
Technical Report
RAl-TR-95-039

CLRC

The Design of MA48,
a Code for the Direct Solution of Sparse
Unsymmetric Linear Systems of Equations

IS Duff and J K Reid

August 1995

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

© Council for the Central Laboratory of the Research Councils 1995

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory for the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX11 OQX
Tel: 01235 445384 Fax: 01235446403
E-mail library@rl.ac.uk

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contoined in any of their
reports or in any communication about their tests or investigations.

mailto:library@rl.ac.uk

RAL-TR-95-039

The design of MA48, a code for the direct solution of sparse
unsymmetric linear systems of equations

by

I. S. Duff and J. K. Reid

Abstract

We describe the design of a new code for the direct solution of sparse
unsymmetric linear systems of equations. The new code utilizes a novel
restructuring of the symbolic and numerical phases, which increases
speed and saves storage without sacrifice of numerical stability. Other
features include switching to full matrix processing in all phases of the
computation enabling the use of all three levels of BLAS, treatment of
rectangular or rank-deficient matrices, partial factorization, and
integrated facilities for iterative refinement and error estimation.

Categories and subject descriptors: G.l.3 [Numerical Linear Algebra]: Linear systems
(direct methods), Sparse and very large systems.

General Terms: Algorithms, performance.

Additional Key Words and Phrases: sparse un symmetric matrices, Gaussian elimination,
block triangular form, error estimation, BLAS.

Computer and Information Systems Department,

Rutherford Appleton Laboratory,

axon aXIl OQX.

August 1995.

CONTENTS

1 Introduction. 1

2 Overview. 2

3 MA50 - routines for the numerical processing of a single block 4

3.1 MA50A: analyse... 5

3.1.1 Treating a square matrix with the default pivotal strategy. 5

3.1.2 Markowitz pivoting 6

3.1.3 Drop tolerances 7

3.1.4 Singular and rectangular matrices 7

3.2 MA50B: factorize 8

3.2.1 First factorization 8

3.2.2 Drop tolerances .. 10

3.2.3 Subsequent factorizations .. 11

3.2.4 Singular and rectangular matrices 11

3.3 MA50C: solve .. 12

3.4 Solving full sets of linear equations ... 12

4 The MA48 Package.......... 14

4.1 MA48A: analyse... 14

4.2 MA48B: factorization ... 16

4.3 MA48C: solve.. 16

4.3.1 Solution without iterative refinement.................................... 16

4.3.2 Solution with iterative refinement 17

5 Performance results ... 18

5.1 Density threshold for the switch to full code.............................. 22

5.2 The use of the BLAS ... 23

5.3 The strategy for pivot selection ... 25

5.4 The block triangular form ... 25

5.5 Comparison with calling MA50 directly 28

5.6 Iterative refinement and error estimation 28

5.7 Comparison with MA28 .. 29

6 Acknowledgements. 31

Appendix. Solving full sets of linear equations .. 31

A.l Factorization using BLAS at Levell, 2, or 3 33

A.2 Solution using BLAS at Level 1 or 2 .. 33

References .. 34

1 Introduction

This paper describes the design of MA4 8, a collection of Fortran 77 subroutines for the direct
solution of a sparse unsymmetric set of linear equations

Ax=b, (1.1)

where A is usually square and nonsingular. The main features of this new software package
are:

(i) the algorithm is fast and robust,
(ii) the input format 	 is user-friendly (entries in any order in a real array and

corresponding row and column indices in two parallel integer arrays, with
duplicates allowed and summed),

(iii) the 	 code switches to full-matrix processing when the reduced matrix is
sufficiently dense, using Basic Linear Algebra Subprograms (BLAS) at Levels 1,
2, and 3,

(iv) the pivot sequence 	is normally chosen automatically from anywhere in the
matrix, but the choice may be limited to the diagonal or the pivot sequence may
be specified,

(v) in the event of insufficient storage allocation by the user, the package continues
with the computation to obtain a good estimate of the amount required,

(vi) the code computes the block triangular form and makes use of it,
(vii) entries smaller than a threshold are dropped from the factorization,

(viii) singular or rectangular matrices are permitted,
(ix) 	 another matrix of the same pattern may be factorized with or without additional

row interchanges for stability,
(x) there is 	an option of specifying that some columns have not changed when

factorizing another matrix,
(xi) another problem with the same matrix or its transpose may be solved,

(xii) iterative refinement of the solution is available to improve its accuracy or provide
an error estimate.

An overview of the design considerations is provided in Section 2. The heart of MA4 8 lies
in a separate package called MAS 0, which treats a single block from the diagonal of the block
triangular form and assumes that the entries have been sorted by columns and that there are no
duplicates. It may be called directly by a user that accepts these restrictions. It does not have
facilities for iterative refinement and has a less convenient means for specification of columns
that have not changed since factorizing another matrix. We consider this in Section 3 and the
remainder in Section 4. To distinguish notation for the two cases, we use Helvetica for
variables associated with MA4 8. Section 5 is devoted to our experience of the actual running
of the codes. It is our intention that this code should supersede the code MA28 (Duff 1977,
Duff and Reid 1979) and we compare our new code with MA2 8 in this section.

The MA48 code is available from AEA Technology, Harwell; the contact is John Harding,
Harwell Subroutine Library, B 552, ABA Technology, Harwell, Didcot, axon aXIl ORA, tel
(44) 1235434573, fax (44) 1235434340, email john.harding@aeat.co.uk, who will provide
details of price and conditions of use. A version also exists for complex matrices. For a more
detailed description, including specification sheets for the software, we refer the reader to a
separate report (Duff and Reid 1993).

1

mailto:john.harding@aeat.co.uk

2 Overview

It is common practice in designing code for the solution of sparse equations is to divide the
computation into phases. A common division in the case of unsymmetric matrices, as used for
example in the MA2 8 code, is to use the three phases:

Analyse-factorize finds the block triangular form, chooses pivots for good sparsity
preservation, and computes the factorization.

Factorize factorizes another matrix with exactly the same sparsity pattern using exactly
the same pivots.

Solve uses the factorization to solve an equation.

In applications, there is often a need for many factorizes for each analyse-factorize and many
solves for each factorize. Since it is normal for factorize to be substantially faster than
analyse-factorize and solve to be substantially faster than solve, this subdivision fits well in
such an environment.

The most exciting algorithmic development in recent years is the work of Gilbert and
Peierls (1988) for economically generating the patterns of the columns of the factors when
factorizing with a given column sequence but allowing for row interchanges. They use a
depth-first search of the directed graph of the previous row operations to generate the pattern
of the current column. The overall complexity is O(n)+ oct), where n is the number of
columns and tis the number of floating-point operations. There are overheads associated with
the recomputation of the sparsity patterns of the columns and the row interchanges may cause
extra fill-ins, so in MA48 we provide two 'factorizes' which we call first andfast. The first
factorize must be provided with a column sequence; we have chosen also to require a row
sequence to which we adhere unless numerical considerations dictate otherwise, on the
assumption that the specified sequence is good for sparsity. Thus, the analyse phase need only
provide a recommended pivot sequence; there is no need for this phase to provide the sparsity
pattern of the factorized matrix. We have therefore designed the analyse phase to provide the
permutations without the actual factors. This saves storage since working storage is then
needed only for the active submatrix of the block on the diagonal of the block triangular form
that is currently being processed. It may save time since the vectors that hold the active
columns are shorter and data compressions are much less likely to be needed. Thus the phases
ofMA48 are:

Analyse finds the block triangular form and chooses pivots for good sparsity
preservation.

First-factorize factorizes a matrix with exactly the same sparsity pattern using a given
column sequence and with row interchanges guided by a recommended row
sequence.

Fast-factorize factorizes another matrix with exactly the same sparsity pattern using
exactly the same pivots.

Solve uses the factorization to solve an equation.

A benefit of this subdivision over the more conventional one given earlier is that if changes
to the matrix elements mean that the original pivot sequence chosen by the relatively
expensive analyse call is not numerically suitable, we do not need to resort to another call to

2

analyse but all that is usually needed is the first-factorize call, which is only slightly more
expensive than the fast-factorize call (see Tables 2-4). On the other hand, for the first matrix to
be factorized with MA48, we need to follow an analyse call with a first-factorize call, whereas
in the conventional approach a single analyse-factorize call suffices. This may appear to be a
disadvantage, but our experience is that the two MA48 calls are almost always significantly
faster than an analyse-factorize call to MA28 (see Section 5.7). There may be an advantage in
providing an analyse-factorize phase for the case where only one matrix of a given pattern is
to be factorized, and we plan to provide this later.

MA48 seeks to permute a square matrix to the block upper triangular form

All AI2

A22

PAQ (2.1)

All

The blocks A ii' i = 1,2, ... , I are all square. If the matrix is reducible (that is, if l> 1), many
blocks are often of very small order, particularly one. For efficiency, we merge adjacent
blocks of order one and note that the resulting diagonal block is triangular and so does not
need factorization. We have an option to merge adjacent blocks of order greater than one until
they have a specified minimum size. This latter merging does affect the sparsity of the
subsequent factorization, but permits better exploitation of the Level 3 BLAS and reduces
procedure-call overheads.

If the matrix is square but structurally singular (there is no set of entries that can be
permuted onto the diagonal) or is rectangular, we treat it as a single block. Block
triangularization can be extended to these cases (see, for example, Pothen and Fan 1990), but
our main goal was to treat the square nonsingular case and we have not included this
extension.

MA48 handles a rectangular or singular matrix by continuing with the factorization even if
all entries of a row or column of the reduced matrix are zero (or below a threshold e). We
make no claim that this provides a robust method for revealing the rank, but it does permit the
sensible treatment of simple cases (surprisingly common) where a row or column of A is zero
or identical to another row or column.

One of the main ways that we achieve high performance, particular on vector or super
scalar machines, is to switch to full-matrix processing using Level 3 BLAS (Dongarra, Du
Croz, Duff, and Hammarling 1990) once the matrix is sufficiently dense. This has led us to
using a column-oriented representation internally because of the column-major ordering used
by Fortran. It also means that the inner loops of the solve phase will vectorize more readily
because they involve adding a multiple of one vector to another, rather than a dot product.

We have adopted a design philosophy of requiring more storage when this leads to
worthwhile performance improvements. For example, we construct a map array when first
permuting a matrix of a given pattern to the internal column-oriented form so that subsequent
matrices can be permuted by a single vectorizable loop of length the number of entries.

3

In addition to integrating iterative refinement as an option in the solve subroutine, we also
provide options for calculating estimates of the relative backward error and of the error in the
solution (Arioli, Demmel, and Duff 1989). This provides a good method for assessing the
stability and the accuracy in the solution and obviates the need for any a posteriori
determination of growth in the entries as was used by MA28, which was in any case rather
pessimistic.

We provide a facility for dropping entries that are smaller than a threshold 0 (with default
value 0). Normally, we expect iterative refinement to be used when this option is active, but it
is quite possible to use this option to obtain a preconditioner for a more powerful iterative
method. In this case, a higher value for 0may be possible. Zlatev (1991, chapter 11) points out
that conjugate-gradient type methods may be very effective in this context.

In some applications, only a small number of entries differ between successive
factorizations. If the changed entries are confined to columns late in the pivot sequence, the
factorization operations will be identical until the first changed column is reached. We have
decided in MA48 to allow the user the option of specifying which columns may change.
During the analyse phase, these columns are restricted to the end of the pivot sequence and,
during the factorize phase, operations for the early columns are omitted once the first
factorization of a sequence is complete.

