallen out of equilibrium. (There is a region at low energy Ipi < m / Mw in 

which the particles experience total reflection [9]. However this contribution is insignif­
icant here, being suppressed by many powers of m 2/Mw.) Clearly particles which are 
heavy, especially the bottom quark, will be more important here. We can estimate the 
friction by considering a particle of mass m, when the wall velocity through the plasma, 
u, is small. Then 

(npv) 
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where T is the temperature of the plasma, and 9 is the number of degrees of freedom of 
the reflecting particles. Expanding this function in U keeping the leading term only and 
performing the angular integral, we find 

(8) 

where 
00 4 (2 2 ) ei£( ) 1F Xm dx Xm x - Xm ( )2 ' (9)

i£m ei£ + 1 

and we have defined x =EilT and Xm - milT. This integral is very well approximated 
by 

F(xm) = x~ (0.6e-i£m ) 3 . (10) 

Summing over all the particle species in the plasma, we find that 

T4 
(npv) = f(T) U 811"2' (11) 

where f(T) < 5 x 10-4 at all temperatures. We show f(T) in Figure 2 where, apart from 
omitting the contribution of the up and down quarks, we have neglected the possible effect 
of the quark-hadron phase transition. In the era when pressure is negligible (Le. when 
the typical curvature scale is small), we can calculate the terminal wall velocity, Uterm, 

and establish a posteriori that our approximation of small U to obtain eq.(8) is indeed 
correct, i.e. friction is important. Substituting the friction into eq.( 4), we find 

(12) 

For typical values of the radius, R '" Utermt, we see that friction is important only at 
temperatures above a few hundred MeV. We therefore conclude that shortly after the 
quark-hadron phase transition the walls move with velocities comparable to the speed of 
light and so we may safely neglect friction in what follows. 

The last term on the RHS in eq.(4) is the pressure corresponding to the difference E. 

in the energy density between the different vacua. As remarked earlier, this will become 
dominant when it exceeds the surface tension, i.e. when 

(1 

(13)E. > R' 

We show this happening in Figure 3, where we have performed a simple thin wall sim­
ulation of a network of domain walls using techniques similar to those used in Ref.[18], 
and which we have discussed in more detail elsewhere [13]. In the absence of friction it is 
convenient to rescale the parameters with some typical length scale, Ro, which we choose 
to be 1 cm, corresponding approximately to the curvature scale when pressure becomes 
dominant if E. '" M'tvIMpI' Thus defining p - RlRo, and r = tiRo, eq,(4) becomes 

2 E.Ro 

- n 2 - i 3(1' 
(14) 
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Thus there are only two independent parameters in our simulation, given by the pressure 
in each of the two false vacua, e:Eo/a. Initially, the walls expand under their own tension, 
and the structure develops in the manner discussed in Refs.[18, 19]. Eventually pressure 
dominates as expected and the entire volume is cleared of walls. This contrasts with the 
no-pressure case, where one or two horizon-sized walls always remain [13]. The behaviour 
for different values of the pressure or surface tension is identical if the time and length, 
respectively, are scaled appropriately. 

One might consider the possibility that since frictionless, pressureless walls expand 
until there is roughly one wall per horizon scale [9], domain walls may be accomodated by 
simply assuming that our local region of space-time just happens to be empty of them, 
i.e. that there is a wall lurking just outside our present horizon. There are at least two 
objections to this. Firstly the walls eventually come to dominate the energy density of the 
universe, causing unacceptable 'power-law' inflation [20], unless their separation is many 
times greater than the present horizon scale, which is clearly impossible by causality. 
Secondly, even such a wall outside the horizon will have a curvature scale comparable to 
the present horizon scale and thus induce unacceptably large anisotropy in the cosmic 
microwave background [21]. 

When Walls Collide 

What value of the pressure (i.e. explicit Z3 breaking) is required to safely remove the 
walls? The crudest estimate we can make is simply to insist that the walls are removed 
before they dominate over the radiation energy density in the universe, in order to avoid 
wall driven inflation. Since the walls move at close to the speed of light below the quark 
hadron phase transition, their curvature scale will be roughly the horizon size t R "'" 
t "'" Mpt/g!/2T2. Since the energy density of the walls is 

Pwalls rv 

a 
R ' (15) 

and the radiation energy density is Prad rv gy2T4, we see that walls dominate the evolution 
below a temperature 

T* "'" (1/2a 
) 1/2 (16) 

g* M p1 

To prevent this we require the pressure to have become dominant before this epoch, i.e. 

