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A GUIDE TO CRITICAL SCATTERING MEASUREMENTS 


USING TIME OF FLIGHT NEUTRON DIFFRACTION 


M. Hagen and S. J. Payne 

Department of Physics, Keele University, Staffordshire, ST5 5EG, U.K. 

and 

ISIS Facility, Rutherford Appleton Laboratory, Chilton 

Didcot, Oxfordshire OXll OQX 

Abstract 

A description is given of how the time of flight neutron diffraction 

technique can be used to measure critical scattering at magnetic 

or structural phase transitions. This includes discussions of sample 

mounting requirements, actual scan geometries and data analysis 

methods. Also included are warnings about problems such as pri­

mary extinction and multiple scattering which can effect this type 

of experiment. 
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1 Introduction 

1.1 The Guide 

This guide outlines the background knowledge that is required to carry out a time of 

flight critical scattering measurement. It cannot, of course, cover all possible experiments 

that can be conceived but we hope it will prove useful to people in flagging many of the 

things that need to be thought about for such an experiment. We don't intend to review 

in detail the current theory of critical phenomena or for that matter the relationship 

between neutron scattering and critical phenomena. The reader who would like more 

background information on these subjects might like to refer to the texts by Yeomans [1], 

Collins [2] and Cowley [3]. Instead we will concentrate on the practicalities of performing 

a critical scattering measurement by the time of flight technique. 

The rest of this first section of the guide gives a brief overview of the features in 

critical phenomena that can be obtained by neutron scattering techniques. Section 2 

sets out the notation and theory for time of flight diffraction from single crystal samples. 

Section 3 highlights areas that need to be considered when planning an experiment. The 

performance of the experiment itself is discussed in sections 4 (Bragg peak intensity 

measurements) and 5 (critical scattering). Finally section 6 contains a brief summary. 

1.2 Critical Phenomena, Phase Transitions and Order 

The term critical phenomena refers to the behaviour of systems close to a phase transition 

from one state to another. Quite often these two states are an ordered and a dis-ordered 
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state (eg. an anti-ferromagnetic and a paramagnetic state). If the transition is a contin­

uous one then the driving force behind the transition is the growth of short range order 

(fluctuating microregions) as the transition is approached [1]. The average size of these 

short lived fluctuating microregions is known as the correlation length, t, and it is these 

regions which give rise to the critical scattering which can be observed around the transi­

tion temperature [2]. By measuring this critical scattering with neutrons it is possible to 

extract values for the correlation length and susceptibility as a function oftemperature [3]. 

The intrinsic lineshape S( q) of the critical scattering is often a Lorentzian or Lorentzian 

squared form such as ; 

S(q) = XL( q) + X' [L( q)]2 (1) 

where 

1 

L(q) = ( 0) 2 ( 0) 2 2 
(2) 

1 + qL ~ qL + qT ~ qT + (!~) 

and the experimentally measured intensity is the convolution of this critical scattering 

lineshape with the instrumental resolution function. If a non-linear least squares fitting 

method is used to fit the measured intensity (see section( 5.6)) then the HWHM values 

of the critical scattering lineshape(s) can be extracted. These HWHM values, which are 

usually refered to by the symbol K, (with appropriate subscripts if necessary), are known 

as the inverse correlation length(s) and are related to the correlation length(s) by the 

equation K, = 27rIe. The temperature dependence of K, is described by a power law form 

given by ; 

(3) 
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where v is the critical exponent, /\'0 is the critical amplitude and t is the reduced tem­

perature given by t = IT Tel/Te, where Te is the critical temperature and T is the 

temperature of the sample. 

In addition to the /\, values, the amplitUde of the critical scattering can also be obtained 

from the lineshape fitting. The amplitude is related to the susceptibility X of the material 

which can also be described by a power law given by 

(4) 

where I is the critical exponent and XO is the critical amplitude. 

Apart from studying the behaviour of the critical scattering with neutrons it is also 

possible to study the behaviour of structural or magnetic Bragg peaks below the critical 

temperature. If the relevant Bragg peak occurs because of the long range order below the 

transition temperature then it is usually related to the square of the order parameter for 

that phase. Consequently it also follows a simple power law of the form 

(5) 

where f3 is the critical exponent and I is the intensity of the Bragg peak. 

There are other external parameters, apart from temperature, that can be altered to 

cause a phase transition. In a magnetic material, for example, a transition can occur 

when an external magnetic field is applied to an antiferromagnet. If the field is large 

enough it is possible to reverse the orientation of the magnetic moments anti parallel to 

the field, thereby destroying the long range antiferromagnetic order and creating long 

range ferromagnetic order. In ferroelectric materials a phase transition can be induced by 
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the application of an electric field to polarise the material. These are just a few of the many 

possible phase transitions that can be investigated. It is also the case that transitions do 

not have to happen in a continuous manner) transitions can be discontinuous. In this 

case instead of falling steadily to zero, the magnetisation in a ferromagnet could change 

precipitously from a non-zero value to zero. In all of these cases neutron scattering can 

play an important role by measuring the size of the correlations and the value of the order 

parameter as a function of temperature. 
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2 Time of Flight Techniques 

2.1 Introduction 

In the following sections we describe how time of flight techniques can be employed to 

carry out neutron diffraction measurements from single crystal samples. The formalism 

which we use to describe this process is different to that used by crystallographers when 

discussing single crystal diffraction and is much more closely related to inelastic neutron 

scattering. This is because critical scattering measurements have tended in the past to be 

carried out by people whose training has been in inelastic scattering. Since we ourselves 

have followed such a training we make no apology for sticking to this notation. 

2.2 The Time of Flight Neutron Diffraction Technique for Single Crystals 

At a spallation neutron source the neutrons are produced in pulses and the wavelengths 

/ energies of the neutrons are determined by time of flight methods. For neutron diffraction 

it is usual to use a "white beam" technique where all of the wavelengths/energies in the 

incident pulse are allowed to scatter from the sample. Using this wavelength/energy 

dispersive technique it is possible to perform a radial scan in reciprocal space with a 

single detector. In the following two sections we describe how this technique can be used 

for measurements on single crystal samples. Initially we consider the case of just a single 

detector and then the use of a multi-detector. 

8 




2.2.1 A Single Detector Scan 

The situation involving only one detector is as shown in figure( 1). As the moderated 

neutrons travel towards the sample from the spallation source target the neutron pulse 

disperses because of the different neutron energies (and hence velocities) within the pulse. 

The incident neutrons with wavevectors ki 211"1'\) will be scattered from the sample 

at various angles. For example the neutrons scattered at an angle rP are recorded in the 

detector labelled D in figure( 1) with a wavevector kf . In the case of elastic scattering 

where no energy is transferred to the crystal then ki = = k and k can be found throughkf 

de Broglies relation for the momentum, p = mNv = fik. The velocity of the neutrons is 

given by v = LIT, where L is the distance from the moderator to the detector and T is 

the time taken for the neutrons to travel this distance. Therefore k is given by 

k = mNL (6)
fiT 

Hence by recording the neutrons entering the detector as a function of their flight time 

T, it is possible to calculate the wavevector k for each neutron detected. 

