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Abstract 

A next-to-Ieading order QCD analysis of spin asymmetries and structure functions in 

polarized deep inelastic lepton nucleon scattering is presented within the framework of 

the radiative parton model. A consistent NLO formulation of the Q2-evolution of polarized 

parton distributions yields two sets of plausible NLO spin dependent parton distributions 

in the conventional MS factorization scheme. They respect the fundamental positivity 

constraints down to the low resolution scale Q2 = J.tJvLO = 0.34 Ge y2. The Q2-dependence 

of the spin asymmetries Af,n,d(x, Q2) is similar to the leading-order one in the range 

1 :::; Q2 :::; 20 Gey2 and is shown to be non-negligible for x-values relevant for the analysis 

of the present data and possibly forthcoming data at HERA (HERMES). 



1 Introduction 

Recently, a leading order (LO) QeD analysis of polarized deep inelastic lepton nucleon 

scattering has been performed [1] within the framework of the radiative parton model. 

The first moments ll.f(Q2) of polarized parton distributions rSf(x, Q2), 

(1.1 ) 


where f u, u, d, d, s, 5, g, were subject to two very different sets of theoretical constraints 

related to two different views concerning the flavor SU(3) [SU(3)j] symmetry properties of 

hyperon J1-decays. One set (,standard' scenario) assumed an unbroken SU(3)j symmetry 

between the relevant matrix elements while the other set ('valence' scenario) assumed an 

extremely broken SU(3)j symmetry reflected in relating [2] the hyperon J1-decay matrix 

elements to the first moments of the corresponding valence distributions. Both scenarios 

gave satisfactory descriptions [1] of the measured spin-asymmetries [3-9] Ai,n(x, Q2) ~ 

gf,n(x, Q2)jFj'n(x, Q2), although the polarized gluon density rSg(x,Q2), which enters in 

LO only via the Q2-evolution equations, was only weakly constrained by present data. 

The total helicity carried by quarks 

ll.E(Q2)= 2: (ll.q(Q2)+ll.q(Q2)) , (1.2) 
q=u,d,s 

which is Q2-independent in LO, turned out to be ll.E ~ 0.3 in both scenarios with an 

average total gluonic helicity ll.g(Q2 = 4 Ge y2) ~ 1.5. A specific feature of our radiative 

LO analysis is that the polarized leading twist parton densities rSf(x, Q2) are valid down 

to Q2 = ""io ~ 0.23 Gey2 and that the fundamental positivity constraints 

(1.3) 


are respected down to this low resolution scale Q2 = ""io as well. The 'standard' scenario 

requires a finite, SU(3)j broken, total strange sea helicity of ll.s = ll.s rv -0.05 in order 

to account for a reduction of rf with respect to the Gourdin and Ellis and Jaffe estimate 

[10] 

rl,EJ = 112 (F +D) + 3~ (3F D) ~ 0.185 (1.4) 
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where 

(1.5) 


Within the 'valence' scenario, on the contrary, a negative light sea helicity LJ.U = LJ.d = 
LJ.q ~ -0.07 suffices (LJ.S = LJ.S = 0) for reducing ri,EJ' Furthermore, in both scenarios 

we [1] predict rr ~ 0.15 and r~ ~ -0.06 in agreement with recent experiments [5-9], with 

the Bj!2irken sum rule being manifestly satisfied. 