(17) 

A pressure of this magnitude would be produced by dimension-6 operators in the po­
tential. However, one should consider further constraints coming from primordial nu­
cleo synthesis , and we find that only operators of dimension five or less are sufficient to 
satisfy these. In fact for weak-scale walls the time associated with the temperature T* is 
t* rv M~,/g;/2 Mlv rv 108 sec, i.e. long after nucleosynthesis. The entropy produced when 
the walls collide (which is by now a major proportion of the total entropy in the universe) 
is dumped into all the decay products of neutral Higgs particles, i.e. Standard Model 
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quarks and leptons. In order to check whether this violates phenomenological bounds, we 
compute the relative energy density released in such collisions, viz. 

Pwalls (J 

n"'( tn"'( 

rv 7 X 10-11 GeV (---;-) (_t)1/2 (18)
Mw sec 

where we have taken the number of relativistic degrees of freedom in the plasma to be 
g* = 43/4. Detailed consideration of the effects of high energy particles on primordial 
nucleosynthesis and on the 2.73 K Planckian spectrum of the microwave background ra­
diation impose severe upper limits on this parameter [22]. For the typical values of (J in 
Figure 1, we find that the walls are required to disappear before the onset of nucleosyn­
thesis at about 0.1 sec, as otherwise the hadrons in the showers triggered by the decay 
products would alter the neutron-to-proton ratio, resulting in a 4He mass fraction in ex­
cess of the conservative observational upper bound of 25% [23]. This means that in order 
not to disrupt primordial nucleosynthesis, we require explicit Z3 breaking of magnitude 

(19) 


with 
)..' ~ 10-7 . (20) 

The Return of the f.-L Problem 

Having established that one needs dimension-5, Z3 breaking operators to appear in the 
effective potential, we can consider ways in which this can be achieved by adding terms 
to the Kahler potential or superpotential. We first assume that these are 'minimal' in the 
sense that they do not contain couplings between the hidden and visible sectors (which 
couple only through gr~vity). Later we shall consider the most general non-minimal 
case. In all cases we find that there is a naturalness problem associated with the explicit 
breaking of the Z3 symmetry. 

Let us write down the contributions to the supergravity Lagrangian which explicitly 
break Z3, and which are invariant under the NMSSM gauge group. These are 

(21) 

in the superpotential, and 

)..' N 
4 

Mp1 ' 

(22) 

in the Kahler potential. As in Ref.[12]' we can absorb the last two contributions into the 
superpotential to O(Mpl) by making the redefinitions 

Hi --+ (1 ­ aiN) Hi 
M p1 

N --+ N - (3(H1 H2 ) (23) 
M p1 ' 
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and so we shall consider only the first three contributions in what follows. Inspecting 
these, we observe that N must be a singlet under any additional symmetry in order 
for anyone of these terms to exist in addition to the terms N3 and N HIH2 in the low 
energy superpotential. In other words, each of them implies that the following 'unnatural' 
contribution to the superpotential is invariant 

(24) 


Thus not only have we reintroduced the J,L-problem, we now have two additional natural­
ness problems. Whereas the standard J,L-problem may well be solved at a future date (for 
example by the mechanism of Ref. [3]), we shall see that the naturalness problem which 
has reappeared here can have no solution based on an underlying symmetry. 

The Return of the Hierarchy Problem 

As ifthe difficulties above were not bad enough, there is the possibility of quadratic tadpole 
divergences which can lead to a destabilisation of the hierarchy [12]. This exacerbates 
our problems, since such divergences arise at each order in perturbation theory, forcing 
us to re-fine-tune. These are a potential problem in any supergravity model with gauge 
singlets since the dangerous diagrams are not excluded by gauge invariance. 