The wavevector (momentum) transferred from the neutron to the sample in the scat­

tering process is given by 

(7) 

This vector equation can be represented as a scattering triangle constructed in reciprocal 

space as shown in figure( 2) where the magnitude of Q is given by: 

Q 2k sin lfl (8)
2 
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Neutron source 


Detector 

Sample 


Figure 1: A schematic diagram is shown of the geometry used for single detector white 

beam neutron diffraction. The white beam pulse of neutrons travels down from the 

moderator to the sample where it is scattered. Those neutrons scattered at an angle cp to 

the incident beam are measured in the detector D 
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-kr 

k·I 

Figure 2: The path followed in reciprocal space by the scan performed by a single detector 

in the white beam neutron diffraction technique is shown. At each time step a vector 

triangle can be drawn following equations( 6), ( 7) and ( 8). 
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Since </1 is fixed for this detector Q varies with k according to equation( 8) and k varies 

with T according to equation( 6). Hence the length of Q is effectively scanned along a 

radial path in reciprocal space as a function of the flight time T. 

The white beam time of flight technique using a single detector therefore performs 

a radial scan in reciprocal space for a single setting of the sample rotation angle wand 

detector scattering angle </1. If the sample is rotated to an angle w+ ow and the detector 

left at angle </1 then the new radial scan in reciprocal space is at an angle of ow to the 

originaL It is therefore possible to map out a region of reciprocal space by stepping the 

sample rotation angle (a rocking curve) and at each step performing a white beam time of 

flight scan. This type of measurement is often used to measure a Bragg peak where quite 

fine steps in ware required. Alternatively if the sample rotation angle is kept fixed and 

the detector angle changed by 0</1 then the radial scan in reciprocal space is at an angle of 

0</1 /2 to the original. Although this type of scan, stepping </1, could also be used to map 

out a Bragg peak it has not been used in practice. If the wand </1 angles are varied in the 

ratio ow: 0</1 = 1 : 2 then the direction of the radial scan in reciprocal space remains 

unchanged. However the neutron energy/wavelength at which a Bragg peak (or any other 

feature) on the radial scan is measured will change. This can be a useful scan to check if a 

Bragg peak (or any other feature) is sensitive to a particular neutron energy/wavelength 

(cf. section( 5.5)). 
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2.2.2 Multi-Detector Scans 

As discussed in the previous section the spectrum measured by a single detector in white 

beam time of flight diffraction is equivalent to a radial scan in reciprocal space. If however 

instead of using one detector a multi-detector (d. figure( 3)) is used then a "fan" of radial 

scans is measured in reciprocal space (d. figure( 4)). 

On the PRISMA spectrometer at ISIS the multi-detector has a total of 16 available 

detectors. Clearly measuring 16 radial scans in parallel gives a much higher count rate 

than measuring a single radial scan. However it is not always the case that all 16 detectors 

can be used. There are a number of points which can restrict the number of "useful" 

detectors to fewer than 16, perhaps even just to 1. 

If the angular separation of detectors is 15<fy then the separation of the radial "spokes" 

of the scans in reciprocal space is 15<fy/2. In practice it is difficult to have 15<fy less than 10 in 

a multi-detector of helium tubes and so the separation of the spokes in reciprocal space 

is 1/20 This is usually a much too coarse step to use for a Bragg peak rocking curve. • 

In fact a Bragg peak rocking curve is usually done with a single detector as discussed in 

section( 2.2.1). Although critical scattering is much broader in reciprocal space than a 

Bragg peak this may also still be too large a "rocking curve step". In this circumstance the 

sample rotation angle can be stepped to interleave the fans of radial spokes in reciprocal 

space to build up a grid of radial scans with suitably narrow angular steps between them 

in reciprocal space. 

Another effect which can limit how many detectors can be effectively used comes about 
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Figure 3: A schematic diagram is shown of the geometry used for multi-detector white 

beam neutron diffraction. 
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Figure 4: The fan of radial scans in reciprocal space generated by using a multi-detector 

in a white beam time of flight diffraction measurement is shown. 
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because the detectors are at slightly different tjJ angles. Consequently the same IQI is 

measured in different detectors with different incident neutron energies. This means that 

the resolution and energy integration (see section( 5.3)) conditions differ from detector 

to detector. Although such a variation will be accounted for in the data normalisation 

and analysis one generally doesn't want this variation to be too large. The range of 

such a variation, and how acceptable such a variation is, will depend upon the specific 

experimental circumstances but it is quite conceivable that as a consequence one may not 

wish to use all 16 detectors but only a fraction of them because of this. 

Although it may not always be possible to take full advantage of all of the detectors in 

a multi-detector, the use of even only a fraction of them leads to a greatly increased count 

rate and the ability to quickly map out the contours of critical scattering at a particular 

temperature. 
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3 Experimental Preparation 

3.1 Introduction 

There are basically two things that need to be considered/done before starting a critical 

scattering experiment. The first is to mount the crystal ready for the experiment and 

the second is to consider what neutron energy to use for the experiment. Since good 

temperature control/stability is essential in a critical scattering experiment the sample 

mount/environment must take this into account. In section( 3.2) we briefly describe our 

approach to this problem using a sample can. As a corollary to this, although it isn't 

a preparation, in section( 3.3) we briefly describe how the samples temperature stability 

can be assessed. The choice of what neutron energy to use depends on many factors, some 

of which it is more appropriate to include in later sections rather than here. However one 

of the major factors in choosing the energy is that there should be a sufficiently good 

wavevector resolution to resolve the width of the critical scattering precisely enough. In 

section( 3.4) we discuss how calculations of the resolution widths can be carried out. 

3.2 Sample Preparation 

Temperature stability is essential when performing critical scattering measurements and 

to help ensure this stability we have normally mounted the sample inside a purpose made 

aluminium sample can filled with helium exchange gas. A sketch of the can we have 

used is shown in figure( 5). It is made solely from aluminium and comes in two parts, 

the body and the base. The circular base and the body have around their circumference 
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Figure 5: A sketch is shown of the aluminium can used to hold the sample during the 

critical scattering measurements. 
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8 (untapped) holes which allow the two halves to be bolted together. In the centre of 

the base is a location hole into which can be inserted an aluminium peg which holds the 

sample. The top of the body has an 8mm thread tapped into it to allow attachment to a 

closed cycle refidgerator. 

Although we have always mounted our samples using an aluminium peg this is not the 

only method available. However the general precautions we outline in the following for 

masking the peg we have used for mounting apply equally well to any form of mount. The 

peg is usually preshaped to fit the contours of the pre-oriented sample which is attached 

by means of an adhesive such as Kwik-Fill or by placing a thin aluminium strap around 

the sample which can be bolted through the peg. The peg is then inserted into the base of 

the can and fixed in position by means of a small grub screw. Before the can is assembled 

the aluminium peg is masked off from the neutron beam using a combination of thin 

cadmium sheets and gadolinium foil to eliminate the aluminium powder lines that can 

result. If Gd foil is used it is normally held in place with thin wire. If glue or Kwik-Fill is 

used it is essential to cover it using Cd/Gd sheet/foil or gadolinium based paint. It needs 

to be remembered that critical scattering is considerably weaker than Bragg scattering 

and the incoherent scattering from hydrogen in glues must be avoided at all costs. 

As noted earlier, to ensure that the sample will be in good thermal contact with its 

surroundings the sample can is filled with helium gas to act as a temperature exchange 

medium. This is achieved by assembling the sample can inside a glove bag containing a 

helium gas atmosphere. To seal the helium gas inside the can indium wire is used as a 

"gasket" between the base and the body. This wire flattens out as the bolts are tightened 
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to form the seal. 