We avoid the use of COMMON in MA48 since this feature is not well-matched to the
requirements of parallel processing, where several copies of the routines may be executing at
once. Instead we use array arguments, with a separate initialization routine to provide default
values for controlling parameters.

3 MASO - routines for the numerical processing of a single block

MA50 accepts an m x n sparse matrix A whose entries are stored by columns. When called
from MA48, the matrix A of this section is one of the blocks Aii of the block triangular form
(2.1). We do not allow repeated indices within a column, since knowing that there are no
duplicates allows us to write more efficient code for handling fill-ins. Any duplicates
presented to MA48 are summed by it before MA5 0 is called.

There are four subroutines that are called directly by the user:

Initialize. MA5 0 I provides default values for the parameters that control the execution
of the package. The user may alter one or more values before passing the
parameters to the other subroutines.

Analyse. MA50A is given a matrix A and finds permutations P and Q suitable for the
triangular factorization PAQ = LV, where L is block lower triangular and V is
unit upper triangular. In normal LU factorization, all blocks in L are of size 1, but
since we switch to full-matrix processing the final block of L is of order greater
than unity. MA50A does no full-matrix processing but merely determines the size
of this block and arbitrarily completes the permutation vectors to order the
full-matrix block at the end. There is an option for dropping small entries from

4

the factorization and an option for providing Q together with a recommendation
for P. Estimates for storage and operation counts during a subsequent
factorization are provided.

Factorize. MAS 0B accepts a matrix A together with recommended permutations and
size for the final block. It performs the factorization PAQ = LV and the
factorization of the final block of L, including additional row permutations when
needed for numerical stability. Options exist for subsequent calls for matrices
with the same sparsity pattern to be made faster on the assumption that exactly
the same permutations are suitable, that no change has been made to the leading
columns of PAQ, or both.

Solve. MAS OC uses the factorization produced by MAS OB to solve the equation Ax = b
or the equation AT X = b.

3.1 MASOA: analyse

MAS OA chooses row and column permutations suitable for the factorization

PAQ = LV. (3.1.1)

At each pivotal stage, the reduced matrix is updated and then the pivotal row and column are
discarded. Once the density of the reduced matrix (ratio of its number of entries to its total
size) reaches a threshold with default value 0.5, the whole reduced matrix is discarded. Any
ordering for the remaining rows and columns is acceptable since full-matrix processing with
row interchanges is applied in the factorize phase. The pivot sequence and the number of
columns in the first part are stored for use in the factorize phase.

3.1.1 Treating a square matrix with the default pivotal strategy.

In this subsection, we describe the most important case, where the matrix is square and
nonsingular, the default pivotal strategy is in operation, and the option for dropping small
entries is not in operation. We defer the other cases to the following subsections.

The column-oriented storage scheme is suitable for the processing of the matrix provided
we do not insist that the columns remain contiguous and supplement it by also holding the
pattern by rows. Careful use of sparse-matrix techniques allow this row-oriented pattern to be
constructed in O(m) + O(n) + OCr) time, where ris the number of entries:

(i) sweep the column-oriented storage to count the numbers of entries in the rows;

(ii) accumulate the counts to give pointers to just beyond the row ends; and

(iii) sweep the column-oriented storage again, storing the column indices
appropriate positions for each row while decrementing the pointers.

In

For stability, we require each pivot to satisfy the column threshold test

lapj I~ u max la ij I
I

(3.1.2)

within the reduced matrix, where u is a threshold, with default value 0.1 (see, for example,
Duff, Erisman, and Reid 1986). We also require pivots to be greater in absolute value than a
tolerance c with default value zero.

5

For sparsity, we follow Zlatev (1980) in searching a small number of columns of the
reduced matrix for an entry with least Markowitz cost (product of the number of other entries
in the row of the reduced matrix and the number of other entries in the column) among entries
that satisfy the stability criterion. With this strategy, we choose the columns with least
numbers of entries and limit the search to a given number of columns (the default number is
3).

In order to be able to find quickly which columns to search, we maintain doubly-linked
chains of columns with equal numbers of entries. They are constructed so that the chains are
in forward order, giving an initial bias towards keeping to the natural ordering.

For systems that are of symmetric structure or nearly symmetric structure, it can be
advantageous to restrict pivots to the main diagonal. For example, Duff (1984) found
significant savings when factorizing matrices from a five-point discretization of Poisson's
equation. We provide an option to restrict pivots to the main diagonal although this restriction
may cause significant loss of sparsity. We implement this without modifying the data
structures, because we judge that it is sufficient to offer comparable efficiency to that of the
ordinary case. If the restriction to diagonal entries and the stability test (3.1.2) together mean
that no satisfactory pivot can be found, we switch immediately to full-matrix processing. The
full-matrix processing (see Section 3.4) uses row interchanges and does not restrict pivots to
the diagonal.

We provide an option for specifying that a given number of columns at the end of A are also
at the end of PAQ. This allows for rapid refactorizations when entries in only these columns
change. We refer to them as late columns. Only allowing changes to columns at the end of A
makes the code simpler and can be recorded using only one integer for each block of the block
triangular form. In MA4 8 itself, we provide a general facility in which any set of columns may
be labelled as the only ones to change.

We also allow the user to specify the column permutation Q together with a recommended
row permutation P. The entries in the specified column that satisfy the stability test (3.1.2) are
candidates for the pivot and we take the one that is earliest in the recommended row sequence.

3.1.2 Markowitz pivoting

For sparsity, we also offer the strategy of Markowitz (1957). The pivot is chosen to
minimize the Markowitz cost over all entries that satisfy inequality (3.1.2) and are bigger than
the pivot tolerance E. For speed, we maintain doubly-linked chains of rows and also of
columns with equal numbers of entries. It is possible to combine these chains and save one
pointer array but the added complication to the code and consequent inefficiency does not
justify this small saving. As we did before for the columns, we construct the chains of rows
with equal numbers of entries in forward order to give an initial bias towards keeping to the
natural ordering. In this case also, we permit the option of restricting pivots to the diagonal.

If a column ordering Q has not been specified, a search is made of the columns and rows in
order of increasing numbers of entries. Because we store reals by columns, it is easy to
combine the threshold and Markowitz tests when searching columns, but it is substantially
more costly to perform the stability test when searching by rows. For this reason we search
columns before rows with the same number of entries and only make the stability test when
searching by rows after determining that the entry has lower Markowitz cost than the current

6

candidate. We terminate the search as soon as it is clear that the Markowitz cost of the current
pivot candidate cannot be bettered; that is, we can terminate when searching columns with I
entries if the candidate pivot has cost no more than (1-1)2, and can terminate when searching
rows with I entries if the candidate pivot has cost no more than /(1-1). This procedure usually
finds the pivot with the lowest Markowitz cost very quickly. However, it occasionally can be
very slow (see, for instance, the example at the end of Section 5.3). For this reason, we choose
the Zlatev scheme as the default.

3.1.3 Drop tolerances

There is an option for dropping, that is removing from the data structure, any entry of the
original matrix or a reduced matrix if its absolute value is less than a tolerance 0 (with default
value zero). Such small entries are dropped from the original matrix and from the columns
when they are updated. Separate loops are used to avoid overheads in the case without drop
tolerances, which we expect to be the usual one. Each fill-in value is checked against the drop
tolerance and is added to the data structure only if it is sufficiently large.

Fast factorizations are not available following a first factorization that drops any entries
since the sparsity pattern may be incorrect. However, there is no problem with first
factorizations following analyses that drop entries since only the pivot sequence and size of
the full block are needed.

3.1.4 Singular and rectangular matrices

It is straightforward to factorize a singular or rectangular matrix and we decided that MAS 0
should do this. If it finds r pivots, the factorization can be written in the form

(3.1.3)

where L r is lower triangular of order r, Uris unit upper triangular of order r, and all the
elements of E are less than the pivot tolerance e or the drop tolerance o. Replacing E by 0
corresponds to perturbing the elements of A by at most the pivot or drop tolerance and gives
us a rank r matrix. The corresponding set of equations is

(;;~r ;;;J (~~) = (:~), (3.1.4)

and we solve this by solving

(3.1.5)

and setting X2 = O. If the whole system is consistent, this will be a solution. If the whole
system is underdetermined, the choice of 0 for x 2 means that the solution has a reasonably
small norm, though in general it will not be of minimum norm.

A key problem is the identification of the rank r. It can quite easily happen that it is
overestimated by this procedure but the solution may be verified by using the iterative
refinement option of MA48. An overestimate leads to equation (3.1.5) being ill-conditioned
and usually having a solution of large norm.

At any stage of the MAS OA processing, we may encounter a row or column that is either
structurally or numerically zero. Such a row or column is ordered immediately without
choosing a pivot. The natural place to put it is at the end of the pivot sequence, as in (3.1.3),

7

and this is done for the rows. It cannot be done for the columns since this may put a column
that is not 'late' (see Section 3.1.1) among the late columns. Therefore, MA50A places a
column in which it cannot find a pivot in the next pivotal position or the next position among
the 'late' columns. In both cases, we effectively continue with a matrix with one less row or
column. Note that MA50B needs to be able to tolerate (see Section 3.2.4) such a column in the
middle of the pivot sequence since different numerical values may provoke the event in
different columns. For reasons explained in Section 3.2.4, zero rows are included in the part
that is processed as a full matrix, so the number of zero rows must be taken into account when
choosing the point for switching to full-matrix processing.

A row or column is regarded as numerically zero if all its entries are less than the pivot
tolerance E. If E is less than the drop tolerance 0, the pivot tolerance will never come into play
since any small enough entries will already have been dropped. The important case will occur
when E is positive and 0=0.

3.2 MA50B: factorize

MA50B is given an mXn sparse matrix A, recommended permutations, and the number of
columns p to be processed as packed sparse vectors. It calculates the actual factorization

PAQ= LV, (3.2.1)

where L is block lower triangular and V is unit upper triangular. Only the final rectangular
block of L is of order greater than unity. The permutations and the value of p may have been
calculated by a prior call of MA5 OA, but any choice is acceptable (note that MA50A uses the
density of the reduced matrix to choose p). We provide an option for the special case Q =I.
This option is used by MA48 since the column permutations for the blocks of the block
triangular form and the permutations chosen by MA5 0 within the blocks can be integrated into
a single overall permutation, thereby saving storage.

We have chosen for V to have unit diagonal rather than L because in a column-oriented
algorithm it seemed natural to hold the multiples of the previous columns of the reduced
matrix that need to be added to the current column. There is the minor advantage that we
avoid the overheads of an additional loop to scale the column of L once the pivot has been
chosen. Note that we are still performing the stability test (3.1.2) by columns, and we in fact
store the reciprocal of the pivot to avoid excessive divisions.

3.2.1 First factorization

We begin by considering a first factorization when the rank is n. The operations are performed
column by column because the technique of Gilbert and Peierls (1988) then allows row
interchanges to be introduced while ensuring that the organizational overheads are
proportional to the number of floating-point operations. It also means that the factorization,
including fill-ins, can be built progressively by columns with very simple data management.
If, however, numerical pivoting causes row interchanges, it is possible that the fill-in will be
much higher than predicted by the analyse phase. In such a case, it may be sensible to rerun
the analyse phase.