While our LO analysis was being completed, a full next-to-leading order (NLO) calcu­

lation of all polarized two-loop splitting functions opS)(x), i,j q,g, in the conventional 

MS factorization scheme has appeared for the first time [11]. It is the purpose of this arti­

cle to present first a consistent NLO formulation of spin-dependent parton distributions, 

making use of the NLO results of ref. [11] , in particular for (Mellin) n-moments of struc­

ture functions and parton densities where the solutions of the NLO evolution equations 

can be obtained analytically. Using these formal results we then proceed to perform a 

quantitative NLO analysis of Ai,n(x, Q2) and gi,n(x, Q2), and will present two sets of NLO 

oj(x, Q2) for the two scenarios discussed at the beginning. Since most NLO analyses con­

cerning unpolarized hard processes and parton distributions have been performed in the 

MS factorization scheme, it is convenient to remain within this factorization scheme also 

for polarized hard processes and spin-dependent parton distributions. This is particularly 

relevant for the parton distributions which have to satisfy the fundamental positivity 

constraints (1.3) at any value of x and scale Q2, as calculated by the unpolarized and 

polarized evolution equations, within the same factorization scheme. 

NLO Parton Distributions and their Q2-Evolution 

Measurements of polarized deep inelastic lepton nucleon scattering yield direct informa­

tion [3-9,12] on the spin-asymmetry 

AN( Q2) gf'(X,Q2) gf'(X,Q2)rv 
(2.1 )

1 x, - Ff(x, Q2) - Ff(x, Q2)/ [2x(1 +RN(x, Q2))] , 

N p,n and d = (p+ n)/2, and R - FL/2xFl = (F2 - 2xFd/2xFI, where sub dominant 

contributions have, as usual, been neglected. In NLO, Ai"(x, Q2) is related to the polarized 
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(8 fN) and unpolarized (fN) quark and gluon distributions in the following way: 

gf(X,Q2) = ~ ~e; {8qN(X,Q 2) +8ijN(x,Q2) + 

+ Ct8~~2) [8Cq * (8qN 8ijN) + y8Cg *89] } (2.2) 

with the convolutions being defined by 

(2.3) 


and where the appropriate spin-dependent Wilson coefficients in the MS scheme are given 

by (see [11], for example, and references therein) 

3 1 1 x
8Cq(x) = CF[(l +x') (lni~-xX)t 1 _ x 

2 
lnx2 (1 - x)+ 

+2 +x - (~ + ~2) 8(1 - X)] (2.4) 

8Cg (x) = 2TJ 
[(2x - 1) (I-XIn -x- 1) +2(1 - x)] (2.5) 

with CF = 4/3 and TJ = f /2. Here f denotes, as usual, the number of active flavors 

(f = 3). The NLO expression for the unpolarized (spin-averaged) structure function 

Ff(x,Q2) is similar to the one in (2.2) with 8f(x,Q2) -+ f(x,Q2) and the unpolarized 

Wilson coefficients are given, for example, in [13]. Henceforth we shall, as always, use the 

notation 8qP 8q and qP =q. Furthermore the NLO running coupling is given by 

Cts ( Q2) rv 1 f31 InInQ2/Ak 
(2.6)

411" - f30 In Q2 / A~s f33 (In Q2 / A~s) 2 

with f30 11 - 2f/3, f31 = 102 - 38f/3 and A~~ being given by [14] 

A(3,4,5) = 248 200 131 MeV 
MS " . 

The number of active flavors f in Cts (Q2) was fixed by the number of quarks with m~ :::; 

Q2 taking me = 1.5 Ge V and mb = 4.5 Ge V. The marginal charm contribution to gf, 

stemming from the subprocess ,*g -+ cc [15], will be disregarded throughout. The charm 

contribution to Ff is also small in the kinematic range covered by present polarization 

experiments. 
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For calculating the NLO evolutions of the spin-dependent parton distributions 6f(x, Q2) 

in (2.2) we have used the well known analytic NLO solutions in Mellin n-moment space 

(see, e.g., refs.[13, 16, 17]) with the n-th moment being defined by 

101 n6fn(Q2) dx x - l6f(x, Q2) . (2.7) 

These Q2-evolutions are governed by the anomalous dimensions l 

as 6 (0)71. + (as) 26 (1)71.( ) = (2.8)6,NS 41f Iqq 41f INS 1] , 1] ±1 

6, 1!. as 6 (O)n (as) 26 p)n (2.9)Z, J q,gZJ 41f lij 41f ItJ , 

whose detailed n-dependence will be specified in the Appendix. The non-singlet (NS) 

parton densities evolve according to [13, 16] 