Finally, there is a resistance thermometer mounted in the body of the can which is used 

to measure the temperature of the exchange gas and hence indirectly the temperature of 

the sample. 

3.3 Temperature Control, Monitoring and Analysis' 

The ISIS instruments all create/maintain .LOG files for the sample environment blocks 

during instrument runs. While a particular run is in progress this file is stored in the 

INST~ATA directory and is called INST.LOG. When a run has been completed this 

INST.LOG file is renamed to a filename of the form PRS10153.LOG, the 1st 3 letters are 

the instrument name and the 5 numbers are the relevant run number. In order for the 

sample temperature(s) to be stored in the .LOG file it is necessary to use a command of 

the form CSET TEMP/LOG (note the name TEMP can be replaced with either TEMP1 

or LAKES on PRISMA). A detailed description of this command is given in section(2.11) 

of the PRISMA Operating Program Manual [7]. 

If the temperature values have been (are being) recorded in a .LOG file then they 

can be accessed with one of the GENIE macros TP, TPC or AT. These are described 

in detail in section(7) of the PRISMA GENIE Data Analysis Manual [7]. The TPC and 

TP commands allow GENIE to plot a graph of temperature against time during the 

run. TPC is used for the the current run and TP is used for a run that has already 

been completed. The AT command calculates the mean and standard deviation for the 

temperatures recorded in a .LOG file. The output from these commands can therefore be 
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used to assess and quantify the temperature stability during a run. 

3.4 Resolution Considerations 

The width in reciprocal space of the measured intensity in a critical scattering experiment 

comes from two sources, the width of the intrinsic critical scattering lineshape itself ( which 

is rv 2K ) and the resolution width of the neutron diffractometer. The resolution function 

for a time of flight'diffractometer has been discussed in detail in appendix B of ref. [4] 

and we will not repeat it here. The relevant point is that in order to measure statistically 

accurate values for K, the width of the resolution function (due to the diffractometer) 

must be comparable in size to the K values. Since K is strongly temperature dependent 

(d. equation( 3) ), going to zero at Tel this condition can't hold true at all temperatures. In 

effect the resolution width of the diffractometer dictates how close in reduced temperature 

t one can get to the transition temperature. Since the power law relations ( equations 

( 3), ( 4) and ( 5) ) will only hold true for t small [1, 2] one certainly wishes to make 

accurate measurements of K in this small t limit. Obviously it is difficult to give a precise 

indication of what constitutes t small and also good (narrow) resolution since these will 

depend upon experimental circumstances. However one would hope to get to t 0.001rv 

or better and to have the resolution width not much bigger than rv 5x the smallest value 

of K. 

The major factors effecting the resolution width of the spectrometer are the energy of 

the incident neutrons Ei and the angular divergence of the Soller collimation. It is possible 

to calculate resolution widths (and to get contour maps of the resolution function) using 
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the PRSCAL program. Details on the various commands to do this are given in section 

9 of the "The PRSCAL Manual" [7]. 

The trend of the resolution function is that for smaller values of Ei and the angular 

divergence of the collimation the narrower (better) the resolution width. However the 

choice of Ei is influenced by other criteria as well, notably Ei must be large enough to 

satisfy the quasi-static approximation (section( 5.3)). As a consequence there will always 

have to be a compromise between resolution and the quasi-static approximation in the 

choice of Ei . A facet of the time of flight technique which can be useful in this case 

is that it is easy in the data analysis to merge data taken with different Ei values and 

consequently different wavevector regions of the critical scattering can be measured with 

different Ei values. In general one needs good wavevector resolution for small reduced 

wavevectors where the quasi-static approximation can be satisfied by smaller values of Ei 

and one doesn't need such good wavevector resolution at large reduced wavevectors where 

one needs larger Ei values to ensure that the quasi-static approximation is satisfied. 

Although PRSCAL can calculate the resolution widths one should remember that 

this is only a calculation and one should certainly measure the resolution widths for the 

spectrometer during an experiment. This can be done by scanning one or (preferably) 

more Bragg peaks in the crystal at one (or more) value(s) of Ei • This should be done in 

the radial (time of flight), transverse (rocking curve) and out of plane (tilt) directions. 

These measured widths can then be compared with those predicted by PRSCAL and a 

complete set of resolution function parameters determined. We have usually found that 

we have been able to get good agreement between PRSCAL and experiment simply by 
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varying the value of the sample mosaic spread parameter. When measuring these Bragg 

peak widths to determine the resolution function it is important to avoid the effects of 

detector saturation and extinction (see sections ( 4.2) and ( 4.3) ). 
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4 Bragg Peak Intensity Measurements 

4.1 Introduction 

If a Bragg peak in a crystal is specifically associated with the long range order corre­

sponding to a particular phase then the intensity of that Bragg peak as a function of 

temperature is usually given by equation( 5). This intensity against reduced tempera­

ture relation arises because the Bragg peak is proportional to the square of the order 

parameter. As an example, for an anti-ferromagnet the order parameter is the staggered 

magnetisation which is given by 

M = Motf3 (9) 

and the Bragg peak intensity is given by I ex M2 [2, 3]. Therefore it is in principle 

possible to measure the critical exponent f3 simply by measuring the intensity of the 

Bragg peak as a function of temperature. In practice however there are difficulties with 

such a measurement that mean that f3 ends up being the least reliable of the critical 

exponents that can be measured with neutrons. We describe in the following sections 

what these problems/difficulties are and what (if anything) can be done about them. In 

the rest of this introduction however we'll briefly describe how the Bragg peak intensity 

can be measured. 

The rocking curve width of a Bragg peak is usually too narrow for there to be any 

advantage in measurIng it with a multi-detector arrangement. Instead we have used a 

single detector and performed a rocking curve of the Bragg peak. A specific scattering 

angle <p is chosen and the sample rotation angle is stepped through its Bragg peak value, 
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going far enough on either side to reach background. This scan is usually carried out by an 

SC command (see section(2.4) of the PRISMA Operating Program Manual [7]). At each 

step of the scan a radial time of flight spectrum is taken. This is repeated for a series of 

temperatures just below Tc and between each temperature a suitable equilibriation time. 

is allowed. 

The measured spectra in each rocking curve scan can be processed using the AA com.:. 

mand (see section( 4.4) of the PRISMA GENIE Data Analysis Manual [7]). A "narrow" 

time of flight window around the flight time corresponding to the Bragg peak is chosen 

and the time of flight spectra in each step integrated over this window. The output from 

AA is a rocking curve of integrated counts vs sample rotation angle. This curve can either 

be directly integrated or (better) fitted (see the FF function described in section(8.1) of 

ref. [7)) to obtain the total integrated intensity (integrated over both ToF and angle) for 

the Bragg peak. 

These integrated intensities can then be fitted to equation( 5) over a suitable range of 

reduced temperature to obtain the f3 exponent. 

4.2 Detector Saturation 

All neutron scattering detectors have a "dead time" effect, when a neutron is counted in 

the detector there is a period of time after the detector has "counted" during which it 

cannot count again. Consequently any neutrons arriving at the detector during this dead 

time will be "lost". For a He gas detector this time is rv 10 -1 30ps, which is comparable 

the width of a Bragg peak measured in time of flight. At a spallation source the neutrons 
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are produced in pulses and their flight time is measured during a "frame" between two 

pulses. At ISIS the latter is 20 milliseconds long and there are 50 frames per second. 