These diagrams arise when supersymmetry is spontaneously broken, because super­
Weyl-Kahler invariance necessitates that the vev of the Kahler potential become non­
trivial. In fact [12] 

(e 2KI3 ) ~ e2KI31 (1 + ()2 M; + 02M; + ()202 M:) 

(¢) ~ ¢I (1 + ()2M;) , (25) 

where ¢ is the chiral compensator, Ms is the scale of supersymmetry breaking in the 
hidden sector, and the RHS refers to only the scalar components. The leading tadpole 
divergences are quadratic and appear at two-loop order for the first two operators in 
eq.(21). In our case, the diagrams responsible are shown in Figures 4a and 4b, and they 
lead to the terms 

(26) 

and 

(27) 

respectively, where we have taken the cut-off to be A "'" M p1 and introduced the gravitino 
mass m3/2 "'" JM; / M pl· Here)' and k are the Higgs sector Yukawa couplings defined 
earlier. The third term in eq.(21) gives rise to a divergence at three-loop order as shown 
in Figure 4c and the calculation is a little more tricky. Using the perturbation theory 
rules of Ref. [12], quadratic divergences are indeed found to arise of the form 

N).2k 
(167f2)3 (¢N + ¢';,)Mp1mi/2 (28) 
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and 

(29) 


where we have replaced a quadratically divergent three loop integral with a cut-off, M;'l. 
All of these terms naturally drive the vev of the singlet (and hence of HI, H 2) to the 
hidden sector scale, {x} ~ vm3/2Mpl t'J 1011 GeV. If we wish to avoid the reappearance 

of the hierarchy problem, these terms should be smaller than (¢N + ¢'N)m~/2 ort'J t'J 

(FN + FN )m;/2. Even for the three loop diagram this requires 

)'" ~ 3 X 10-11 , (30) 

where we have taken m3/2 Mw. Clearly this bound is only approximate, since we dorv 

not know the precise values of the Yukawa couplings).. and k, which we have taken here to 
be of 0(1). However, it should also be borne in mind that one would like to have control 
over the scale of electroweak symmetry breaking. That is we do not wish the mass of the 
W to depend strongly on the (unknown) physics at the Planck scale, i.e. on N. In order 
to achieve this, the above bound should be tightened even further. 

The bound in eq.(30) is clearly incompatible with that in eq.(20) required for successful 
nucleosynthesis, and we conclude that the NMSSM at least in the models with 'minimal' 
Kahler potentials has either a domain wall problem or a hierarchy problem. 

A Solution to the Hierarchy Problem 

Is it possible that we can solve these problems by allowing the hidden and visible sectors 
to mix? In this section we shall see that the answer is yes for the destabilising divergences, 
but no for the naturalness problem. In other words, we are able to regain perturbative 
control over the scale of electroweak symmetry breaking, but we find, quite generally, that 
certain couplings must be set by hand initially to be small. This leads to a naturalness 
problem of at least one part in 109 • 

In order to eliminate destablising divergences, we must drop our insistence on mini­
mality in the Kahler potential, by allowing the hidden and visible sectors to mix. In this 
case, models similar to the NMSSM can be constructed. We use a mechanism similar to 
that in Ref.[3]' and find that models with (Standard Model) singlets can have naturally 
large N 2 , N3 and J..£ terms. 

The Giudice-Masiero mechanism [3] seeks to solve the J..£ problem for the MSSM by 
generating it via the Kahler potential. That is we have 

( (X) 2 1j(z) + g(y) 12 
zzt+ Mp/fHIH2+h.c. +Mpzln M~l (31) 

where the Yi fields belong to the visible sector, and the z singlet field belongs to the hidden 
sector. 9 is Kahler invariant. The label 'hidden' is justified when we take the "flat" limit 
M p1 -? 00 in the effective potential (keeping M: / M p1 fixed), and find that the z field, 
which acquires a vev of O(Mpl), decouples from the visible sector, apart from inducing 
soft supersymmetry breaking terms and a J..£ term proportional to (x, via gravitational 
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couplings. These are all of O(M; / M p1 ), where Ms is the aforementioned scale of super­
symmetry breaking in the hidden sector which we introduce by hand. Having introduced 
a new coupling between the visible and hidden sectors, we must invoke some symmetry 
which forbids other couplings as well as a coupling M p1H 1H 2 in the superpotential. This 
could be a Peccei-Quinn symmetry, a discrete symmetry, or a gauged or global R sym­
metry. In addition the presence of a new symmetry rules out the simplest version of the 
Polonyi model (which in view of its severe cosmological problems [24J might not be such 
a bad thing). 