6 n (Q2) = [1+ as(Q2) - as(Qg) (61~ln(1]) _ (3161~~)n) 1(as(Q2))S'Y~~)n/2f3°6qn (Q2) 
qNST) 41f 2{30 2{35 all (Q5) NST) 0 

(2.10) 

with the input scale Q5 ,..t'ivLO = 0.34 GeV2 referring to the radiative [14] NLO input 

(PNLO = PHO) to be discussed later. Furthermore, opposite to the situation of unpolarized 

(spin-averaged) parton distributions [16], 6qNST):::::.+l corresponds to the NS combinations 

6u - 6u 6uv and 6d - 6d - 6dv , while 6qNS T):::::.-l corresponds to the combinations 

6q +6ij appearing in the NS expressions 

6q3 - (6u + 6u) - (6d + 6d), 6q8 . (6u + 6u) + (6d + 6d) - 2(68 + 6s) (2.11) 

It should be noted that the first (n 1) moments 6q}.ys_ =!j.qNS- of these latter 

SU(3)J diagonal flavor non-singlet combinations do not renormalize, Le. are indepen­

dent of Q2, due to the conservation of the flavor non-singlet axial vector current, i.e. 

6,J~)l 6,~11(1] = 1) = 0 (see Appendix). The evolution in the flavor singlet sector, 

i.e. of 

6L;n( Q2) == I.: [6qn(Q2) +6ijn( Q2)] (2.12) 
q:::::.'U,d,s 

and 6gn 
( Q2) is governed by the anomalous dimension 2 x 2 matrix (2.9) with the explicit 

solution given by eq.(2.9) of ref. [16] where I -+ 6, as given in the Appendix. 

1Alternatively one can of course use instead the LO and NLO splitting functions OPi~o)n _o/~)n /4 
and opS)n = _o/g)n /8, respectively (see, e.g., ref.[17]). 
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Having obtained the analytic NLO solutions for the moments of parton densities, 

8fn( Q2), it is simple to (numerically) Mellin-invert them to Bj~rken-x space as described, 

for example, in [16] or [17]. The so obtained 8f(x,Q2) have to be convoluted with the 

Wilson coefficients in (2.2) to yield the desired gl (x, Q2). Alternatively, one could insert 

8fn(Q2) directly into the n-th moment of eq.(2.2), 

g;(Q2) = ~ ~ e~ {8qn (Q2) + 8it(Q2) + 

+ as~~2) [8C; (8qn( Q2) +8lt(Q2)) +78C; 8gn(Q2)1 } (2.2') 

(2.5') 

with Sk(n) defined in the Appendix. The full expression (2.2') can now be directly (nu­

merically) Mellin-inverted [16, 17] to yield gl (x, Q2) without having to calculate any con­

volution (2.3). 

It should be noted that the first (n = 1) moment r1 (Q2) gi(Q2) in (1.5) is, according 

to (2.2'), simply given by 

(2.13) 

where we have used the definition (1.1) and 8C: -3CF /2 and 8C: 0 according to 

(2.4') and (2.5'), respectively. Thus, the total gluon helicity !lg(Q2) does not directly 

couple to r 1(Q2) due to the vanishing of the integrated gluonic coefficient function in the 

MS factorization scheme. This vanishing of !lCg =8C:, which has been some matter of 

dispute during the past years (for reviews see, for example, [12, 18, 19]) originates from 

the last term in (2.5) proportional to 2(1 x). Since this term derives from the soft 

non-perturbative collinear region [20] where kf m~ « A2 it has been suggested [18,rv , 

21-23] to absorb it into the definition of the light (non-perturbative) input (anti)quark 

distributions {q) (x, Q2 = Q5). This implies that, instead of 8Cg ( x) in (2.5), one has 