Thus if the intensity measured in a particular Bragg peak exceeds an average rate of 1 

count/frame (50 counts/second) then there is a danger that the measured count rate is not 

the "true" count rate and hence the nominal Bragg peak intensity will be incorrect. Note 

this does not mean that there must only be 1 count/frame (50 counts/second) in total in 

a frame, there can be many Bragg peak orders etc. in a 20ms frame. Instead it means 

that within the time window corresponding to the Bragg peak of interest the intensity 

should not exceed 1 count/frame. Since by definition this intensity goes to zero at Tc 

one can always simply raise the temperature to achieve this condition. Alternatively (a 

better solution is that) one can attenuate either the incident or scattered neutron beams 

to reduce the Bragg intensity to a suitable level. 

4.3 The Effect of Primary Extinction 

The effect of detector saturation could lead to the measured Bragg peak intensity being 

"incorrect" and primary extinction can cause a similar distortion. However whereas de­

tector saturation can be easily remedied with an attenuator primary extinction cannot (if 

at all) be easily remedied. A full description of primary extinction is given in chapter(3) 

of Bacon [8]. In short, if the intrinsic scattering strength of a Bragg peak is large then it is 

possible for all the neutrons in the incident beam that can be scattered by the crystal to be 

scattered by only a fraction of the volume of the single crystal sample. As a consequence 

the measured intensity will not reflect the scattering from the full volume of the crystal. 
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This is a very serious effect for a measurement of /3 because the primary extinction is 

strongly temperature dependent. Close to Tc the order parameter/Bragg peak is weak 

and there is little (if any) extinction, but on cooling, as the order parameter/Bragg peak 

grows so will the effect of the extinction increase. Consequently the measured Bragg peak 

intensity will not directly reflect the square of the order parameter but will be attenuated 

by an unknown and temperature dependent factor due to the primary extinction. 

There are various possibilities one can try to overcome or quantify the effect of primary 

extinction. The degree of extinction depends upon the strength of the Bragg peak and the 

energy of the incident neutrons. One can "reduce" the strength of the Bragg peak either 

by means of working with an intrinsically weaker Bragg peak or working closer to the 

transition temperature (where the order parameter is small). An analysis of the primary 

extinction factor shows (see Bacon chapter(3) [8]) that its degree varies with the inverse 

of the incident neutron energy. Thus one could work with high neutron energies to avoid 

primary extinction. However as will be seen in sections( 5.5) and ( 4.4) there are reasons 

not to use high neutron energies. In practice one would be well advised to measure more 

than one Bragg peak and with different incident neutron energies in order to get a handle 

on how much primary extinction is effecting the measured /3 value. 

There is a special case where one may "luckily" avoid primary extinction. If the 

material in question is absorbing then the penetration depth of the neutron beam into 

the crystal may be small enough that there is never any primary extinction effect. Of 

course, in an absorbing material one won't see much of a scattered intensity for the Bragg 

peak anyway so this isn't much of an advantage. 

27 



4.4 Contamination by Critical Scattering 

At temperatures below Tc the scattering around a Bragg peak position comes from two 

components (cf. equation( 13) in section( 5.2) )the Bragg peak and the critical scattering. 

At temperatures well below Tc the Bragg peak is very strong and the critical scattering 

weak so that the integrated intensity measured in a rocking curve is predominantly due 

to the Bragg peak. However close to Tc this is not necessarily so since the Bragg peak has 

become weak (it goes to zero at Tc) and the critical scattering is growing (its amplitude 

diverges at Tc). What one observes for the integrated intensity against temperature is an 

S-type curve, an example of which is shown in figure( 6). Well below Tc the high intensity 

is due to the Bragg peak. This intensity falls with increasing temperature but does not 

go to zero at Tc but instead there is a tail due to the critical scattering extending above 

Te. The problem is, for the data points just below Te how much intensity is due to the 

Bragg scattering and how much is due to critical scattering. One cannot include data 

points dose to Tc when fitting to equation( 5) because of this problem. In effect there is a 

temperature range just below Tc which is "forbidden" in determining f3 from from Bragg 

peak intensity measurements. 

The factor that governs the size of this forbidden temperature range and hence the 

extraction of the f3 exponent is the size of the resolution volume. This can be seen by 

considering how the mea.sured intensity at the middle of the Bragg peak rocking curve 

is obtained. Since the Bragg peak is a sharp function (in principle a 5-function) it just 

projects out the height of the resolution function. However because the critical scattering 
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Figure 6: The integrated intensity at the (1,0,1) antiferromagnetic Bragg peak position 

in FeC03 is shown as a function of temperature. The solid line is the result of a fit to 

equation( 5) for data well below the transition temperature. 
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is broad it is integrated over the volume of the resolution function. If we increase the 

resolution function volume we will increase the critical scattering contribution but not 

change the Bragg peak contribution. Thus the better (smaller) the resolution function 

volume the better is the rejection of the critical scattering contribution to the integrated 

intensity. 

Therefore in order to reduce the contamination of the integrated intensity by critical 

scattering close to Tc one would like to work with small Ei values to reduce the resolution 

function volume. 

4.5 Summary The Ei Compromise 

From the preceding sections it should be clear that there are contradicting requirements 

for the best value of Ei to measure the integrated Bragg intensity. To avoid primary 

extinction one would like Ei large while to avoid contamination of the Bragg intensity 

by the critical scattering then one would like Ei small. As noted earlier it is a good idea 

to perform measurements with more than one value of Ei in order to get a handle/self­

consistency check on these problems. It is also hopefully clear why f3 is the least reliable 

exponent one can obtain by neutron scattering. 
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5 Critical Scattering Measurements 

5.1 Introduction 

In this section we deal with some of the points relating to the measurement of the critical 

scattering itself. One of the important conditions that must be satisfied when measuring 

the critical scattering is the quasi-static approximation. In sections( 5.2) and ( 5.3) we 

describe how the correlation function for critical scattering is related to the partial dif­

ferential cross-section for neutron scattering and the criteria a diffraction measurement 

needs to satisfy in order that the critical scattering can be accurately measured. For 

the purpose of description we will specifically consider a magnetic phase transition but 

the same arguments apply equally well to structural phase transitions. Following this 

theoretical background we discuss the practical aspects of measuring critical scattering. 

In section( 5.4) we describe how multi-detector scans can be used to measure the critical 

scattering. A brief cautionary note about the rare (but possible) effect of multiple scatter­

ing in a critical scattering measurement is included in section( 5.5). Finally section( 5.6) 

discusses the analysis of the measured critical scattering spectra. 