To understand the technique of Gilbert and Peierls, it is convenient to regard the packed
representation of L as a representation of the product

8

(3.2.2)

where each D k' k= I, 2,...,p, is diagonal and equal to the unit matrix except in position (k,k),
each L k is lower triangular and equal to the unit matrix except below the diagonal in column
k, and D n is equal to the unit matrix except in the final block of order n-p. To calculate
column k of Land U requires the premultiplication of column k of PAQ by

Li1Di I
... L}lD}l, l=min(k-I,p) (3.2.3)

In the sparse case, many of these operations may be omitted since the application of Li1Di1

to a vector whose i-th component is zero does not alter the vector. In fact, when processing
column k, only those Li1Di1 whose index i is the index of an entry of column k of U are
needed. Furthermore, there is freedom to reorder them provided no modification of
component i is performed after the application of Li1Di1. We choose to generate the index
list for column k of U so that index i precedes index j if L j has an entry in row i. We use a
backward loop to do the actual floating-point operations later. Any order suffices for the
indices of column k of L. Gilbert and Peierls construct these lists using a depth-first search, as
in Figure la, where U-list is a list of integers in which the indices of the entries of column k of
U (apart from the diagonal) are accumulated and L-list is a similar list for column k of L. Each
entry of column k of A and each entry of each column of L that is involved in the column k
calculation is visited just once, so the overall complexity is that of the number of entries
involved. Since Fortran 77 does not permit recursive procedures, our code manages a stack
explicitly, as illustrated in Figure lb.

set U-list and L-list to be empty set stack, U-list, and L-list to be empty
call search(k) push k on stack

do until stack empty
recursive subroutine search(j) set j = stack top

do i = each index of column j do i each unsearched index of column j
if (i not in U-list or L-listl then if (i not in U-list or L-list) then

if (i > kl then if (i > k) then
add i to L-list add i to L-list

else else
call search(i) push i on stack; cycle outer do

end if end if
end if end if

end do end do
add j to U-list add j to U-list and pop stack

end subroutine search end do

Figure la. Recursive description Figure 1 b. Stack description

Figure 1. Pseudocode for the Gilbert-Peierls algorithm

For efficient execution of the actual floating-point operations, we load the entries of
column k of A into a real work vector that has previously been set to zero. Appropriate
multiples of the active columns of L are added into this vector in the order given by traversing
the U-list backwards. Once this has been done, the entries of the upper-triangular part of the
column can be unloaded into the packed vector using the known pattern in the U-list and the
entries of the real work vector reset to zero ready for their next use. A search for the pivot is
performed for columns 1,2,... , p. The pivot is the entry that lies earliest in the recommended
row order among those that exceed the pivot tolerance £ and satisfy the threshold test (3.1.2).
This means that if the matrix entries that were presented to MA50A are presented to MA50B,

the same pivot sequence will normally be taken; however, the floating-point operations may

9

be performed in a different order so the roundoff errors may differ and may very occasionally
lead to a change in the pivot order.

A very worthwhile improvement to the Gilbert-Peierls algorithm has been suggested by
Eisenstat and Liu (1993). Suppose that column k is the first column with the properties that it
is updated by columnj and that columnj has an entry in row k. Any entries of columnj that lie
beyond k in the pivot sequence will also be entries in column k. We place these physically at
the end of columnj and mark the boundary. When a later column I is updated by columnj, it
is also updated by column k, so the entries beyond the boundary in columnj are not needed to
find the pattern of column I. Thus, when the operations for column k have been completed and
the pivot chosen, we examine all the columns active in the step, looking for columns not
already marked and involving the pivot row. For any such column, the entries are physically
reordered and the column is marked.

The columns of the final block of L (which need not be square), corresponding to columns
p+1,... , n of A, need only a single vector of row indices. This is constructed when column p+1
is reached and corresponds to all the rows not so far ordered. We run through the rows in
order, i = 1,2,... , m placing each in turn in the vector if it has not been ordered. This makes the
indices monotonic, which allows an in-place sort during the solution (see Section 3.3). For
each remaining column, we need to apply the operations of the first p pivotal steps and find
the sparsity pattern of the U-part. This is done efficiently by the Gilbert-Peierls algorithm, as
for the previous columns. The differences are that no pivot need be chosen and the single
vector of row indices of the full block is used to unload the L-part of the column.

If the user provides insufficient storage for the factorization, a serious attempt is made to
calculate how much is needed for a successful factorization. This is done by discarding all the
factorization except the first p columns of L which are required so that the processing of
column k can take place as in the successful case.

Once the processing of column n is complete, the full block is factorized by full-matrix
processing, see Section 3.4. The resulting factorization has the form

(3.2.4)

where Lp is a p xp lower-triangular matrix, Up is a p xp unit upper-triangular matrix, an F is
the full block of order m-p x n-p.

3.2.2 Drop tolerances

If the option for dropping small entries is active (8) 0), checks are made on the entries
following the updating of column k. We use an absolute drop tolerance on the assumption that
the original matrix is well scaled, which is an assumption underlying the stability test (3.1.2).
With a relative tolerance, the code would be reluctant to drop entries in a column of the
reduced matrix whose entries are all small because of near singularity.

If the matrix entries that were presented to MA50A are presented to MA50B, the same
entries will normally be dropped; however, the floating-point operations may be performed in
a different order so the roundoff errors may differ and may very occasionally lead to a
different set of dropped entries.

For efficient execution in the default case, we use separate loops for the default and

10

non-default cases. In the default case (0= 0), no entries are dropped, not even those with the
value zero. This is in order to ensure that the correct structure is generated for a subsequent
fast factorization.

If any entries are dropped from column k, it cannot be relied upon to supply any of the
pattern of an earlier column j, so the technique of Eisenstat and Liu (1993) is not applicable.
We do not mark and set boundaries for any columns active in the step. If any column that
would have been treated is active in a later pivotal step in which no entries are dropped, the
technique may be applied then.

3.2.3 Subsequent factorizations

Following a successful first factorization, if drop tolerances are not in use, if the pattern is
unchanged, and if the pivotal sequence is numerically stable for the new values, the fast
factorization may be used. It is faster because of not needing to find the pattern and choose the
pivots. The algorithm is unchanged from that used for calculating the numerical values during
the first factorization. An error return is made if any pivot is smaller than the pivot threshold c.

The user may specify that only a certain number of late columns have changed values so
that processing can be confined to these columns, because the factorization in the leading
columns will be exactly as previously. If the pattern is unchanged and the previous pivot
sequence is expected to be satisfactory, this processing may be that of a fast factorization.
Otherwise, the processing is that of a first factorization, with Gilbert-Peierls calculation of the
pattern and pivoting within each column.

3.2.4 Singular and rectangular matrices

If the rank is less than n, we may fail to find a pivot for column k. The L-part may be null or
all its entries may be smaller than the pivot threshold cor the drop tolerance O. This is handled
by recording the L-part of the column as null and not recording any row in the pivot sequence.
The rest of the reduction is effectively treated as if column k were omitted.

The column by column processing makes it impossible to recognize a zero row until all
columns have been processed. We do not remove such rows from the full matrix before
passing it to the full-matrix factorization subroutine, although this would have been possible.
We felt that coding this was not justified given that the full-matrix code needs anyway to
handle the possibility of zero rows occurring during its processing.

To explain the mathematics, it is convenient to permute each column in which no pivot is
found to just ahead of the columns holding the full block, though we emphasize that in the
actual code these columns are left in place. This gives us the factorization

(3.2.5)

It is also convenient (see Section 3.3) to regard this as the factorization

(3.2.6)

11

3.3 MA50C: solve

MA50C uses the factorization produced by MA50B to solve the equation

Ax = b (3.3.1)

or the equation

(3.3.2)

In the square nonsingular case, this involves simple forward and back-substitution using the
factorization (3.2.4). We use a work vector to avoid altering b. MA50H is called for full-matrix
processing of the final block. It is helpful that the row indices of the full block are monotonic,
as noted in the penultimate paragraph of Section 3.2.1. When solving (3.3.1), this permits an
in-place sort for loading the required components of the right-hand side; when solving (3.3.2),
it permits an in-place sort for placing the solution in the required positions.

The rectangular or rank-deficient case is not so straightforward. For (3.3.1), we use the
form (3.2.6) and begin by solving the system

(3.3.3)(!1: I)(;~) = (:~)
by forward substitution, followed by solving the system

(3.3.4)

by back-substitution. Mathematically, we solve FX3 = Y2' set x 2 = 0, and then solve
UqXl =Y 1 - WqX3' but the two final steps are merged in the coding since the columns are
interspersed. We traverse the columns backwards either calculating a component of x and
doing the corresponding back-substitution updating, or setting a component of x to zero.

For (3.3.2), we use the form (3.2.5) and begin by solving the system

U;)(Y 1) (b 1) (3.3.5)V~ I Y2 = b2(Wq I Y3 b 3

by forward substitution, thereafter solving the system

(3.3.6)

by back-substitution. Here, we ignore the middle block row.

3.4 Solving full sets of linear equations

For sufficiently dense matrices, it is more efficient to use full-matrix processing and we
therefore switch to this towards the end of the factorization. We use notation in this section
that is independent of that of the rest of this paper and refers only to the full matrix. We had
hoped to use the routines SGETRF and SGETRS from LAPACK (Anderson et aI., 1992), but
their treatment of the rank-deficient case is unsatisfactory since no column interchanges are
included. For example, the matrix

12

(011)
A= 0 6

will be factorized as A = LU with L = I and U = A, which is of no help for solving the
consistent set of equations

On the other hand, interchanging columns 1 and 3 gives

11 1 0) (11) (1 1 0)AQ= 0 0 = 1 -1 0(000 001 0

and the reduced set of equations

The value of Xl is arbitrary and we may choose O. By back-substitution, we then get the
solution

Another reason for rejecting SGETRF is that it tests only for exact zeros. We test for exact
zeros by default, but wish to offer the option of a test against a threshold. The final
factorization will be as if we had started with a matrix whose entries differ from those of A by
at most the threshold.

In our early tests, we found that factorization routines using Basic Linear Algebra
Subroutines (BLAS) at Levell (Lawson et al. 1979) and Level 2 (Dongarra et ai. 1988)
sometimes performed better than those at Level 3 (Dongarra et ai. 1990), and have therefore
included them all. They are, respectively, MA50E, MA50F, and MA50G. A parameter controls
which of them is called. In the tests reported in Section 5, we found that the Level 3 versions
performed best on all three of our test platforms, so the default parameter value chooses them.

MA50H solves a set of equations using the factorization produced by MA50E, MA50F, or
MA50G, whose output data are identical. Each actual forward or back-substitution operation
associated with L or U is performed either with the Level 2 BLAS STRSV or by a loop
involving calls to SAXPY or SDOT. An argument controls which of these happens. Unlike the
case for factorization, the logic is very similar for the two cases, so there is no need for
separate subroutines.

We defer a more detailed description of our modifications of the LAPACK subroutines to
the Appendix.

13

4 The MA48 Package

We anticipate that most users will access MA48 itself. The data interface is much simpler than
that ofMA50. MA48 accepts an mxn sparse matrix whose entries are stored in any order.
Multiple entries are permitted and are summed. Any entry with an out-of-range index is
ignored.

Four subroutines are called directly by the user:

Initialize. MA4 8 I provides default values for the parameters that control the execution of the
package.

Analyse. MA4 8A prepares data structures for factorization and chooses permutations P and Q
that provide a suitable pivot sequence and optionally permute the matrix A to block
upper triangular form. There is an option for dropping small entries from the
factorization, an option for limiting pivoting to the diagonal, and an option for providing
Q together with a recommendation for P. Any set of columns may be specified as
sometimes being unchanged when refactorizing.

Factorize. MA48B factorizes a matrix A, given data provided by MA48A. On an initial call, it
performs additional row permutations when needed for numerical stability. Options exist
for subsequent calls for matrices with the same sparsity pattern to be made faster on the
assumption that exactly the same permutations are suitable, that no change has been
made to certain columns of PAQ, or both.