(2.14) 
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which refers to some different factorization scheme [18, 22, 23] with the n-th moment 

given by 

8i]n = oCn 2T 2 (2.14')
9 9 fn(n+1) 

and oC; given in (2.5l Thus 6.0g 00; = -2Tf and 6.g( Q2) would couple directly 

[21] to rl(Q2) in (2.13) via -(as /67r)6.g(Q2) according to the gluonic term in the curly 

brackets of (2.2') for f 3 flavors. Therefore the gluonic contribution on its own could 

account for a reduction [18, 21, 22] of the Ellis-Jaffe estimate (1.4), as required by exper­

iment, without the need of a sizeable negative total (strange) sea helicity as discussed in 

the Introduction. One could of course choose to work within this particular factorization 

scheme or any other scheme. In this case, however, one has for consistency reasons to 

calculate all polarized NLO quantities (oCr, o,il)n, etc.), and not just their first (n = 1) 

moments, in these specific schemes as well as also NLO subprocesses of purely hadronic 

reactions to which the NLO parton distributions are applied to. The transformation2 

oC; -+ 00; in (2.14') implies of course also a corresponding modification [13, 24] of the 

NLO anomalous dimensions o,il)n -+ o;Yil)n. 

Quantitative NLO Analysis 

In fixing the polarized NLO input parton distributions of(x, Q2 = J-lJ.no) we follow closely 

our recent LO analysis [1]. We still prefer to work with the directly measured asymmetry 

A{'l(x, Q2) in (2.1), rather than with the derived gi" (x, Q2), since possible non-perturbative 

(higher twist) contributions are expected to partly cancel in the ratio of structure functions 

appearing in Ai"(x,Q2), in contrast to the situation for gi"(X,Q2). Therefore we shall 

use all presently available data [4-9] in the small-x region where Q2 ~ 1 GeV2 without 

bothering about lower cuts in Q2 usually introduced in order to avoid possible higher twist 

effects as mandatory for analyzing gi" (x, Q2) in the low-Q2 region. The analysis affords 

some well established set of unpolarized NLO parton distributions f(x, Q2) for calculating 

2This transformation cannot even be uniquely defined for the spin dependent case. This is partly in 
contrast to the unpolarized situation [13, 24, 16] where the energy-momentum conservation constraint 
(for n =2) is used together with the assumption of its analyticity in n. 
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FIN(X, Q2) in (2.1) which will be adopted from ref.[14], i.e. our recent updated NLO (MS) 

dynamical distributions valid down to the radiative input scale Q2 = I-t'TvLO 0.34 Ge V2. 

The searched for polarized NLO parton distributions of(x, Q2), compatible with present 

data [4-9] on Ai"(x, Q2), are constrained by the positivity requirements (1.3) and for the 

SU(3), symmetric 'standard' scenario by the sum rules 

~u +~u ~d - ~J 9A = F + D 1.2573 ± 0.0028 (3.1) 

~u +~u +~d +~J - 2(~s +~s) = 3F D = 0.579 ± 0.025 (3.2) 

with the first moment ~f defined in (1.1) and the values of 9A and 3F - D taken from 

[25]. It should be remembered that the first moments ~q3,8 of the flavor non-singlet 

combinations (2.11) which appear in (3.1) and (3.2) are Q2-independent also in NLO due 

to OI~rCfl = -1) = 0, according to eq.(A.9). 