5.2 The Correlation Function 

The magnetic critical scattering measured in a neutron scattering experiment is the 

Fourier transform of the spatial distribution of the magnetic moments (spins) in the 

sample. Just above Tc these spins have short range order and form fluctuating micro­

regIOns. The size distribution of these regions can be described by a correlation function 
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which in its most general form measures the correlation between the fluctuations of the 

spin components away from their mean values. It can be written as [1] 

rf! = ((Sf - (sf))(Sf (Sf))) (10) 

where o!, f3 represent the real space spin components x,y, z of the ith and jth magnetic 

ions in the sample. This form of the correlation function is known as the static (or equal 

time) corr,elation function since it represents the spin correlation between sites i and j 

at the sameinstant in time. The Fourier transform of the correlation function given in 

equation( 10) can be written as 

(11) 


This correlation function can be related to the partial differential cross section for magnetic 

neutron scattering which is given by [2] 

cPO' 1 (kf) (,),ro?" ~ ~ 2 2 2
dndE = N k 21rn -;;(6af3 - QaQf3)g IlBlf(Q)1 x 

f i 

.!exp[-iEt/n]·I,: exp[i(Q.rij)] (Sf(O)Sf(t)) dt (12) 
":t 

Integrating the partial differential magnetic cross section over all energy transfers !::J.E 

Ei - E j with the important assumption that Q remains fixed leads to theresult 

QaQf3)raf3(Q)] (13) 

where Kl represents all of the various co-efficients in equation( 12). The first term in the 

square brackets is the magnetic Bragg peak scattering, where 6(Q) = Lij exp[i( Q.rij)] is 

(Qa)2)(sa? + L:(6af3 -
af3 
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zero unless .Q is equal to a reciprocal lattice vector. The second term is the correlation 

function defined above and.a standard "model form" for r(Q) is the structure factor S(q) 

given in equation( 1) where q = Q T and T is the ordering wavevector (Bragg peak 

position). Therefore if in a neutron scattering experiment it were possible to perform 

such an integration over energy at constant Q the measured intensity would ( apart from 

resolution effects) be equal to the correlation function. However measuring the partial 

differential cross section at different Q values and integrating over 6.E at each Q value 

would be an extremely time consuming (impossible?) thing to do. Instead critical 

scattering is usually measured by neutron diffraction techniques. As a consequence the 

integral in equation( 13) is not performed exactly but only approximately. The condition 

under which this is a good approximation is discussed in the next section. 

5.3 The Quasi-Static Approximation 

A diffraction experiment measures all of the scattering processes, both elastic and inelas­

tic, that take place within the sample and which satisfy the relevant diffraction condi­

tions. A diffraction measurment is therefore equivalent to carrying out an integration of 

d2 
(j IdrJdEf, over the energy transfer 6.E. It is not however exactly the integral given in 

equation( 13) because the wavevector transfer Q does not remain fixed in this process. If 

however the variation in the wavevector 6.Q = Q - Qo where Qo is the nominal (elas­

tic) wavevector is only small over the range of energy transfers (6.E) involved then such 

a diffraction measurement will be a good approximation to equation( 13). Experimen­

tal conditions that meet this requirement are said to satisfy the quasi-static approxima­
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tion [2, 3]. 

The relationship between .6.Q and .6.E for a two axis diffractometer at a reactor source 

has been considered before [2, 3, 6] and is given by [3] 

(14) 

For the time of flight technique a similar result can be derived [5] and is 

(15) 

This is essentially the same result as equation( 14) apart from the extra terms involving 

the ratio of the flight paths (Li is the moderator to sample distance and L, is the distance 

from the sample to the detector). However the exact value of the ratio L, / Li is not that 

important to the overall outcome. 

The amount of variation in the wavevector .6.Q involved in the diffraction measurement 

(at either a reactor or a pulsed source) can be estimated from equations( 14) and ( 15) 

by setting .6.E ~ .6.Ec8 , where .6.Ec8 is the energy width of the critical scattering. Hence 

the condition for .6.Q to be small is Ei ~ .6.EC8 ' Under these conditions the quasi-

static approximation is said to be satisfied and the measured diffraction pattern can be 

considered equal (to a good approximation) to the correlation function of equation( 13). 

Detailed analysis by Tucciarone et al. [6] using accepted models for the energy dependence 

of the critical fluctuations, suggests that a value of Ei ~ 5 .6.EC8 [3] would be sufficient. 

Since .6.Ecs is usually unknown (it would be an unusual state of affairs if the wavevector 

width were unknown but the energy width were known) it is usually necessary to estimate 

the energy width. For Ising like (strong uniaxial anisotropy) systems the energy width is 
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usually quite narrow, of the order of tenths of an me V, while for more isotropic systems 

(X-Y, Heisenberg) it is more of the order of meV. Obviously the value will differ system 

to system and will be related to the transition temperature, the higher Tc the wider the 

energy width. 

5.4 A Critical Scattering Scan 

Above Tc the critical scattering can be measured using a multi-detector arrangement. As 

indicated in the earlier sections this usually involves measuring a fan of radial time of 

flight scans and interleaving or merging together these fans to make a grid of measured 

data covering the region in reciprocal space occupied by the critical scattering. In carrying 

out this interleaving/merging we have in our experiments left the scattering angles for the 

multi-detector fixed and varied the sample rotation angle. This is not the only possibility, 

one could leave the sample angle fixed and step the detector angle to achieve the same 

effect. There is an advantage to the former technique however because it requires fewer 

normalisation runs to be performed. 

The data collected in these interleaving fans can be processed using the VCRS macro 

in GENIE and displayed using the PRSPLOT6 program. A detailed description of VCRS 

is given in section(6.2) of the PRISMA GENIE Data Analysis Manual [7]. An important 

point here is that in order to accurately process, display and subsequently fit the critical 

scattering data a vanadium calibration run is required. In the multi-detector configu­

ration different detectors are being used to measure different paths through the critical 

scattering. These detectors will almost certainly have different efficiencies. Also because 

35 




they are at different scattering angles they will also have different resolution volumes. 

In order for displayed data to be visually consistent both of these effects must be com­

pensated for. The vanadium calibration is simply a run at the same scattering angles 

for the detectors using a vanadium rod rather than the sample. Because vanadium is an 

incoherent scatterer normalising the measured critical scattering spectra with the vana­

dium spectra compensates for both detector efficiency and resolution volume. It should 

be noted that in the data analysis (described in the next section) the resolution volume 

effect is taken into account but the vanadium calibration is still needed to correct for the 

efficiency variation. 

A vanadium calibration run is required for each of the angular settings at which the 

multi-detector is used. This is why it is easier to step the sample rather than the multi­

detector. Since one would like during an experiment to look at the data as it is being 

taken it is a good idea to perform some vanadium calibration runs before starting the 

experiment proper. If you change your mind during the experiment and perform some 

runs at unexpected scattering angles then you should make sure that you have enough 

time at the end of the experiment to get the necessary calibration runs done. We have 

found that this vanadium calibration approach has made it quite straightforward for us to 

combine in the fitting procedure (section( 5.6)) data taken at different ranges of scattering 

angle settings for the multi-detector without too much difficulty. 

The output file from· the VCRS macro can be read directly into the PRSPLOT6 

program, which allows the data to be displayed. This can be either as a contour map or 

as a relief map, an example of which is shown in figure( 7). There are various commands 
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Wavevector tH,Q,Ql Wavevector [O,O,L]a,5 0,9 1.0 l.l 122.0 1.5 1.0 

Figure 7: A relief map plot of the critical scattering measured from FeC03 at a temper­

ature of 38,10 K is shown 

37 




in PRSPLOT6 (see the manual [7]) which allow the way in which the data is displayed to 

be varied. There is also a command X/P which allows cuts through the grid of data to 

be made so that the data can be examined along specific directions. An example of such 

a cut is shown in figure( 8). 