Solve. MA4 8e uses the factorization produced by MA4 8B to solve the equation Ax = b or the
equation AT X = b with the option of using iterative refinement. Estimates of both
backward and forward error can also be provided.

The data structure is arranged so that the user with a single problem to solve can provide the
matrix to MA48A, pass the MA48A output data on to MA48B, and finally pass the MA48B
output data and the vector b to MA48e. Further calls to MA48e can then be made for other
vectors b. The first of a sequence whose matrices have the same pattern is treated similarly,
and for subsequent matrices MA48B can be called with just the array of reals having a
different value. For efficient performance of the sorting needed for the later factorizations, we
use a map array so that a single vectorizable loop is all that is needed. Note also that a
representation of both the .original matrix and its factorization is needed by MA48e since it
performs iterative refinement. Storage for this can be saved when the matrix has a non-trivial
block triangular form since the off-diagonal blocks and triangular blocks on the diagonal are
only stored with the original matrix as they are unchanged by the factorization.

4.1 MA48A: analyse

The action of MA48A is controlled by the argument JOB, which must have one of the values:

1 Unrestricted pivot choice.

2 Column permutation provided by the user, together with a recommended row
permutation.

3 Pivots to be restricted to the diagonal.

An attempt is made to order the matrix to block triangular form (2.1) as long as the matrix

14

is square, the minimum block size (default value 1) is less than n, and JOB=l. It is
conventional (see, for example, Chapter 6 of Duff, Erisman, and Reid 1986) to do this in two
stages: first find a column permutation such that the permuted matrix has entries on its
diagonal and then find a symmetric permutation that permutes the resulting matrix to block
triangular form. We use the Harwell Subroutine Library subroutines MC21A and MC13D for
these two stages. MC21A uses a depth-first search algorithm with look ahead and is described
by Duff (1981a, 1981b).1f it fails to permute entries onto the whole of the diagonal, the matrix
must be structurally singular and the block triangularization is abandoned, for the reasons
given in Section 2.

If the matrix is structurally nonsingular, MC13D is used to symmetrically permute the
resulting matrix to block triangular form. It employs the algorithm of Tarjan (1972) and is
described by Duff and Reid (1978a, 1978b). Adjacent blocks of size one are amalgamated into
triangular blocks in a single pass that combines the current block with the previous one if the
current block is 1 x 1 and the previous block is either 1 x 1 or is itself an amalgamation of 1 x 1
blocks. The triangular case is indicated by negating the block size. A second pass through the
blocks is made to merge the current block with its predecessor (which may itself be a merged
block) if the predecessor is of size less than the minimum block size.

Since permutations for the block triangular form may conflict with the user's permutations
or may move diagonal entries away from the diagonal, we do not perform block
triangularization if JOB has the value 2 or 3.

The user may specify that, for some refactorizations, changes are confined to a given set of
columns. These columns must be placed at the end of any non-triangular block in order that
MA50 handles them appropriately as 'late' columns. If the column sequence has been
specified (JOB=2), all we can do is scan for the first of the set of columns and treat all
subsequent columns as if they too were columns that change. The appropriate value is
recorded for MA50A. If no column sequence is specified (JOB=1 or JOB=3), each block is
checked in turn and the columns of the set are moved to the end of the block. The permutation
arrays are adjusted accordingly and the number of late columns in each block recorded for
subsequent use by MA50A. Note that the late-column convention in MA50 not only leads to
simplifications in MA50 but also limits the MA48 storage overhead for this feature to one
integer per block.

The analysis proceeds by calling MA50A for each block. After completing all calls to
MA50A, the row indices are revised to those of the permuted matrix and are reordered to the
new column order. Also the map array is revised to correspond. This is done for the sake of
simplicity in MA48B and MA48C. MA48B does not have to be concerned with the
permutations since it works entirely with the permuted matrix and MA48C has only to apply
one permutation to the incoming vector and another to the outgoing solution.

The original matrix is preserved unaltered so that it can be passed to MA48B and so that
MA48B can treat it in exactly the same way as a matrix with the same pattern but changed
numerical values.

15

http:1981b).1f

4.2 MA48B: factorization

MA4SB factorizes a sparse matrix, given data from MA4SA and possibly changed numerical
values for the entries. The action of the subroutine is controlled by the argument JOB that
must have one of the values:

1 Initial call, with pivoting.

2 Faster subsequent call for changed numerical values, usmg exactly the same pivot
sequence.

3 Faster subsequent call for changed numerical values only in certain columns, with fresh
pivoting in those columns.

MA4SB first uses the map array constructed by MA4SA to place the real input array
immediately in the correct order for the factorization. Separate code is executed according to
whether or not duplicates were found by MA4 SA. With duplicates, an array is initialized to
zero and used to accumulate the result. Without duplicates, no initialization is needed and the
values can be placed directly in position.

Having reordered the data in this very easy way, it is now a simple matter to work through
the block triangular structure, calling the factorize routine MAS OB for each non-triangular
diagonal block. We also call the factorize routine MASOB for any triangular diagonal block
that has a diagonal entry smaller than the pivot threshold t: since MAS OB has facilities for
including row interchanges and can handle singular matrices.

4.3 MA48C: solve

MA4 se solves a system of equations, given data from MA4 SB. The action of the subroutine is
controlled by the argument JOB that must have one of the values:

1 No iterative refinement or error estimation.

2 No iterative refinement but with estimation of relative backward errors.

3 With iterative refinement and estimation of relative backward errors.

4 With iterative refinement and estimation of relative backward errors and relative error in
the solution.

We separate the tasks of solution using the block triangular factorization from permutation of
the incoming vector, iterative refinement, error estimation, and permutation of the solution.
The former task is performed by a separate routine MA4SD. For the special case where there is
only one block and it is not triangular, we save procedure call overheads by calling MAsoe

directly rather than calling MA4 SD.

4.3.1 Solution without iterative refinement

MA4 SD solves a system of equations using the block structure and calls to MAS oe for each
non-triangular diagonal block.

For the solution when the matrix A is not transposed, the block form is block
upper-triangular and the blocks are solved in reverse order. For each block, either MAS oe is
used or a triangular system is solved, and the new values are then substituted in earlier

16

equations using the off-diagonal parts of the columns in the current block. Because of the
column-oriented storage, the inner loop of the back-substitution for the triangular diagonal
blocks and for the off-diagonal blocks involves the addition of a multiple of one vector to
another with indirect addressing for the vector being accumulated.

For the transposed problem, the system is block lower-triangular and the solution starts
with the (1,1) block and goes forward through the block form. Now the forward substitution
loops are dot products with indirect addressing of one of the vectors, which are less likely to
vectorize well (see Table 2 in Section 5).

4.3.2 Solution with iterative refinement

Iterative refinement and error estimation is performed on the permuted system so the code is
uncluttered by permutations. The initial solution is set to zero and the permuted right-hand
side stored to enable the residual calculation. In the iterative refinement loop, the residual
equations

Ax = r(k) = b - AX(k)
or (4.3.1)

AT X= r(k) = b-ATX(k)

where X(k) is the current estimate of the solution, are solved using MA48D or MAS OC as
appropriate, and the solution to these residual equations is used to correct the current estimate.
We then use the theory developed by Arioli, Demmel, and Duff (1989) to decide whether to
stop the iterative refinement. In the following discussion, modulus signs round a matrix or
vector indicate the matrix or vector, respectively, obtained by setting all entries equal to the
modulus of the corresponding entry of the matrix or vector.

In Arioli et al. (1989), the scaled residual

(4.3.2)

is used as a measure of the backward error, in the sense that the estimated solution X(k) can be
shown to be the exact solution of a set of equations

(A+oA)x==b+ob

where the perturbations oA and ob are bounded according to

and

This follows directly from the work of Oettli and Prager (1964) and Skeel (1980). Sparsity,
however, can cause an added complication since it is possible for the denominator in (4.3.2) to
be zero or very small. We follow the theory developed by Arioli et al. (1989) by monitoring
the denominator. Let nvar be the number of variables in the equation, a be machine precision
times 1000, and Ai. be row i of A. Then, for all i for which the denominator is less than
nvar a(lbL + IIAJ"" IIX(k) IL"), we replace the denominator by IAllx(k)li + IIAJ""IIx(k)IL.",. We
define lUI as before for the equations with large denominators, and define lU2 as

Ir(k) Ii
lU =max --:-:-:------;-:-:- ­

2 i IAllx(k)l i + IIAdl.oIix(k)1100

17

for these other equations. The calculated backward error is then the sum of COl and co2 and the
iterative refinement is terminated if this is at roundoff level or has not decreased sufficiently
from the previous iteration step. The amount of decrease required is given by a user
controllable parameter. If the refinement is being terminated, the solution is set to either the
current or previous iterate, depending on which had the lower value for COl + coz; otherwise,
the current estimate is saved and we proceed to the next step of iterative refinement.

MA48C now optionally proceeds to estimate the error in the solution, using the backward
errors just calculated and an estimate of the condition number obtained by using the Harwell
Subroutine Library norm estimation routine MC41, which uses a method based on that
developed by Hager (1984), incorporating the modifications suggested by Higham (1988).
Condition numbers are estimated corresponding to the two cos. That corresponding to COl is
given by

where Ib(l)1 are the components of b corresponding to the equations determining COl' and that
corresponding to COz by

IliA-I, (IA(Z)llx~k)l+f(2») II
1<: =------:-:,------

00

0)2 IIX(k) 1100 '

where f(Z) = IA(Z) lellx(k) II"", with e the vector of all Is. In each case, the norm in the numerator
is of the form IIIA-11g1i which is equivalent to IIA-1GIL,,,, with G=diag{gJ,gz, ... }, whence the

00

subroutine MC41 can be applied directly.

d .: h . hI' 118x1l 00 th . b•The boun lor t e error III t e so utlOn, IIxli ' IS en gIven y
oo

5 Performance results

For performance testing, we have taken two subsets of the problems in the Harwell-Boeing
collection (see Duff, Grimes, and Lewis 1989 and 1992). The first subset is summarized in
Table 1 and was chosen to be representative of the kinds of problems likely to be solved by
MA48. We discuss the second subset in Section 5.4.

18

Case Identifier Order Number Description
of entries

1 SHL 400 663 1712 Basis matrix obtained after 400 steps of the
simplex method to a linear programming
problem. This matrix is a permutation of a
triangular matrix.

2 FS 5411 541 4285 A matrix that arose in FACSIMILE (a stiff ODE
package) in solving an atmospheric pollution
problem involving chemical kinetics and two­
dimensional transport.

3 FS 6803 680 2646 Mixed kinetics diffusion problem from radiation
chemistry. 17 chemical species and one space
dimension with 40 mesh points.

4 MCFE 765 24382 Radiative transfer and statistical equilibrium in
astrophysics.

5 BCSSTK19 817 6853 Part of a suspension bridge.
6 ORSIRR 2 886 5970 Oil reservoir simulation.
7 WEST0989 989 3537 Chemical engineering plant model.
8 JPWH 991 991 6027 Circuit physics model.
9 GRE 1107 1107 5664 Matrix produced by the package QNAP written

by CII-HB for simulation modelling of
computer systems.

10 ERIS1176 1176 18552 Large electrical network.
11 PORES 2 1224 9613 Oil reservoir simulation. Matrix pattern is

symmetric.
12 BCSSTK27 1224 56126 Buckling analysis, symmetric half of an engine

inlet from a modem Boeing jetliner.
13 NNC1374 1374 8606 Model of an advanced gas-cooled nuclear

reactor core.
14 BP 1600 822 4841 Basis matrix obtained after the application of

1600 steps of the simplex method to a linear
programming problem.