As a plausible alternative to the full SU(3), symmetry between charged weak and 

neutral axial currents required for deriving the 'standard' constraints (3.1) and (3.2), we 

consider a 'valence' scenario [1, 2] where this flavor symmetry is broken and which is 

based on the assumption [2] that the flavor changing hyperon ,a-decay data fix only the 

total helicityof valence quarks ~qV(Q2) ~q - ~q : 

~UV(f-LF'lLO) - ~dV(f-L;'lLO) 9A = F + D = 1.2573 ± 0.0028 (3.1') 

~UV(f-L1VLO) + ~dV(f-L~LO) 3F D = 0.579 0.025 . (3.2') 

Although at the input scale ~U(f-L7vLO) ~J(f-L7vLO)' isospin symmetry will be (marginally) 

broken by the NLO evolution, i.e. ~U(Q2) ~J(Q2) for Q2 > f-L7vLO' In addition 

we shall assume a maximally SU(3), broken polarized strange sea input os(x,f-L7vLO) = 

os(x, f-L7vLO) 0 in our 'valence' scenario, which in addition is compatible with the SU(3), 

broken unpolarized radiative input s(x, f-LJVLO) 0 of ref.[14]. Such a choice is feasible in 

the 'valence' scenario since, due to eq.(2.13) and (2.11), we have in general 

rl,n(Q2) = [±112~q3 + 316~q8 + ~~2:(Q2)] (1- as~Q2)) (3.3) 

Since ~uv(Q2) ~dv(Q2) and ~uv(Q2) +~dv(Q2) decrease only marginally with Q2 as 

compared to their input values in (3.1 ') and (3.2') [ef. Table l' below]' and furthermore the 
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dynamical isospin breaking ~u =J ~d at Q2 > f-L7vLo is small, eq.(3.3) can be approximated 

by 

5
fi,n( Q2) ,.,. [± 1~ (F + D) + 36(3F - D) + 

+118 (10~q(Q2) + ~s(Q2) + ~s(Q2)) 1(1 as~Q2)) (3.4) 

Therefore a light polarized sea ~q =(~u +~d)/2 < 0 can account for the reduction of 

the Ellis-Jaffe estimate (1.4) for fi(Q2), say, as required by recent experiments [5, 6]. 

In the 'standard' scenario we need, on the contrary, a finite sizeable ~s(Q2) < 0 since, 

due to eq.(2.13) and (2.11), 

fi,n (Q2) [± 1~ ~q3 + 356~q8 + ~ (~s(Q2) + ~s(Q2))] (1 _ as~Q2)) (3.5) 

with the Q2-independent flavor non-singlet combinations ~q3,8 being entirely fixed by 

eqs.(3.1) and (3.2); for the singlet combination in (1.2) we used ~I:(Q2) ~q8 + 
3(~S(Q2) + ~S(Q2)). It should be noted that, in contrast to the LO [1] case, a finite 

~s(Q2) will be generated dynamically in NLO for Q2 > f-L7v LO even for a vanishing input 

~S(f-L7vLO) = 0 due to the non-vanishing NLO ~1'~!) in (A.9): The resulting 'dynamical' 

~s(Q2) < 0 is about an order of magnitude too small to comply with recent experiments 

[5, 6] which typically yield, for example, fi(Q2 = 3 Gey2) ~ 0.12 - 0.13, i.e. sizeably 

smaller than the naive estimate (1.4). We therefore have to implement a finite strange 

sea input ~S(f-L7vLO) = ~S(f-L7vLO) < 0 for the 'standard' scenario, in order to arrive at 

~S(Q2 = 3 10 Gey2) rv -0.05 as required [1] by recent experiments. 

Apart from applying the above scenarios for the polarized input distributions to 

Af"(x, Q2) rather than to gf"(x, Q2), the main ingredient of our NLO analysis is the 

implementation of the positivity constraints (1.3) down to [14] Q2 = f-L7vLo 0.34 Gey2 

which is not guaranteed in the usual (LO) studies done so far (recently, e.g., in [26-29]) 

restricted to Q2 ~ Q5 = 1 - 4 Ge y2. We follow here the radiative (dynamical) concept 

which resulted in the successful small-x predictions of unpolarized parton distributions 

as measured at HERA [14, 16, 30]. A further advantage of this analysis is the possibil­

ity to study the Q2-dependence of Af"(x, Q2) in the small-x region over a wide range of 
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Q2 which might be also relevant for the forthcoming polarized experiments (HERMES) 

at HERA. In addition it will be important to learn about the reliability of perturbative 

calculations by comparing the LO with the NLO results; a reasonable perturbative sta­

bility of all radiative model predictions will be indeed observed for measurable quantities 

such as Af'(x, Q2) and gf'(x, Q2), as is the case for spin-averaged deep inelastic structure 

functions [14, 30]. 