5.5 Multiple Scattering 

Above Tc the critical scattering occurs around the ordering wavevector, ie. the Bragg 

peak position in reciprocal space. However above Tc there should be no Bragg scattering 

because there is no long range order. In certain (rare) circumstances it is however possible 

to observe a "false" Bragg peak at the ordering wavevector due to multiple scattering from 

Bragg peaks in the sample. We have observed this in an experiment on FeC03 [5J and it 

has been a problem in measurements on MnF2 [3J. What happens in these circumstances 

is that the incident neutron beam is initially scattered by a Bragg peak with wavevector 'T1 

(which is not equal to the critical scattering Bragg peak ordering wavevector 'To). However 

before these scattered neutrons can exit the sample they are scattered a second time by 

another Bragg peak with wavevector T 2 • If 'To = Tl + 'T2 then these doubly scattered 

neutrons will be scattered into the detector as if they had been singly scattered by To and 

hence they appear to be a Bragg peak at 'To. It should be noted that these doubly scattered 

neutrons must have the same wavelength as if they had been singly scattered. The size 

of the sample is irrelevantly small compared to the length of the moderator to sample to 

detector flight path and therefore to be identified as having a wavevector of magnitude 

I'To I the doubly scattered neutrons must have the same flight time (ie. wavelength) as 
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would the equivalent singly scattered neutrons. 

As emphasised above this multiple scattering problem is a rare occurence and requires 

, . 
a conspiracy of co-incidences for more than one Bragg scattering process to be possible. 

Such co-incidence is much more likely if the incident neutron energy Ei is large. A simple 

way to test for multiple scattering and to find a wavelength/energy at which it is avoided 

is to perform a o<jJ 20w scan (as described in section( 2.2.1)) corresponding to a radial 

scan through the false Bragg peak. The multiple scattering condition will only occur for 

a certain small wavelength/energy range and this should be apparent in the scan allowing 

for a choice of scattering conditions which avoid it. 

5.6 Analysis of the Critical Scattering Data 

As noted earlier in section( 1.2) the measured intensity in the critical scattering is the 

convolution of the critical scattering lineshape ( ego equation( 1) ) and the resolution 

function for the time of flight neutron diffractometer. What one would like to extract from 

the critical scattering data set are the values of the 1'i:'s and X's etc. which characterise 

the critical scattering at that particular temperature. In order to do this one must fit the 

experimental data to a model lineshape which has been convoluted with the resolution 

function. This is essentially the same situation as for critical scattering experiments 

carried out at reactor neutron sources the only difference is the number of data points. 

At a reactor source one would collect 100 data points while in our time of flightrv 

experiments we collect rv 3000 to 15000 data points. The fitting of such a large amount 

of data is a major task and in the following we'll describe how we have approached this. 
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Obviously this involves a computer program to actually .carry out the fitting and the 

program we have written is called CRTFIT. In appendix A we describe the input and 

output files for this program. 

The fitting program minimises the least squares agreement factor given by 


1 N (fObS _ f~al)2
---2:' (16)lA= 
N - K i=l O'i 

where N is the number of data points, K is the number of adjustable parameters, ribs 

and ffal are the experimentally observed and theoretically calculated intensities and 0',. the 

experimentally observed (standard deviation) error, for the ith data point. This is done 

by an iterative non-linear least squares method utilising a Marquardt algorithm [9J to find 

the values of the adjustable parameters which produce the set of calculated values frl 

which give the minimum value of A. It can be shown that A has an expectation value in 

the statistical sense of 1 for uncorrelated errors drawn from a normal distribution. Thus a 

good fit to the data would be expected to have a value for A of around L However there 

is more to a good fit that just a good agreement factor, a good fit should not have any 

systematic (correlated) differences between the experimental and theoretical values. It is 

necessary to check for such a systematic discrepancy "visually". One way of doing this 

is to take cuts through the observed and calculated map files and compare them. This 

can be "automated" using the ZXMAP [10J program which will produce an output file 

containing all of the spectra from an experimental and the equivalent calculated map files 

ready for plotting. Another approach is to make a grid plot of the residuals. The residual 
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for the ith data point is given by 

J!>hs _ J!:al 
r . ­ I l (17)1 ­

a·t 

ie. it is the normalised difference between the observed and calculated values. In the 

CALULATED.MAP file produced by CRTFIT (see appendix. A) the final column of the 

output (which would be the error column in an experimental data file) contains the value 

of the residual. It is possible to display a colour grid map of the residuals in PRSPLOT6 

by loading the CALCULATED. MAP file and using the command DillE WI (with the 

appropriate level values set, remember ri can be both +ve and -ve). If there are no 

systematic correlations this plot should look like a random mess of colours. Correlations 

should show up as regions of a particular colour in the plot. 

At each iteration in the Marquardt algorithm a value must be calculated for each of 

the data points using the theoretical values for K etc. It is this calculation for the 1000's 

of data points that consumes all of the time in the computer program. The convolution 

integral involved in this calculation can be written as ; 

J(Qo) = .I R(Qo + D.Q)S(Qo + D.Q - T )dD.Q (18) 

where S(q = Qo + D.Q - T ) was given in equation( 1) and R(Qo + D.Q) is the resolution 

function which is given by ; 

R(Qo+D.Q)= (~)exp[-~((~~;f +(~~:)2)1 x 

(19)exp [-:*] erfc [~ (:0 ~:)1 
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where 

O'DV - V(usvQo)2 + (kO)2(O'tv + O'~v) (20) 

1 
-2­
O'EV 

1 1 
-+­2 2
0'2 V 0'3V 

(21) 

O'DT - lQ..j2 2 2'2 0 0'1H+O'EH+ 4 0'SH (22) 

1 
-2­
O'EH 

-
1 1 
-+­2 2
0'2H 0'3H 

(23) 

0'0 Xo cot (';t) 22 +22 +22O'lHO'EH O'lHO'SH O'EHO'SH 

O'tH + O'~H + 40'~H 
(24) 

T* Xo O'IH - O'EH( ) [ 2 2 (~) 1Qo AQL + O'rH + O'~H + 40'~H cot "2 AQT 
(25) 

Xo mN (Li + Lf ) jfiko (26) 

V (:0) O'DVO'DT7Qoexp [-~ (~)2l (27) 

which is essentially equation B.6 from ref. [4] ( we have used identical notation to that 

paper) except that it has been normalised by the resolution volume V to account for the 

vanadium normalisation of the data. 

The convolution integral, equation( 18), is three-dimensional and one of the dimen­

sions, the integral over the out of plane terms in AQv, can be done analytically. This 

leaves the in-plane components in AQLand AQT to be' done numerically. In order to do 

this one must first determine the limits for the numerical integrals. This can be done by 

numerically calculating the 1% contour level of the in-plane component of the resolution 

function (in CRTFIT this is done by the same algorithm as used in PRSCAL to plot the 

resolution function contours) and then calculating the rectangle of minimum area which 

encloses this contour. In order to numerically evaluate the integral within this volume 
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an adaptive Monte-Carlo method can be employed. In this method the rectangle is fur­

ther divided into smaller rectangles. A pass is carried out; through each of these smaller 

rectangles in which in each small rectangle a fixed number (eg. 20) of randomly chosen 

points are evaluated. After the passing through the small rectangles the overall estimate 

of the calculated intensity (convolution integral plus background) is calculated along with 

its accuracy. Also the relative contribution of the smaller rectangles to the total and the 

error in the total is calculated. If this contribution is such that it will not influence the 

accuracy of the total integral when compared to the preset accuracy for the calculation 

then the relevant small rectangle is dropped from the calculation. Successive passes are 

made through the small rectangles until the overall intensity value is accurate to less than 

a preset accuracy. In our case we have usually used a 1 % accuracy. This method has the 

positive feature that it only takes a few passes to accurately calculate the value of the 

intensity in regions where the convolution integral is small (eg. background regions) but 

will make sure that in regions where the convolution integral may be large and/or the 

integrand rapidly varying that enough sampling points are used to get an accurate value. 