15 WATT 1 1856 11360 Petroleum engineering problem.
16 WEST2021 2021 7353 Chemical engineering plant model.
17 ORSREG 1 2205 14133 Oil reservoir simulation.
18 ORANI678 2529 90158 Economic model of Australasia.
19 GEMAT11 4929 33185 Initial basis of an optimal power flow problem

with 2400 buses.
20 BCSPWRIO 5300 21842 Eastern US Power Network 5300 Bus.

Table 1. The matrices used for performance testing.

We have used the Table I matrices to choose default values for parameters and to judge the
performance on

(i) 	one processor of a CRAY YMP-8I18128 using Release 5.0 of the cf77 compiling
system with the option -Zv (maximum vectorization) and vendor-supplied
BLAS,

(ii) 	a SUN SP ARCstation 1 using Release 4.1 of the f77 compiler with the option -0
(optimization) and Fortran 77 BLAS, and

(iii) 	 an IBM RS/6000 model 550 using Release 2.3 of the xlf compiler with the option
-0 (optimization) and vendor-supplied BLAS.

We believe that these are representative of the likely runtime environments, but it must be
stressed that other platforms, other compilers, or other implementations of the BLAS may
require different parameter values for good performance. Also, tuning for particular

19

requirements may be worthwhile; for example, the choice of density threshold for the switch
to full code is affected by whether a single problem is to be solved or many problems with the
same pattern are to be solved.

We have been hampered somewhat by the variability of the cpu timers on the IBM RS/6000

and the SUN. To alleviate this, we have embedded each call to MA48 in a loop oflength 1000
that is left as soon as the accumulated time exceeds one second and the average time is then
calculated. We can judge the repeatability of the timings by the variation of the analyse time
when variations of the block size used for the BLAS are made since this does not affect the
analyse phase. Occasional individual variations could be as high as 25% on the IBM RS/6000

and 20% on the SUN. The median change over the twenty problems could be as high as 3% on
the IBM RS/6000 and 8% on the SUN. The CRA Y is much better with all times within 1 %.
The IBM RS/6000 and the SUN figures presented here were obtained with runs on lightly
loaded machines to avoid such extreme variations, but we rely mainly on the CRA Y times for
our conclusions.

Case Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

I 3424 0.012 0.000 0.012 0.000 0.0007 0.0014
2 20229 0.123 0.051 0.175 0.023 0.0013 0.0021
3 7120 0.044 0.017 0.061 0.006 0.0010 0.0017
4 111853 0.762 0.281 1.043 0.175 0.0039 0.0052
5 35507 0.247 0.104 0.351 0.044 0.0021 0.0034
6 61014 0.383 0.139 0.522 0.082 0.0023 0.0036
7 8992 0.069 0.026 0.095 0.008 0.0021 0.0037
8 70973 0.331 0.128 0.458 0.097 0.0029 0.0047
9 72140 0.382 0.170 0.552 0.102 0.0037 0.0054

10 49920 0.176 0.086 0.263 0.042 0.0026 0.0044
11 63840 0.382 0.154 0.536 0.084 0.0030 0.0046
12 216228 1.499 0.561 2.060 0.329 0.0059 0.0085
13 78056 0.483 0.208 0.690 0.108 0.0048 0.0075
14 9682 0.059 0.018 0.076 0.008 0.0022 0.0036
15 167763 1.315 0.504 1.820 0.344 0.0071 0.0100
16 19317 0.150 0.056 0.206 0.017 0.0043 0.0076
17 298348 1.753 0.886 2.639 0.703 0.0092 0.0157
18 182012 0.901 0.263 1.163 0.148 0.0083 0.0130
19 89295 0.595 0.236 0.831 0.073 0.0121 0.0208
20 100810 0.742 0.305 1.047 0.114 0.0115 0.0191

Table 2. Performance on CRA Y with default settings.

20

Case Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

1 3424 0.06 0.01 0.07 0.01 0.009 0.010
2 20364 0.99 0.56 1.55 0.38 0.040 0.030
3 6823 0.27 0.12 0.39 0.06 0.017 0.016
4 111875 10.56 7.34 17.90 6.42 0.175 0.131
5 37518 2.61 1.20 3.81 0.85 0.072 0.053
6 65625 3.59 4.06 7.65 3.68 0.121 0.090
7 8986 0.35 0.15 0.50 0.06 0.022 0.021
8 69726 2.34 5.13 7.47 4.81 0.120 0.095
9 72140 4.19 4.83 9.02 4.40 0.138 0.103

10 49920 1.27 1.23 2.50 0.98 0.071 0.056
11 65984 3.68 3.01 6.69 2.56 0.126 0.091
12 218066 23.76 12.32 36.08 10.67 0.353 0.240
13 76941 4.68 3.89 8.57 3.26 0.151 0.113
14 9682 0.28 0.11 0.39 0.06 0.025 0.023
15 169546 20.19 13.69 33.88 12.40 0.330 0.234
16 19314 0.79 0.34 1.12 0.15 0.051 0.046
17 285175 27.23 38.36 65.59 36.47 0.530 0.383
18 182012 10.58 7.10 17.68 6.39 0.292 0.250
19 89329 3.70 1.76 5.46 0.92 0.180 0.153
20 102676 5.60 3.40 9.00 2.36 0.228 0.182

Table 3. Performance on SUN with default settings.

Case Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

1 3424 0.013 0.001 0.013 0.000 0.0007 0.0008
2 20364 0.173 0.057 0.231 0.032 0.0033 0.0034
3 6823 0.052 0.016 0.068 0.007 0.0016 0.0017
4 111875 1.900 0.483 2.383 0.353 0.0111 0.0114
5 37518 0.453 0.132 0.586 0.071 0.0066 0.0058
6 65625 0.590 0.236 0.826 0.180 0.0075 0.0074
7 8986 0.071 0.023 0.093 0.008 0.0024 0.0022
8 69726 0.427 0.236 0.663 0.208 0.0067 0.0066
9 72140 0.635 0.308 0.942 0.202 0.0089 0.0088

10 49920 0.232 0.118 0.350 0.082 0.0050 0.0049
11 65984 0.680 0.204 0.884 0.172 0.0078 0.0076
12 218066 3.800 0.945 4.745 0.730 0.0220 0.0249
13 76129 0.975 0.307 1.283 0.187 0.0103 0.0107
14 9682 0.060 0.019 0.079 0.012 0.0028 0.0029
15 169546 3.120 1.030 4.150 0.800 0.0229 0.0217
16 19314 0.160 0.050 0.210 0.020 0.0051 0.0056
17 285175 4.500 1.780 6.280 1.550 0.0312 0.0300
18 182012 2.190 0.410 2.600 0.312 0.0191 0.0171
19 89329 0.685 0.224 0.909 0.100 0.0177 0.0177
20 102676 1.080 0.393 1.473 0.193 0.0220 0.0213

Table 4. Performance on IBM RS/6000 with default settings.

For all three environments, we have chosen the value 0.5 for the density threshold for the
switch to full code and Level 3 BLAS with block size 32. We are able to use the same defaults
because the performance is very flat around the optimum values, as the results later in this

section demonstrate. Tables 2, 3, and 4 summarize the performance of the code with these
default values. Note that the different arithmetic on the CRAY sometimes leads to a different

pivot sequence and hence to differences in the array sizes required.

The effect of our use of Level 3 BLAS in the full code is most apparent in the solve phase.
Since we have chosen a column orientation for the storage of numerical values of the matrix

21

and factors, the solution of the equations Ax == b will be performed using a SAXPY kernel in
the innermost loop while the solution of AT X == b uses an SDOT operation. On the CRA Y, the
former is more efficient than the latter and this is clearly reflected in the fact that the times for
solving the system are up to 50% less than for the solution of the transposed equations. This
was one of the reasons why we chose column orientation in the first place. On the IBM, the
different relative performance of the two Levell BLAS means that times for solution of the
system and its transpose are about the same while on the SUN the position is reversed with the
faster SDOT routine giving a faster solution time for the transposed equations.

We examine the relative performance when a single parameter is changed by means of the
median, upper-quartile and lower-quartile ratios over the 20 problems. We use these values
rather than means and variances to give some protection against stray results caused either by
the timer or by particular features of the problems. We remind the reader that half the results
lie between the quartile values. Full tables of ratios are available by anonymous ftp from
numerical.cc.rl.ac.uk (130.246.8.23) in the file pub/reportslma48.tables.

5.1 Density threshold for the switch to full code

Which value is best for the density threshold for the switch to full code depends on the relative
importance of analyse time as opposed to factorize time and to the importance of storage. Any
reduction will save time in the analyse phase since no further factorization is performed once
the threshold is reached. Usually a storage penalty is incurred. Too Iowa threshold leads to
such an increase in factorize time that we lose even if only a single problem is to be solved.
We have also been influenced in our choice of default value by the convenience of a single
value on all platforms. Our value of 0.5 is based on slightly different priorities on the three
platforms.

Table 5 shows the effect of decreasing the value of the density threshold for the switch to
full code to 0.4. The factorize times are increased, though only slightly for the first factorize
on the CRAY. A smaller value may be preferred if a single problem is to be solved, as may be
judged from the sum of the analyse and factorize times (see Table 5). Table 6 shows similar
effects from the further reduction to 0.3. For the SUN, this is too low even if only a single
problem is to be solved.

Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

CRAY lower q. 1.03 0.90 0.99 0.94 1.02 1.00 0.99
median 1.09 0.96 1.01 0.97 1.09 1.00 1.00
upper q. 1.11 0.98 1.05 0.99 1.13 1.02 1.03

SUN lowerq.
median

1.02
1.09

0.85
0.91

1.05
1.12

0.98
1.00

1.08
1.18

1.03
1.06

1.02
1.07

upper q. 1.11 0.98 1.24 1.02 1.28 1.09 1.10
IBM lowerq. 1.02 0.80 1.02 0.85 1.04 0.93 0.97

median 1.09 0.89 1.04 0.92 1.08 0.98 0.99
upperq. 1.11 0.94 1.07 0.97 1.15 1.03 1.03

Table 5. Results with density threshold value 0.4 divided by those with value 0.5.

22

http:130.246.8.23
http:numerical.cc.rl.ac.uk

Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATX=b

CRAY lower q. 1.03 0.89 0.99 0.94 1.02 0.99 0.99
median 1.09 0.96 1.01 0.97 1.08 1.00 1.00
upperq. 1.11 0.97 1.05 0.99 1.15 1.01 1.02

SUN lower q. 1.09 0.68 1.20 1.00 1.32 1.10 1.07
median 1.23 0.76 1.39 1.04 1.59 1.18 1.18
upper q. 1.26 0.93 1.56 1.07 1.65 1.24 1.22

IBM lower q. 1.09 0.66 1.09 0.79 1.23 0.97 1.00
median 1.23 0.78 1.18 0.89 1.35 1.01 1.02
upper q. 1.26 0.89 1.27 0.97 1.39 1.06 1.07

Table 6. Results with density threshold value 0.3 divided by those with value 0.5.

Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

CRA Y lower q. 0.93 1.02 1.00 1.01 0.97 1.00 1.00
median 0.96 1.04 1.02 1.04 0.99 1.00 1.00
upper q. 0.99 1.10 1.03 1.08 0.99 1.01 1.01

SUN lower q. 0.92 1.03 0.86 1.00 0.82 0.93 0.94
median 0.96 1.11 0.92 1.01 0.90 0.97 0.96
upper q. 0.99 1.19 0.98 1.04 0.95 0.99 0.99

IBM lowerq. 0.92 1.01 0.94 0.99 0.91 0.92 0.97
median 0.96 1.05 0.98 1.03 0.95 0.98 1.00
upper q. 0.99 1.14 1.02 1.08 0.97 1.01 1.01

Table 7. Results with density threshold value 0.6 divided by those with value 0.5.

Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

CRA Y lower q. 0.89 1.04 1.01 1.03 0.95 1.00 0.93
median 0.91 1.08 1.03 1.07 0.98 1.00 1.01
upper q. 0.99 1.18 1.06 1.14 0.99 1.01 1.01

SUN lowerq. 0.88 1.04 0.83 1.01 0.76 0.90 0.91
median 0.93 1.18 0.87 1.06 0.83 0.94 0.95
upper q. 0.98 1.36 0.96 1.09 0.89 0.98 0.96

IBM lowerq. 0.88 1.01 0.90 1.00 0.87 0.94 0.97
median 0.93 1.09 0.96 1.06 0.92 0.96 1.00
upper q. 0.98 1.31 1.01 1.19 0.94 1.01 1.01

Table 8. Results with density threshold value 0.7 divided by those with value 0.5.

Tables 7 and 8 show the effect of increasing the value of the density threshold for the switch
to full code. On the CRAY, the performance is very flat, a credit to its success nowadays in
vectorizing loops with indirect addressing. The IBM RS/6000 performance is also rather flat.
For the SUN and the IBM, there is a loss of performance for the single problem, but some
reduction in factorize time. It is unlikely that there would be such a reduction in factorize time
with optimized versions of the BLAS, not currently available to us.

5.2 The use of the BLAS

We have designed our codes so that the full code can use Levell BLAS, Level 2 BLAS, or
Level 3 BLAS with a choice of block size. Tables 9 and 10 demonstrate that there is some
advantage in using Level 3 BLAS on all three platforms.

23

First Analyse Fast Solve Solve
Fact. + Fact. Fact. Ax=b ATX b

eRAY lower q. 1.03 1.01 1.09 1.07 1.07
median 1.13 1.04 1.24 1.18 1.21
upper q. 1.26 1.06 1.43 1.30 lAO

SUN lowerq. 1.01 1.00 1.06 1.02 1.00
median 1.19 1.08 1.22 1.04 1.00
upper q. 1.33 1.15 1.37 1.07 1.01

IBM lowerq. 1.00 0.99 1.08 0.98 0.96
median 1.22 1.04 1.33 1.09 1.05
upper q. 1.53 1.09 1.76 1.18 1.07

Table 9. Results with Levell BLAS divided by those with Level 3 BLAS and block size 32.

First Analyse Fast Solve Solve
Fact. + Fact. Fact. Ax=b ATx=b

eRAY lower q. 1.00 1.00 0.99 1.00 1.00
median 1.15 1.04 1.17 1.00 1.00
upperq. 1.22 1.06 1.33 1.01 1.00

SUN lowerq. 0.99 1.00 1.01 1.00 1.00
median 1.04 1.02 1.05 1.00 1.00
upper q. 1.12 1.05 1.13 1.01 1.01

IBM lower q. 1.08 1.04 1.03 0.98 1.02
median 1.21 1.07 1.23 1.03 1.06
upper q. 1.33 1.11 1.41 1.08 1.10

Table 10. Results with Level 2 BLAS divided by those with Level 3 BLAS and block size 32.

First Analyse Fast Solve Solve
Fact. + Fact. Fact. Ax=b ATx=b

eRAY lower q. 1.01 1.01 1.02 1.00 1.00
median 1.02 1.01 1.03 1.01 1.00
upper q. 1.04 1.02 1.05 1.01 1.01

SUN lowerq. 0.98 0.99 0.98 1.00 1.00
median 0.99 1.00 0.99 1.00 1.00
upper q. 1.00 1.00 1.00 1.01 1.01

IBM lowerq. 1.01 0.98 0.99 0.95 0.98
median 1.04 1.00 1.03 0.99 1.00
upper q. 1.08 1.01 1.08 1.04 1.05

Table 11. Results with Level 3 BLAS with block size 16 divided by those with block size 32.

First Analyse Fast Solve Solve
Fact. + Fact. Fact. Ax=b ATx=b

eRAY lower q. 1.00 1.00 1.00 1.00 1.00
median 1.00 1.00 1.00 1.00 1.00
upper q. 1.01 1.01 1.02 1.01 1.00

SUN lower q. 1.00 1.00 1.00 0.99 1.00
median 1.03 1.01 1.03 1.00 1.00
upper q. 1.07 1.03 1.08 1.01 1.01

IBM lowerq. 0.98 0.99 0.97 0.94 1.00
median 1.00 1.00 1.01 1.00 1.04
upper q. 1.05 . 1.03 1.06 1.04 1.07

Table 12. Results with Level 3 BLAS with block size 64 divided by those with block size 32.

24

The performance is very flat as the block size is varied around the size 32. Table 11 shows
that with block size 16 we get slightly worse performance on the CRA Y and on the ruM and
unchanged performance on the SUN. Table 12 shows that with block size 64 we get slightly
worse performance on the SUN and ruM and unchanged performance on the CRAY. We have
chosen 32 for the default block size because it appears to be near optimal in all three cases and
because of the convenience of having the same value on the different machines.

5.3 The strategy for pivot selection

We have followed the recommendation of Zlatev (1980) that the search for pivots be limited
to three columns. We have found that, compared with the Markowitz strategy, this does give a
worthwhile saving in analyse time without significant loss of sparsity in the factors, as
illustrated in Table 13. To check the sensitivity of the choice of number of columns, we have
also tried two- and four-column searches. The results in Table 13 show that there is little
sensitivity.

Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

Markowitz lower q. 0.93 1.51 0.89 1.38 0.86 0.97 0.96
median 0.99 2.10 0.97 1.76 0.96 0.99 0.99
upper q. 1.04 4.18 1.02 3.20 1.02 1.00 1.00

Zlatev 2-col. lower q. 1.00 0.95 0.99 0.96 0.99 1.00 0.99
median 1.00 0.97 1.01 0.98 1.01 1.00 1.00
upperq. 1.03 1.00 1.02 1.01 1.04 1.00 1.00

Zlatev 4-col. lower q. 0.99 1.00 0.98 1.00 0.99 0.99 1.00
median 1.00 1.03 1.00 1.02 1.00 1.00 1.00
upper q. 1.04 1.06 1.01 1.04 1.04 1.01 1.01

Table 13. eRAY results with different pivot strategies divided by
those with Zlatev's 3-column search.

An example from circuit simulation provided by Norm Schryer of Bell Laboratories
(private communication) illustrates the possibility of very slow Markowitz processing. The
problem is of order 138409 and has 434918 entries. The largest block of the block triangular
form has order 63554 and dominates the analyse time. Compiling as usual on the
SPARCstation 1, but running on a SPARCstation 10 in order to get a feasible run, we found
that the analyse time increased from 82 seconds to 8901 seconds when we switched to the
Markowitz option. The factorize time was 15 seconds and the solve time was 0.02 seconds.

5.4 The block triangular form

Table 14 shows the statistics produced by MA48 on the block triangUlar form, namely

(i) the order 	of the largest non-triangular block on the diagonal of the block
triangular form,

(ii) the sum of the orders of all the non-triangular blocks on the diagonal of the block
triangular form, and

(iii) the total number of entries in all the non-triangular blocks on the diagonal of the
block triangular form (these are the entries that are passed to MA50 for analyse).

25

Case Order Order of Sum of Number Number of entries
largest block of entries in non-triangular
block orders diagonal blocks

1 663 o 0 1712 0
2 541 540 540 4285 3744
3 680 235 235 2646 1434
4 765 697 765 24382 24342
5 817 817 817 6853 6853
6 886 886 886 5970 5970
7 989 720 720 3537 2622
8 991 846 846 6027 5562
9 1107 1107 1107 5664 5664

10 1176 1174 1176 18552 18552
11 1224 1224 1224 9613 9613
12 1224 1224 1224 56126 56126
13 1374 1318 1318 8606 8350
14 822 217 392 4841 1997
15 1856 1728 1728 11360 11104
16 2021 1500 1500 7353 5495
17 2205 2205 2205 14133 14133
18 2529 1830 1830 90158 47823
19 4929 4578 4578 33185 31500
20 5300 5300 5300 21842 21842
Table 14. Statistics on the block triangularization.

Case Identifier Order Number Description

of entries

21 FS 680 1 680 2646 	 Mixed kinetics diffusion problem from
radiation chemistry. 17 chemical species and
one space dimension with 40 mesh points.

22 SHL 400 663 1712 Basis matrix from a linear programming
problem. (Also case 1.)

23 BP 1600 822 4841 Basis matrix from a linear programming
problem. (Also case 14.)

24 IMPCOL D 425 1339 	 Matrix extracted from a run of the chemical
engineering package SPEED UP modelling a
nitric acid plant.

25 IMPCOL E 225 1308 	 Matrix extracted from a run of the chemical
engineering package SPEED UP modelling a
hydrocarbon separation problem.

26 WEST0497 497 1727 Chemical engineering plant model.
27 WEST2021 2021 7353 Chemical engineering plant model. (Also case

16.)
28 WEST0989 989 3537 Chemical engineering plant model. (Also case

7.)
29 MAHINDAS 1258 7682 Economic model of Victoria, Australia.
30 ORANI678 2529 90158 Economic model of Australasia. (Also case 18.)

Table 15. The matrices used for testing the block triangular form.

For comparison, we also show the matrix order and the number of entries in the matrix. It may
be seen that there are only six (cases 1,3,7, 14, 16, and 18) where less than 75% ofthe entries
lie in the diagonal blocks. Seven of the matrices (cases 5, 6, 9, 11, 12, 17, and 20) are
irreducible, while several more are nearly so. We felt that more than six very reducible cases
would be needed to judge the block triangularization, so we chose another set of matrices
from the Harwell-Boeing collection, summarized in Table 15. The block triangularization
statistics for this collection are shown in Table 16.

26

Case Order Order of Sum of Number Number of entries
largest block of entries in non-triangular
block orders diagonal blocks

21 680 235 235 2646 1434
22 663 0 0 1712 0
23 822 217 392 4841 1997
24 425 199 199 1339 562
25 225 47 78 1308 403
26 497 92 206 1727 769
27 2021 1500 1500 7353 5495
28 989 720 720 3537 2622
29 1258 589 589 7682 4744
30 2529 1830 1830 90158 47823

Table 16. Statistics on block triangularization for the second collection.

Table 17 shows that worthwhile gains are available from block triangularization, though
only in one case is the gain dramatic and this is because the matrix is a permutation of a
triangular matrix. There are also some worthwhile storage gains.

Case Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. Ax=b ATx=b

21 1.19 1.13 1.59 1.25 1.33 1.16 0.86
22 1.20 2.18 161.51 3.30 40.96 1.70 1.12
23 1.36 1.28 2.31 1.52 1.51 0.77 0.77
24 1.33 0.94 2.00 1.15 1.68 1.07 0.86
25 1.23 0.91 2.87 1.24 1.65 0.83 0.73
26 1.39 1.24 2.19 1,45 1.70 1.03 1.00
27 1.14 0.93 1.28 1.02 1.23 0.97 0.96
28 1.15 0.95 1.27 1.04 1.22 0.97 0.97
29 1.23 1.08 1.54 1.21 1.33 1.03 0.91
30 1.31 1.20 1.96 1.37 1.68 0.98 0.90

lower q. 1.19 0.94 1.54 1.15 1.33 0.97 0.86
median 1.23 1.10 1.98 1.24 1.58 1.00 0.91
upper q. 1.33 1.24 2.31 1,45 1.68 1.07 0.97

Table 17. CRAY results without block triangularization divided by
those with it.