For the next-to-minimal choice of Kahler potential above, the terms in the scalar 
potential are 

Yscalar = gill + m~/2Yiyi + mt [yigi + (A - 3)g(3) + (B - 2)m3/2JLHIH2 + h.c.] , (32) 

where g(3) are the trilinear terms of the superpotential, rescaled according to 

(33) 

Here 9 is the new low energy superpotential including the JL term 

9 = g(3) + JLHIH2' (34) 

and m3/2 is the gravitino mass 

(35) 

where the vev of 1(2) M;/Mp1 is set by hand such that Ms '"'" 1011 GeV. The JL term is 
given by 

(36) 

Applying the constraint of vanishing cosmological constant, the authors of Ref.[3J found 

(2A - 3)/(A 3) 

Ima(A - 3)/V31, (37) 


where A is the universal trilinear scalar coupling, A V3(z/M pl }. Now let us apply the 
same mechanism to a model with MSSM singlets, N. The most obvious extension is to 
choose the Kahler potential 

itt (a t a' t 2 ) . 2 11(z) g(y) 12g = Y Yi + ZZ + M Z HIH2 + M Z N + h.c. + Mplln M~, .' (38) 
pl p1 

where, in this case, I(Y) is the superpotential of the NMSSM. The hidden sector field, 
z, has the opposite charge to N under the Z3 symmetry so that the full theory is Z3­
invariant. In this case Z3 is broken spontaneously at the Planck .scale and the resulting 
domain walls are presumably removed during inflation. The low energy scalar potential 
IS 

- ~ ~i 2 i t [ iv.scalar - gig +m YiY +m Y gi (A - 3)g(3) + (B - 2)mJLH1H2 + (B - 2)mJL'N2 h.c.] , 
(39) 
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where 

(40) 


Notice that the low energy model has generally far more terms in its low energy lagrangian 
than the NMSSM. The latter (and the Z3 symmetry) is in fact recovered when we let 
a = a' = 0; thus we can break the Z3 symmetry by as much or as little as we like. 

Although this model has removed the problem of destabilising divergences (it is now 
no longer possible to write down any of the divergent tadpole diagrams), it does not quite 
solve the naturalness problem (i.e. the presence of small couplings unprotected by any 
symmetry), since there is still the coupling zN which is allowed under the Z3 symmetry, 
and which no other symmetry can forbid. These may be set to zero by hand and will stay 
zero by virtue of the nonrenormalization theorem. 

One might wonder if by somehow extending the Kahler potential it may be possible 
to exclude these terms. As we now show however, this is not the case, and no matter how 
complicated we make the Lagrangian, the naturalness problem associated with the absence 
of the zN couplings stays with us. Consider the most general supergravity Lagrangian, 
in which the only requirement we make is that the superpotential contains the terms 

(41) 

where a, b, c are indices representing some symmetry group (discrete or otherwise), and 
the couplings are holomorphic function of the hidden sector fields, ea za/Mpl . The 
breaking of Z3 symmetry in the visible sector by operators of dimension five, requires 
that we also include at least one of the operators, 

Aab(e, ()NaNb 

Aab(e, ()(H1H2}ab 

A~b(e, ()NaNbNtc 

A~b(e, ()(HIH2}abNtc 
Aabcd(e)NaNbNcNd 

Aabcd(ONaNb(HIH2)cd 

Aabcd (e)(H1H2)ab(HIH2)cd, (42) 

where the first four operators give dimension-5 operators if they appear in the Kahler 
potential or superpotential, but the last three operators must appear in the superpotential, 
hence their couplings are holomorphic functions of the hidden sector fields. If we make 
the assumption that the couplings kabc and ).abc are invertible, then corresponding to each 
of the operators above, there is an additional invariant operator which is some function 
of the hidden sector fields multiplied by Na . These are, respectively, 
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Atab (A-1)tabcN
c 