In short, it "transfers"· processing effort from regions of the data set where the calculated 

values are easy to evaluate to those regions where they are difficult to evaluate. 
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6 Summary 

Neutron diffraction is a powerful technique for studying critical phenomena and the time 

of flight method provides a means of rapidly mapping out the critical scattering. In this 

guide we have tried to point out some of the practical things that need to be thought 

about for doing/analysing such an experiment. As a consequence we have necessarily had 

to belabour the problems/difficulties that can arise. This doesn't mean they will happen 

during an experiment but since "forewarned is forearmed" we hope that the guide will 

help people to avoid them or at least to recognise them. 

In a series of brief one line summations the following points are worth remembering 

in order to do a good time of flight critical scattering experiment ; 

• good temperature control and stability is essential 

• 	 the sample mount should be well shielded 

• 	 the quasi-static approximation must be satisfied ( Ei should be large enough) 

• 	 the wavevector resolution should be good enough to measure '" close to Tc ( to 

t 0.001 or better)f"..J 

• vanadium runs need to be done for normalisation if a multi-detector configuration 

is used 

• 	 measurements of Bragg peak widths should be made to determine the parameters 

for the resolution function 
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• check for and avoid detector saturation in Bragg peak measurements 

• checks for 	the effect of primary extinction on the Bragg peak intensities should be 

made 
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7 Appendix The CRTFIT Program 

7.1 Introduction 

In this appendix we describe the CRTFIT program which can be used to fit time of flight 

critical scattering data. The contents of the appendix are correct at the time of writing 

but the reader should be aware that the program may vary in the future depending upon 

circumstances. There are versions of the code available at RAL which will run on the 

VAX and ALPHA computers and also a version which runs on SUN computers. The 

source code is written in Fortran 77 and should be portable to most machines with an 

appropriate compiler because there are no proprietry software libraries used. In order to 

run the programs on the ISIS computers you can use the command lines 

(on the Vax machines) 

(on the Alpha machines) 

if you have executed the PRISMA_GENIE_SETUP command file. It should be noted that 

these programs will take a considerable amount of time to run and must be run in batch 

mode rather than interactively. 

The necessary input files for the program are, the data file, a resolution parameters 

file and a fitting parameters file called FITPMS.DAT. The data file should be in the 

format of the CRITICAL.OUT file produced by the VCRS macro [7]. It should contain 
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all of the spectra (from runs with different Ei~ if necessary) that are to be fitted. The 

format of the FITPMS.DAT and resolution parameters file are discussed in sections( 7.2) 

and ( 7.3). The output files from the program are a calculated values file called CAL­

CULATED.MAP, a results file containing the parameter values at each iteration of the 

fitting and a final parameters file called FITPMS.NEW which is in the same format as 

the FITPMS.DAT file. The CALCULATED. MAP file is identical in structure to the 

input data file CRITICAL.OUT (same H,K,L values etc.) except that the data values 

are replaced by the calculated values and the data errors replaced by the residuals, ie. 

the difference between data and calculated values divided by the data error value. The 

PRSPLOT6 program can be used to plot contour/relief maps or extract cuts through the 

CALCULATED.MAP file. 

The CRTFIT program will fit a selection of peak types to the data. In section( 7.2) we 

will describe how these peaks are selected, however in ordel to do this we must first define 

what the peak functions used are. There are 3 types of function available, a Lorentzian, 

a Lorentzian squared and a Gaussian. 

The Lorentzian 

(A.I) 

48 




The Lorentzian Squared 

(A.2) 

In these two functions "'x and "'yare the two in-plane inverse correlation lengths and "'v is 

the out-of-plane inverse correlation length. It should be noted that "'v must be set equal 

to either "'x or "'y and the choice of which is made by setting a flag in the FITPMS.DAT 

file. The amplitude of the Lorentzian is A and of the Lorentzian squared is B, which 

because of the form in which the two functions are written means that these parameters 

are proportional to the relevant isothermal staggered susceptibility. The terms q~, q~ and 

T X ) Ty are "origins" for the critical scattering. The need for two sets of parameters defining 

the origin will become apparent in the discussion in section( 7.2). 

The Gaussian Function 

(A.3) 

where 

D..qR 1 r cos () sin () 1r x* (AA) 
D..qT - sin () cos () 0r 

and () is the angle between the radial direction through the point (q~ + Tgx ) q~ + Tgy) 

and the x-axis. The "origin" (q~ + TgXl q~ + Tgy) defines the centre of the Gaussian in 

reciprocal lattice co-ordinates, however the principle axes of the Gaussian are assumed to 

be along the radial and transverse directions with respect to the radial direction through 
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the point (q~ +7 ga:, q~ + 7gy ). Along these directions the Gaussian has standard deviations 

(= FWHM/2.35) of O'R and O'T respectively. These standard deviations are in units of 

A-1 and hence the scaling by x'" and y'" as well as the rotation by (j for the co-ordinates 

(qa: - q~ - 7 ga:, qy - q~ - 7 gy ). Unlike the Lorentzian and Lorentzian squared the Gaussian 

function is not convoluted with the resolution function. 

7.2 The FITPMS.DAT File 

The input file FITPMS.DAT provides the information on how CRTFIT should fit the 

experimental data. The structure of the file is perhaps most easily explained using an 

example. The following FITPMS.DAT file was used in fitting some of the Terbium critical 

scattering data ; 

Trial fit of Terbium data with CRTFIT TITLE 
5 3 0 -1 NI,NPKS,IXY,IMSK 
Flat-Backg 0.0000 0.0000 5.0000 BO 
Back-slopx 0.0000 -1000. 1000.0 BQX 
Back-slopy 0.0000 -1000. 1000.0 BQY 
Centre-qxO 2.0050 1.9000 2.1000 QXO 
Centre-qyO 0.0007 -0.100 0.1000 QYO 
2 PEAK TYPE 2=LRZ+LRZ 
Lor-amp-T+ 2161.0 0.0001 90000. A-PLUS 
Lor-amp-T­ 2606.0 0.0001 90000. A-MINUS 
Kappa-L(X) 0.0017 0.0005 0.5000 KAPPA-X 
Kappa-T(Y) 0.0004 0.0002 0.5000 KAPPA-Y 
Tau-x 0.1120 -1.000 1.0000 TAUX 
Tau-y 0.0000 -1.000 1.0000 TAUY 
3 PEAK TYPE 3=Gauss 
Gauss-amp­ 40.000 0.0001 90000. C 
Long-fwhm­ 0.0330 0.0001 0.1000 FWHM-RADIAL 
Tran-fwhm­ 0.0145 0.0010 0.5000 FWHM-TRANSVERSE 
Tau-g-x - -0.112 -0.150 -0.050 TAUGX 
Tau-g-y - 0.0000 -1.000 1.0000 TAUGY 
3 PEAK TYPE 3=Gauss 
Gauss-amp+ 40.000 0.0001 90000. C 
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Long-fwhm+ 0.0330 0.0001 0.1000 FWHM-RADIAL 
Tran-fwhm+ 0.0145 0.0010 0.5000 FWHM-TRANSVERSE 
Tau-g-x + 0.1120 0.0500 0.1500 TAUGX 
Tau-g-y + 0.0000 -1.000 1.0000 TAUGY 
15 NV 
4 5 6 7 8 9 10 12 13 14 15 17 18 19 20 (INV(I).I=l.NV) 
RESFIL.DAT RES FILE NAME 
OUTPUT.DAT OUTPUT FILE NAME 
TB754L.DIF DATA FILE NAME 
9 3 NL NT 

The first line of the file is a title line which can be up to 72 characters long. The second 

line contains 4 integer control numbers. NI is the number of fitting iterations the program 

will perform. Next is NPKS the number of peak sets to be used in the fitting, which in the 

example is 3, one peak set consisting of two coupled Lorentzians and two Gaussian peaks. 