We found that the technique of merging blocks smaller than a threshold size came into
operation in only two cases when the threshold value was 10, our tentative default. In both
cases, there was a loss of performance, see Table 18. In the absence of further data, we have
changed our default value to 1. The runs reported in Sections 5.1, 5.2, and 5.3 used the value
10. This is not likely to affect the conclusions about other aspects of the code, particularly
since only one case is affected (case 14, which is also case 23).

27

Case Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. AX=b ATx=b

CRAY 23 1.00 1.08 1.19 1.10 1.16 1.00 0.98
25 1.00 1.14 1.47 1.19 1.21 1.08 1.03

IBM 23 1.00 1.14 1.16 1.15 1.18 0.96 1.01
25 1.00 1.08 1.33 1.14 1.09 1.16 1.06

Table 18. Results with amalgamation threshold 10 divided by those
without block amalgamation.

5.5 Comparison with calling MA50 directly

A user with a matrix that is irreducible or only slightly reducible may wish to consider calling
MAS 0 directly, provided the less convenient interface is acceptable and the additional
facilities of iterative refmement and error estimation are not required. Comparisons are shown
in Table 19. The cases that we noted as being significantly reducible (cases 1,3,7, 14, 16, 18)
constitute the upper quartile of factorize ratios. Overall, judging by the median ratios, the
direct use of MAS 0 required less storage and reduced the analyse time, but increased both
factorize times.

Case Array Analyse First Analyse Fast Solve Solve
size reqd Fact. + Fact. Fact. AX=b ATx=b

1 0.70 1.72 164.21 2.85 40.79 1.67 1.10
2 0.79 0.92 1.01 0.95 0.92 0.99 0.99
3 0.94 0.97 1.57 1.14 1.44 1.15 0.84
4 0.92 0.72 1.10 0.82 1.19 0.91 0.95
5 1.01 0.97 1.16 1.03 1.24 1.03 1.01
6 0.81 0.68 0.87 0.73 0.81 0.95 0.93
7 0.76 0.81 1.27 0.94 1.21 0.96 0.96
8 1.14 0.67 1.24 0.83 1.24 1.09 1.02
9 0.91 0.96 1.06 0.99 1.04 0.98 0.98
10 0.63 0.54 1.00 0.69 1.02 0.98 0.98
11 0.76 0.82 1.01 0.87 0.93 1.00 1.00
12 0.75 0.72 1.00 0.80 0.98 0.98 1.01
13 0.87 0.79 0.95 0.84 0.97 0.89 0.92
14 0.86 1.10 2.32 1.38 1.50 0.77 0.76
15 0.98 0.79 1.04 0.86 1.06 0.99 0.97
16 0.76 0.80 1.28 0.93 1.21 0.96 0.95
17 0.67 0.74 0.73 0.74 0.66 0.92 0.73
18 0.81 1.04 1.94 1.24 1.70 0.98 0.90
19 0.65 0.72 1.03 0.81 0.99 0.87 0.87
20 0.81 0.82 1.03 0.88 1.04 1.00 0.99

lowerq. 0.75 0.72 1.01 0.82 0.98 0.93 0.91
median 0.81 0.80 1.05 0.88 1.05 0.98 0.96
upper q. 0.92 0.97 1.28 1.01 1.24 1.00 1.00

Table 19. CRAY results with MAS 0 divided by those with MA48.

5.6 Iterative refinement and error estimation

The possible improvement in solution accuracy through using iterative refinement is well
documented. Arioli et al. (1989) discuss this and give extensive numerical experiments to
illustrate the effectiveness of the backward and forward error estimation discussed in Section
4.3.2. We do not repeat these here but rather examine the overhead in execution time caused
by invoking the various options within the solve phase of the code.

28

Table 20 summarizes the performance when the following options for the solve subroutine
MA48e are invoked:

(i) Calculate the solution without iterative refinement but with the calculation of the
relative backward errors.

(ii) 	Calculate the solution with iterative refinement and calculation of the relative
backward errors.

(iii) Calculate 	 the solution with iterative refinement, calculation of the relative
backward errors and estimation of the oo-norm of the relative error in the
solution.

Relative Also iterative Also relative error
backward errors refinement in solution
Ax=b ATx=b Ax=b ATx=b Ax=b ATx=b

lower q. 1.77 2.18 3.74 4.69 10.93 8.71
median 1.88 2.39 5.32 5.21 12.08 9.13
upper q. 1.98 2.53 5.83 6.68 13.03 10.53

Table 20. CRAY results with iterative refinement and error estimation divided by those without.

At first glance, the increase in time for the solve options seems rather high. However, the
overall times are still far smaller than factorize or analyse times and there can be substantially
more work because of these options. The amount of extra work will depend on the ratio of the
number of entries in the factors to the number in the original matrix since the latter
corresponds to the work in calculating a residual. Indeed, to obtain the backward error
estimate, three "residuals" are calculated which is clearly itself as expensive as a solution if
the factors are three times denser than the original. Option (i) involves one of these "residual"
calculations so it could well be two to three times the cost of the straightforward solution, as
we see in Table 20. The higher ratio for the transpose option is caused by the use of a dot
product rather than a vector addition in the residual calculation loops. Option (ii) will depend
on the number of iterations of iterative refinement. This is usually very low (around 2) but
there are several simple loops of length N in addition to the extra solutions and "residual"
calculations. Thus a factor of around 5 over straight solution is quite expected. The increase to
a factor of around 10 for option (iii) can also be predicted since there are usually about six
solutions required to calculate the appropriate matrix norms.

Our advice is to use JOB =1 if some other means is available for checking the solution and
JOB = 2 if not. Only in cases when the user is anxious about the accuracy of the solution need
JOB =3 or 4 be required.

5.7 	 Comparison with MA28

Since the Harwell Subroutine Library code MA28 is a benchmark standard in the solution of
sparse unsymmetric equations and because we plan that it will be replaced by MA48 I we
compare MA48 with MA28 on the three computing environments. MA28 always produces a
factorization when it performs an analysis and its only form of factorization is without
pivoting. The MA28 analyse time is therefore strictly comparable with the sum of the analyse
and factorize times of MA48, and this comparison is shown in column "Analyse + Fact.".

29

However, analyse alone or factorize with pivoting may also be needed by the user, so we also
use the MA28 analyse time to compare separately with the analyse (column "Analyse") and
first factorize (column "First Fact.") times ofMA48.

Case Array Analyse First Analyse Fast Solve
size reqd Fact. + Fact. Fact.

1 0.50 1.38 196.73 1.37 154.50 3.90
2 0.69 2.64 6.36 1.87 2.04 3.14
3 0.71 2.35 6.20 1.70 3.43 3.22
4 0.62 6.15 16.67 4.49 2.02 1.42
5 0.66 3.92 9.29 2.76 1.81 2.27
6 0.68 4.30 11.81 3.15 1.82 2.18
7 0.54 3.64 9.46 2.63 3.06 2.33
8 0.91 16.51 42.68 11.90 3.54 2.13
9 0.65 7.81 17.50 5.40 1.64 1.74

10 0.42 3.98 8.13 2.67 3.29 2.48
11 0.68 8.68 21.52 6.18 1.82 2.32
12 0.63 4.64 12.40 3.38 2.23 1.59
13 0.98 21.39 49.73 14.95 2.49 1.84
14 0.59 1.65 5.49 1.27 3.81 1.93
15 1.53 29.64 77.33 21.43 2.74 1.96
16 0.54 6.62 17.61 4.81 3.03 2.35
17 0.51 5.40 10.68 3.59 0.96 1.44
18 0.58 6.22 21.31 4.81 5.53 1.75
19 0.58 1.84 4.63 1.31 3.38 2.22
20 0.60 3.10 7.55 2.20 2.03 2.36

lower q. 0.50 2.87 7.84 2.03 1.92 1.79
median 0.69 4.47 12.10 3.26 2.61 2.20
upper q. 0.71 7.21 21.41 5.11 3.41 2.35

Table 21. CRA Y results with MA28 divided by those with MA4 8.

Case Array Analyse First Analyse Fast Solve
size reqd Fact. + Fact. Fact.

1 0.50 2.06 21.67 1.88 18.33 1.48
2 0.68 2.14 3.77 1.37 1.59 0.80
3 0.74 2.31 5.17 1.60 2.22 1.91
4 0.62 3.06 4.40 1.80 1.31 0.67
5 0.63 3.29 7.16 2.25 1.27 0.73
6 0.63 2.96 2.61 1.39 1.07 0.70
7 0.54 3.66 8.30 2.54 2.00 1.15
8 0.93 21.82 9.95 6.84 2.60 1.04
9 0.65 5.99 5.19 2.78 1.06 0.66

10 0.42 3.37 3.48 1.71 1.74 0.75
11 0.66 7.74 9.46 4.26 1.27 0.71
12 0.62 1.90 3.66 1.25 1.67 0.64
13 1.00 22.81 27.44 12.46 2.20 0.95
14 0.59 1.68 4.36 1.22 2.81 0.94
15 1.51 21.71 32.01 12.94 6.63 1.26
16 0.54 6.79 15.68 4.74 1.84 1.03
17 0.53 2.26 1.61 0.94 0.65 0.52
18 0.58 3.33 4.96 1.99 2.20 0.70
19 0.58 1.90 3.99 1.29 2.02 1.01
20 0.59 3.04 5.01 1.89 1.07 0.86

lower q. 0.50 2.20 3.88 1.38 1.27 0.70
median 0.68 3.17 5.09 1.89 1.79 0.83
upper q. 0.74 6.39 9.71 3.52 2.21 1.03

Table 22. SUN results with MA28 divided by those with MA48.

30

Case Array Analyse First Analyse Fast Solve

size reqd Fact. + Fact. Fact.

1 0.50 1.58 35.71 1.52 61.22 2.74

2 0.68 2.65 8.04 2.00 1.86 1.11
3 0.74 2.50 7.98 1.90 4.16 1.40
4 0.62 3.72 14.61 2.96 2.55 1.21
5 0.63 3.62 12.38 2.80 2.12 0.85
6 0.63 4.14 10.34 2.95 1.94 1.23
7 0.54 3.54 11.00 2.68 2.44 1.17
8 0.93 24.59 44.45 15.83 5.77 1.94
9 0.65 7.45 15.38 5.02 2.18 1.02
10 0.42 3.71 7.30 2.46 2.67 1.16
11 0.66 8.12 27.06 6.24 2.33 1.32
12 0.62 2.69 10.84 2.16 2.82 1.20
13 1.01 19.56 62.02 14.87 4.18 1.62
14 0.59 1.33 4.12 1.01 1.68 0.99
15 1.51 26.07 78.97 19.60 9.21 2.14
16 0.54 6.69 21.61 5.11 3.50 1.14
17 0.53 2.90 7.33 2.08 1.37 0.89
18 0.58 3.08 16.46 2.60 7.23 1.09
19 0.58 2.00 6.12 1.51 3.30 1.04
20 0.59 2.92 8.01 2.14 1.81 0.85

lower q. 0.50 2.67 7.99 2.04 2.03 1.03
median 0.68 3.58 11.69 2.64 2.61 1.16
upper q. 0.74 7.07 24.33 5.06 4.17 1.36

Table 23. IBM results with MA28 divided by those with MA4 8.