A~b(k-l )abd(k-1 )tcde Ne 

A~b(A-1 )abd(k-1)tcde Ne 

Aabcd(k- 1 )abe(k-1)cdAk-1 )tefgNg 
Aabcd( k-1 )abe( A-1 )cdf(k-1)tefgNg 
Aabcd( A-1 )abe( A-I )cd/(k-1 )tefgNg. (43) 

The least damage to the effective potential occurs if these terms appear in the Kahler 
potential, in which case we find terms of the form 

(44) 

appearing in the effective potentiaL Thus the natural scale of the singlet vev is f'V 1011 
GeV and since it should be less than the electroweak scale, this constitutes a naturalness 
problem of at least one part in 109 • 

7 Conclusions 

Before we conclude there are a few escape clauses which should be mentioned, none of 
which however are very appealing: 

1. 	The most obvious is to introduce the Jl term into the superpotential by the mech­
anism of Ref. [3] and simply set to zero all of the operators which might give N a 
large vev. (Although this appears to be rather unaesthetic, one might remark that 
the naturalness problem which results is no worse than that already with us due to 
the smallness of Ms compared to the Planck mass. Since the "unnaturalness" is of 
the same order, it may even be possible to construct the Kahler potential so that 
the two naturalness problems are connected.) 

2. 	 Alternatively one can invoke inflation at the weak scale to remove all the domain 
walls, just as has been suggested in the context of other unwanted relics, e.g. string 
moduli [25]. However such a scenario must be very finely tuned - the domain walls 
must be adequately diluted without erasing the density perturbations generated by 
inflation at the GUT scale [26]). (Although density perturbations are also generated 
during weak scale inflation, the small value of the Hubble parameter would make 
these too small to account for the microwave background anisotropies observed by 
COBE.) Secondly, the reheat temperature must be high enough for both successful 
baryogenesis and nucleosynthesis. We are not aware of any obvious candidate for 
the required scalar field. 

3. 	The Z3 symmetry could be broken at a high scale, Mcontriued, in the visible sector 
and explicit Z3 breaking terms induced. This is similar to the solution to the hier­
archy problem discussed earlier, with the "advantage" that the fine tuning is driven 
by Mcontriued rather than M Pl . However this will still entail a fine tuning of approx­
imately one part in 1012

, since in order for the walls to be inflated away, Mcontriued 

should exceed the inflationary scale of f'V 1014 GeV as deduced from normalisation 
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to the COBE data [26]. Otherwise one would have to invoke a second epoch of 
inflation at an intermediate scale, with its own attendant problems (see above). 

4. 	 The Z3 symmetry could be made anomalous by adding extra fields to the theory 
which couple to SU(3)c (for example an additional generation). In this case the 
symmetry is broken non-perturbatively at the quark-hadron phase transition, and 
the walls collapse very soon thereafter [27]. However, it is difficult to see how this 
constitutes a solution to fine-tuning, since at the same time it seems to preclude a 
solution to the strong CP problem as discussed in Ref.[27]. 

5. 	 The Z3 symmetry could be embedded in a continuous gauge or global group which is 
broken at some high scale. This is the Lazarides-Shafi mechanism [29], in which the 
apparent discrete symmetry is a subgroup of the centre of the continuous group. In 
this case only U(1), SU(3n) (where n is an integer) and E6 are suitable candidates 
(see for example Ref.[28]). After the electroweak phase transition, one expects only 
a network of walls bounded by strings to form and then quickly collapse [29]. 

To summarize, we have shown that the domain wall problem in the NMSSM causes 
it to be ruled out on cosmological grounds unless we break the Z3 symmetry of the 
model explicitly. The breaking may be driven by terms which are non-renormalisable 
and have no direct effect on the low energy theory. However their introduction will in 
general generate terms which destabilise the hierarchy. In models with "minimal" Kahler 
potentials, we have shown that there are no non-renormalisable operators which can be 
added to the superpotential with a coefficient which is simultaneously large enough to 
solve the cosmological problem and small enough to avoid reintroducing the hierarchy 
problem. Furthermore, if any of these operators are allowed by the symmetries of the 
theory at the supergravity scale, then there is no possible symmetry which could prevent 
the existence of an operator zN in the superpotential whose coefficient must be ;;'10-17 • 