The different peak sets that are available are discussed later on. The 3rd parameter on 

this line is IXY, which chooses whether "-11 = "-';1; ( IXY = 0 ) or "-11 = "-y ( IXY = 1 

). The final parameter is IMSK, which deals with whether "masked" regions of data are 

fitted/calculated or not. Using another program, ZXMAP [10], it is possible to mask 

out regions within the grid of data in a CRITICAL.OUT type file so that they can be 

excluded from the fitting. If IMSK = 0 then no data points are excluded from the fitting. 

If IMSK = 1 then the masked data points are excluded from the fitting process but that 

the CALCULATED.MAP file will contain calculated values for the masked data points. 

Finally if IMSK = -1 then the masked points are both excluded from the fitting and are 

not calculated. 

The next five lines in the FITPMS.DAT file are the parameters describing the back­

ground and overall origin for the data grid. All of the lines describing fitting parameters 

51 




have the same format 'given by 
'. ,- ,: 

parameter name! initial guess minimum limit- maximum limit 
(10 characters) "value v.alue value 

The first 10 characters (including blanks) on the line are used as a name for the parameter• 
• -1 '. 

This is followed by 3 numbers, the first of which is the initial guess (or starting value ) for 

that parameter in the iteration process. The other two values are minimum and maximum 

limits for the parameter, which will not be allowed in the fitting process to take values 

outside of these limits. The background function itself is given by ; 

(A.5) 

where bois the fiat background and bx , by are the slopes in the X and Y directions. The 

parameters q~ and qZ are the "overall" origin and are included in all of the peak functions 

(cf. equations ( A.l), ( A.2) and ( A.3)). 

The remaining fitting parameters are in blocks of parameters related to the peak sets. 

The first line of these blocks is an integer label value specifying the type of peak set, 

which are as follows; 

Peak set 1 : Lorentzian plus Lorentzian Squared 

The Lorentzian and Lorentzian squared share the same Kx , Ky , Tx and Ty values along with 

the overall origin values q~ and qZ shared by all functions. The origin values Tx and Ty 

allow this peak set to be shifted away from the overall origin. In the order they should 

appear in the FITPMS.DAT file the parameters for this peak set are A, B, Kx , Ky , Tx and 
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Ty • This peak set can be turned into a single Lorentzian or a single Lorentzian squar~d 

peak by setting B = 0 or A =:= 0 respectively. 

Peak Set 2 : Two Coupled Lorentzians 

This peak consists of two Lorentzians sharing the same /'\,x and /'\,y. values, one at +(Tx , Ty) 

and the other -(Tx,Ty) away from the overall origin. The two Lorentzians have inde­

pendent amplitudes A+ and A_. This peak set is particularly appropriate f?r situations 

where the critical scattering occurs as satellites around an overall origin (eg. as in Ter­

bium). In the order that they should appear in the FITPMS.DAT file the parameters are 

Peak Set 3 : Gaussian Function 

This peak set is just the function defined in equation( A.3). The parameters Tgy and Tgy 

allow it to be shifted away from the overall origin. In the order that they should appear 

in the FITPMS.DAT file the parameters are C, IR) ITl Tgan Tgy . The parameters IR and IT 

are the FWHM values in A-I for the radial and transverse widths of the Gaussian and 

are related to the aR and aT used in equation( A.3) by IR = 2.35aR and IT = 2.35aT· 

Internally within CRTFIT the parameters for the background, overall origin and peak 

sets are numbered 1, 2, 3, ... ) IK where IK is the total number of parameters. Both IK 

and the internal number of a parameter can be found by "counting down" the list of 

parameters in the FITPMS.DAT file. Of course it is not necessary (or even probably 

desirable) to vary all of the parameters when fitting. Therefore the line following the 
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blocks of peak set parameters contains the integer value NV) which is the total number 

of parameters which should be varied during the fitting process. The next line after this 

is the list of the internal numbers (NV of them) which define which parameters that are 

to be varied in the fit. 

The next 3 lines are file names) all of which must be 10 or less characters. First is the 

name of the file containing the resolution function parameter values ( d. section( 7.3) ). 

Second is the filename where the results for each iteration in the fit should be written. 

Finally the third filename is the name of the CRITICAL.OUT format file containing the 

data to be fitted. 

The final line of the FITPMS.DAT file relates to the adaptive Monte-Carlo integration. 

As described in section( 5.6) the in-plane resolution function is enclosed by a rectangle 

which is subdivided into smaller rectangles. The integer values NL and NT define these 

smaller rectangles. The principle axes of the overall rectangle are usually close to being 

along the radial and transverse directions. Therefore the overall rectangle is divided into 

NL steps along its pseudo-radial and NT along its pseudo-transverse directions. 

7.3 The Resolution Parameters File 

In order to define the resolution function in the CRTFIT program a file of parameters is 

required. The name of this file is one of the parameters in the FITPMS.DAT file and its 

structure is given by ; 
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ftH hH iaH 

flV hv iav 

'f}s 

70 Ec r 

L 

x* y* 

IQX IQY 

The first two lines are the FWHM values of the divergences of the Soller collimation in 

degrees. These are converted into the standard deviations used in equations( 19) to ( 27) 

in CRTFIT. The flH and flV are the horizontal vertical divergences between moderator 

and sample. The hH and iaH values refer to the horizontal divergence after the sample 

and before the detector. The values of these two parameters depends on how the sample 

to detector collimation is physically determined. If there are two collimators back to back 

then hH and iaH should represent one each. If alternatively there is only one collimator 

then hH should be set to its value and iaH set to " rv 00 " (ie. a large number). Similar 

arguments apply to the vertical collimation between sample and detector (ie. hv and f3V 

). 

The 'f}s parameter is the FWHM in degrees of the sample mosaic spread. The parame­

ters 70, Ec and r define the slowing down time of the neutron pulse as a function of energy 

as given by equation(17) of ref [4]. For the methane moderator the values 70 = 37.15I1S, 

Ec = 9.0meV and r = 39.16meV are appropriate. The parameter L is the total distance 
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from moderator to detector via the sample. 

The remaining parameters x*, y*, IQX and IQY relate the X and Y directions used 

in the critical scattering functions and the H,K,L co-ordinates of reciprocal space. In 

CRTFIT the X and Y directions are assumed to be perpendicular. The integer values 

IQX and IQY indicate which of the H,K,L (values of 1,2,3 respectively) are to be used 

as X and Y co-ordinates respectively. Note the X and Y directions do not have to be 

only the (H,O,O), (O,K,O) or (O,O,L) directions, it could be for example that IQX = 3 and 

IQY 1 for the X = (0,0, L) and Y = (H, H, 0) directions respectively. The x* and y* 

values are the lengths in A-1 of the X and Y vectors. For example in a cubic crystal 

then Y (H, H, 0) would mean y* - y'2 (271'/a), while in a hexagonal crystal it would be 

y* 471'/a. 
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