6 Acknowledgements

We wish to thank our colleagues Nick Gould and Jennifer Scott, John Gilbert of Xerox, the
Associate Editor, Michael Saunders, and the two non-anonymous referees, John Lewis and
Zahari Zlatev, for their many helpful suggestions for improving the presentation.

Appendix. Solving full sets of linear equations
For the full-matrix processing we use towards the end of the factorization, we need to consider
the solution of dense systems

Ax=b, (A. I)

where A is of order m by n. The mathematical notation used in this appendix is independent of
that ofthe main part ofthe paper. The matrix A here is the matrix F of equation (3.3.4) and the
vector b is the vector y 2' We feel that it is easier to understand the ideas using uncluttered
'local' notation. For consistency with LAPACK (Anderson et al., 1992), we work here with a
factorization in which the lower-triangular matrix has a unit diagonal.

We had hoped to use the LAPACK routines SGETRF and SGETRS for this purpose, but
their treatment of the rank-deficient case is unsatisfactory since no column interchanges are
included.

31

Our factorization algorithm proceeds as follows. We first describe the case where the pivot
threshold is zero. At a typical stage, we look in the next column for a pivot. We either find one
and perform the pivotal operations or interchange the column with the last column that has not
already been interchanged. At the start of step k, we have the factorization

P A Q _ (L k) (Uk Vk Wk)
k k - Mk I Sk 0 ' (A2)

where Pk and Q k are permutation matrices, L k is unit lower triangular and of order j k - 1, Uk
is upper triangular of order j k - 1, and W k has k - j k columns. Initially, k I; j I =I; P I and QI

are identity matrices; L I , M I , and WI have no columns; Uland VI have no rows; and
S I = A. We find the largest entry of the first column of Sk' If this is nonzero, we interchange
rows to make it the leading entry of Sk and perform the pivotal operations; otherwise, we
interchange the first and last columns of Sk' In the former case, j k+1 has the value j k + 1; in the
latter case,h+1 has the valuejk' The row interchange is also performed in Mk and the column
interchange is also performed in Vk. The final factorization is

(A3)P AQ= (~ I) (U 'ej).
Solving A x= b consists of the steps

c=Pb (A4)

(AS)

(A.6)

x=Qe. (A7)

We solve (A6) by setting ez=0 and finding e1 by back-substitution through U. This means
that d z is not required so that in (AS) we need only forward substitute through L to find d I'

Similarly, solving ATx = b consists of the steps

c QTb (A.8)

(A9)

(A 10)

X pT e. (All)

Here, d I is calculated by forward substitution through UT and d z is set to zero. In turn, this

means that ez is zero and el is calculated by back-substitution through LT.

Note that neither M nor W is used in either case.

There is no real loss of generality in setting the undetermined coefficients of the solution to
zero. If other values are required, say those of the vector y, we may solve the equation

Ax=b Ay or, ATx=b ATy

to yield a solution x +y with the desired components.

Another reason for rejecting SGETRF is that it tests only for exact zeros. We test for exact

32

zeros by default, but wish to offer the option of a test against a threshold. When this option is
active, if the largest entry of the first column of Skis below the threshold, we set the nonzero
entries of this column to zero. The final factorization will be as if we had commenced with a
matrix whose entries differ from those of A by at most the threshold.

A.l Factorization using BLAS at Level 1, 2, or 3

MA5 0 E performs the factorization using Level 1 BLAS. Step k begins with the form shown in
equation CA.2) with each submatrix overwriting the corresponding submatrix of A in the

obvious way except that Vk and S k have not been calculated. The first column of (~:) is

calculated from the corresponding column of A by j k-1 calls of the BLAS routine SAXPY,

each of which adds a multiple of a column of (~k)' If the largest entry of the first column of

Skis greater than the pivot threshold e, it is chosen as pivot, j k+l is set equal to j k +1 and the

last column of (~+l) is constructed. Otherwise, j k+l is set equal to j k and the first column
k+l

Wk+1 is constructed.

MA50F performs the factorization using Level 2 BLAS and is based on the LAPACK
subroutine SGETF2. Step k begins with the form shown in equation CA.2), but now only the
submatrix S k has not been calculated. The first column of Skis calculated with a call of the
Level 2 BLAS routine SGEMV to multiply Mk by the first column of Vk. If a pivot is found,
the Level 2 BLAS SGEMV is used to form the last row of Vk+1 • It does this by subtracting the
first row of Mk times Vk, excluding its first column, from the first row of Sk' excluding its
first entry. A simple calculation shows that the number of operations performed within a step
outside the Level 2 BLAS is OCm+n).

MA50G performs the factorization using Level 3 BLAS and is based on the LAPACK
subroutine SGETRF. The matrix is processed in blocks of NB columns, apart from the final
block which may have less columns. The processing of a block begins with the form shown in
equation CA.2), now with all submatrices calculated. The leading NB columns of Skare treated
in just the same way as A itself is treated by MA5 OF, except that when no entry of a column is
big enough to be a pivot, an interchange is made with the last column of Sk rather than the last
column of the block. At the completion of the block (that is, when NB pivots have been
found), the row interchanges generated within it are applied to the other columns of Mk and
S k (column by column to avoid data movement), and the operations of the block are applied to
the remaining columns of Vk and Sk using the Level 3 BLAS STRSM and SGEMM:. A simple
calculation shows that the total number of operations performed outside the Level 3 BLAS is
O(n(NBm+n». Note that the column interchange that follows a failure to find a pivot does
not usually lead to a reduction of the block size, since a column from outside the block is
brought in. However, this is not the case for the final block, where the block size is reduced by
one for each such column interchange.

A.2 Solution using BLAS at Levell or 2

MA50H solves a set of equations A x =b or ATX =b using the factorization produced by
MA50E, MA50F, or MA50G, whose output data are identical. Each actual forward or
back-substitution operation associated with L or U is performed either with the Level 2 BLAS
STRSV or by a loop involving calls to SAXPY or SDOT. An argument controls which of these

33

happens. Unlike the case for factorization, the logic is very similar for the two cases, so there
is no need for separate subroutines.

MASOH begins by finding the calculated rank r by searching IPIV from the back for a
positive value. We expect this search to be short on the assumption that a rank much less than
min(m,n) is unusual.

IfAx =b is to be solved, we first apply r interchanges to the incoming vector to produce the
vector c of equation (AA). The row operations encoded in L are applied to calculate d 1 from
c1, see equation (A5). Back-substitution through U is used to calculate e 1 and e2 is set to
zero, see equation (A.6). Finally, the column interchanges, if any, are applied, see equation
(A7).

A similar sequence of steps is applied when AT x = b is to be solved.

For the Level 1 BLAS code, we have followed the lead of LAPACK in accessing Land U
by columns with SAXPY inner loops such as

b(l:k-l) b(l:k-l) A(l:k-l/k)*b{k)

when solving A x = b, and accessing L T and UT by rows with SDOT inner loops such as

DOT_PRODUCT(A(l:k-l/k)/b(l:k-l))

in order to access contiguous elements of the array A.

References

Anderson, E., Bai, Z., Bischof, C, Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A,
Harnmarling, S., McKenney, A, Ostrouchov, S., and Sorensen, D. (1992). LAPACK users'
guide. SIAM, Philadelphia.

Anon (1993). Harwell Subroutine Library Catalogue (Release 11). Theoretical Studies
Department, AEA Technology, Harwell.

Arioli, M. Demmel, J. W., and Duff, I. S. (1989). Solving sparse linear systems with sparse
backward error. SIAM J. Matrix Anal. Appl. 10, 165-190.

Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling, S. (1990). A set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Softw. 16, 1-17.

Dongarra, J. J., Du Croz, 1., Hammarling, S., and Hanson, R. J. (1988). An extended set of
Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Softw. 14, 1-17 and 18-32.

Duff, I. S. (1977). MA28 a set of Fortran subroutines for sparse unsymmetric linear
equations. Report AERE R8730, HMSO, London.

Duff, I. S. (1981a). On algorithms for obtaining a maximum transversal. ACM Trans. Math.
Softw. 7,315-330.

Duff, I. S. (1981b). Algorithm 575. Permutations for a zero-free diagonal. ACM Trans. Math.
Softw. 7, 387-390.

34

Duff, I. S. (1984). The solution of nearly symmetric sparse linear systems. Computing

methods in applied sciences and engineering, VI. Edited by R. Glowinski and l-L. Lions.

North-Holland, Amsterdam, New York, and London, 57-74.

Duff, I. S. and Reid, J. K. (1978a). An implementation of Tarjan's algorithm for the block

triangularization of a matrix. ACM Trans. Math. Softw. 4, 137-147.

Duff, I. S. and Reid, J. K. (1978b). Algorithm 529. Permutations to block triangular form.

ACM Trans. Math. Softw. 4, 189-192.

Duff, I. S. and Reid, J. K. (1979). Some design features of a sparse matrix code. ACM Trans.

Math. Softw. 5, 18-35.

Duff, I. S. and Reid, J. K. (1993). MA48, a Fortran code for direct solution of sparse

unsymmetric linear systems of equations. Report RAL-93-072, Rutherford Appleton

Laboratory, Oxfordshire.

Duff, I. S., Erisman, A. M., and Reid, J. K. (1986). Direct methods for sparse matrices. Oxford

University Press, London.

Duff, I. S., Grimes, R G., and Lewis, J. G. (1989). Sparse matrix test problems. ACM Trans.

Math. Softw. 15 1-14.

Duff, I. S., Grimes, R G., and Lewis, J. G. (1992). Users' guide for the Harwell-Boeing sparse

matrix collection (Release 1). Report RAL-92-086, Rutherford Appleton Laboratory,

Oxfordshire.

Eisenstat, S. C. and Liu, J. W. H. (1993). Exploiting structural symmetry in a sparse partial

pivoting code. SIAM 1. Sci. Stat. Comput. 14,253-257.

Gilbert, J. Rand Peierls, T. (1988). Sparse partial pivoting in time proportional to arithmetic

operations. SIAM 1. Sci. Stat. Comput. 9, 862-874.

Hager, W. W. (1984). Condition estimators, SIAM 1. Sci. Stat. Comput. 5,311-316

Higham, N. J. (1988). Fortran codes for estimating the one-norm of a real or complex matrix,

with applications to condition estimation. ACM Trans. Math. Softw. 14,381-396.

Lawson, C. L., Hanson, R J., Kincaid, D. R, and Krogh, F. T. (1979). Basic linear algebra

subprograms for Fortran use. ACM Trans. Math. Softw. 5, 308-325.

Markowitz, H. M. (1957). The elimination form of the inverse and its application to linear

programming. Management Sci. 3,255-269.

Oettli, W. and Prager, W. (1964). Compatibility of approximate solution of linear equations

with given error bounds for coefficients and right-hand sides. Numerische Math. 6,405-409.

Pothen, A. and Fan, C-J. (1990). Computing the block triangular form of a sparse matrix.

ACM Trans. Math. Softw. 16, 303-324.

Skeel, RD. (1980). Iterative refinement implies numerical stability for Gaussian elimination.

Math. Comp. 35, 817-832.

Tarjan, R E. (1972). Depth-first search and linear graph algorithms. SIAM 1. Computing 1,

146-160.

Zlatev, Z. (1980). On some pivotal strategies in Gaussian elimination by sparse technique.

SIAM 1. Numer. Anal. 17, 18-30.

35

Zlatev, Z. (1991). Computational methods for general sparse matrices. Kluwer Academic
Publishers, Dordrecht, Boston, and London.

36