If we allow mixing between the hidden and visible sectors, the reintroduction of the 
hierarchy problem can be avoided, and the naturalness problem can be formulated in a 
way very similar to the jJ, problem in the MSSM. However, even here we must arbitrarily 
select coefficients of certain dangerous operators to be of 0(10-9) or less once we have 
aranged for a jJ, parameter of a reasonable size, and we have also reintroduced the jJ, 

problem which the model was at least partly designed to solve. Thus we conclude that 
the parameters in the NMSSM must be very strongly fine tuned if we wish to avoid both 
the cosmological problems associated with domain walls and the hierarchy problem, and 
hence that the model suffers from severe naturalness problems. 

Acknowledgements: We would like to thank Graham Ross for encouraging 
us to undertake this study and for many discussions. We are also grateful to H. Dreiner, 
U. Ellwanger, E.W. Kolb and M. Rausch de Traubenberg for their criticism and comments, 
and especially to J. Bagger for discussions concerning destabilising divergences. 

14 




References 

[1] 	 For reviews see, H.P. Nilles, Phys. Rep. 110 (1984) 1; 
H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75. 

[2] 	 L. Hall, J. Lykken and S. Weinberg, Phys. Rev. D27 (1983) 2359; 
J.E. 	Kim and H.P. Nilles, Phys. Lett. B138 (1984) 150; 
K. Inoue, A. Kakuto and T. Takano, Prog. Theor. Phys. 75 (1986) 664; 
A.A. Ansel'm and A.A. Johansen, Phys. Lett. B200 (1988) 331 

[3J 	 G. Giudice and A. Masiero, Phys. Lett. B206 (1988) 480 

[4] 	 P. Fayet, Nucl. Phys. B90 (1975) 104; 

H.-P. Nilles, M. Srednicki and D. Wyler, Phys. Lett.B120 (1983) 346; 

J.-M. Frere, D. R T. Jones and S. Raby, Nucl. Phys. B222 (1983) 11; 

J.-P. Derendinger and C. A. Savoy, Nucl. Phys. B237 (1984) 307; 

L. Durand and J. L. Lopez, Phys. Lett. B217 (1989) 463; 
M. 	Drees, Intern. J. Mod. Phys. A4 (1989) 3645; 
J. Ellis, J. Gunion, H. Haber, L. Roszkowski and F. Zwirner, Phys. Rev. D39 (1989) 844 

[5] 	 J. Espinosa and M. Quiros, Phys. Lett. B279 (1992) 92; ibidB302 (1993) 51 
U. Ellwanger and M. Lindner, Phys. Lett. B301 (1993) 365; 
U. Ellwanger and M. Rausch de Traubenberg, Z Phys C53 (1992) 521; 
U. Ellwanger, Phys. Lett. B303 (1993) 271; 
G. Kane, C. Kolda and J. Wells, Phys. Rev. Lett. 70 (1993) 2686; 
T. Elliott, S.F. King and P.L. White, Phys. Lett. B305 (1993) 71; ibidB314 (1993) 56; 
P.N. Pandita, Phys. Lett. B318 (1993) 338; Z Phys C59 (1993) 575; 
T. Elliott, S.F. King and P.L. White, Phys. Rev. D49 (1994) 2435; 
U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, hep-ph/9502206; 
F. Franke and H. Fraas, Phys. Lett. B336 (1994) 415; hep-ph/950427 

[6] 	 B.R Greene and P.J. Miron, Phys. Lett. B168 (1986) 226; 

RA. Flores, K. Olive and D. Thomas, Phys. Lett. B263 (1991) 425; 

K. 	Olive and D. Thomas, Nucl. Phys. B335 (1991) 192; 
S.A. Abel, S. Sarkar and I.B. Whittingham, Nucl. Phys. B392 (1993) 83 

[7] 	 Ya.B. Zel'dovich, I.Yu. Kobzarev and L.B. Okun, Sov. Phys. JETP 40 (1975) 1 

[8] 	 T.W.B. Kibble, J. Phys. A9 (1976) 1387; Phys. Rep. 67 (1980) 183 

[9] 	 A. Vilenkin, Phys. Rep. 121 (1985) 263; 
A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge 
University Press, 1994) 

[10] 	 B. Holdom, Phys. Rev. D28 (1983) 1419; 
B. Rai and G. Senjanovic, Phys. Rev. D49 (1994) 2729 

[11] 	 J. Ellis, K. Enqvist, D. V. Nanopoulos, K. Olive, M. Quiros and F. Zwirner, Phys. Lett. 
B176 (1986) 403 

[12] 	 U. Ellwanger, Phys. Lett. B133 (1983) 187; 
J. Bagger and E. Poppitz, Phys. Rev. Lett. 71 (1993) 2380; 
J. Bagger, Poppitz and L. Randall, hep-ph/9505244; 
V. Jain, hep-ph/9407382 

15 



[13] 	 S.A. Abel and P.L. White, hep-phj9505241 

(14] 	 U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phys. Lett. B315 (1993) 331; 
hep-phj9502206; 
Ph. Brax, U. Ellwanger and C.A. Savoy, Phys. Lett. B347 (1995) 269; 
T. Elliott, S.F. King and P.L. White, Phys. Lett. B351 (1995) 213; 
S.F. King and P.L. White, hep-phj9505326 

[15] 	 H. Hodges, Phys. Rev. D39 (1989) 3557 

[16] 	 D. Stauffer, Phys. Rep. 54 (1979) 1; 
B. Lorenz, 1. Orgzall and H.-O. Heuer, J. Phys. A26 (1993) 4711 

[17] 	 S. Fliigge, Practical Quantum Mechanics (Springer Verlag, 1971) 

[18] 	 L. Kawano, Phys. Rev. D41 (1990) 1013 

[19] 	 W.H. Press, B.S. Ryden and D.N. Spergel, Astrophys. J. 347 (1989) 590; ibid357 (1990) 
293 

(20] 	 D. Seckel, Inner Space-Outer Space, eds. E.W. Kolb et al(University of Chicago Press, 
1986) p 367 

[21] 	 L.P. Grischuk and Ya.B. Zeldovich, Sov. Astron. 22 (1978) 125 

[22] 	 J. Ellis et ai, Nuc!. Phys. B373 (1992) 399; 
W. Hu and J. Silk, Phys. Rev. Lett. 70 (1993) 2661; 
S. Sarkar, Oxford preprint OUTP-95-16P (submitted to Rep. Prog. Phys.) 

[23] 	 M.H. Reno and D. Seckel, Phys. Rev. D37 (1988) 3441; 
S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G.D. Starkman, Nuc!. Phys. B3ll (1989) 
699 

[24] 	 G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Phys. Lett. B131 (1983) 
59 

(25] 	 L. Randall and S. Thomas, hep-phj9407248; 
D.H. Lyth and E.D. Stewart, hep-phj9502417 

[26] 	 K.A. Olive, Phys. Rep. 190 (1990) 307; 
A. Liddle and D. Lyth, Phys. Rep. 231 (1993) 1. 

[27] 	 J. Preskill, S.P. Trivedi, F. Wilczek and M.B. Wise, Nucl. Phys. B363 (1991) 207 

[28] 	 J.E. Kim,Phys. Rep. 150 (1987) 1 

[29] 	 G. Lazarides and Q. Shafi, Phys. Lett. B1l5 (1982) 21; 
S.M. Barr, D.B. Reiss and A. Zee, Phys. Lett. B1l6 (1982) 227 

16 




Figure Captions 

Figure la,b 
An example of a wall configuration with the singlet vev x = 10v. Here we have cho­
sen tan,B = 2, A = k = 0.2, Ak = AA = 200 GeV. The total surface energy density 
is 8.6 x 108 GeV3 

. Figure 1a shows the values of the three scalar fields as a function of 
position while Figure 1b shows the energy density in the wall relative to the vacuum. 

Figure 2 
The function f(T) (see eq.12) related to friction. 

Figure 3 
A typical example of the evolution of the wall network with a pressure term of order 
(J'Mar / Mp1• The figure shows the wall network at four epochs separated by an interval of 
10-10 sec, beginning at the time when pressure starts to dominate the evolution. 

Figure 4a,b,c 
The three dangerous diagrams for each of the three operators which can destabilise the 
hierarchy. 
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