Turning to the determination of the polarized NLO parton distributions rS f( x, Q2) it is 

helpful to consider some reasonable theoretical constraints concerning the sea and gluon 

distributions, in particular in the relevant small-x region where only rather scarce data 

exist at present, such as color coherence of gluon couplings at x ~ 0 and helicity retention 

properties of valence densities as x -+ 1 [31]. We follow here very closely the procedure 

and ansatze of ref.[l]. Our optimal NLO distributions at Q2 f.tJVLO = 0.34 GeV2 subject 

to these constraints were found to be 

rSuv( x, f.t;VLO) 0.7083 XO. 2 uv(x, f.t~LO) 

rSdV(X,f.t~LO) -0.7696 x°.41 dV(X,f.t~LO) 

rSq( x, f.t~LO) -3.552 x(l - x )5.8 q(x, f.t;'no) 

rSs( x, f.t~LO) rSs(x, f.t~LO) = 0.72 rSq(x, f.t~LO) 

rSg(x, f.t~LO) 3.846x(1 - x)5.54g(X,f.t~LO) (3.6) 

for the 'standard' scenario (corresponding to X2 = 100.5/92 d.o.f.) respecting eqs.(3.1) 

and (3.2)3 which are the basis of almost all analyses performed so far. For the SU(3)J 

broken 'valence' scenario, based on the constraints (3.1 ') and (3.2'), we have 

rSuv(x, f.t~LO) 0.7206 xO. 23 uv(x, f.t~LO) 

rSdv(x, f.t~LO) -0.6913 XO. 3 dv(x, f.t~LO) 

rSq( x, f.t~LO) -3.451x(1 X)6q(x,f.t~LO) 

rSs(x, f.t~LO) rSs(x, f.t~LO) 0 

SIt is interesting to note that, within our radiative approach with its longer Q2-evolution 'distance', 
a finite (negative) strange sea input os(x, fJJvLO) is always required by present data even if one uses o(;g 
in (2.14) or (2.14') [21-23]. For the latter case, os has to be at least half as large as in (3.5) which is 
based on the MS oCg in (2.5) or (2.5'). This holds true even for a maximally saturated input gluon 
[og(x, fJ;"LO) =g(x, fJ;"LO)] to be discussed below. 
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3.147 x(1 - x )309 g(X, f1~LO) (3.6') 

which corresponds to X2 97.9/92 d.oJ. The unpolarized input densities are taken 

from ref.[14] and, for obvious reasons, we have not taken into account any 5U(2), break­

ing input (Ju Jd) as is apparent from our ansatz for Jq == Ju = Jd proportional to 

q == (u + d)/2 which should be considered as the reference light sea distribution for the 

positivity requirement (1.3). The fact that Js(x, f1J.no) =1= 0 in (3.6) contradicts some­

what our purely radiative input [14] s(x, f1~LO) = s(x, f1~LO) = 0, but for perturbatively 

relevant values of Q2, Q2 .2:: 0.6 Gey2, where the leading twist-2 dominates in the small-x 

region [14], the positivity inequality (1.3) is already satisfied. In this respect the input 

(3.6') for the 'valence' scenario with the extreme SU(3), breaking ansatz Js(x, f1~LO) = 0 

is more consistent as far as our radiative (dynamical) approach is concerned. Finally, 

similarly agreeable 'valence' scenario fits to all present asymmetry data shown below 

(with a total X2 of 98 to 102 for 92 data points) can be also obtained for a fully sat­

urated (inequality (1.3)) gluon input Jg(x,Jt~LO) = g(X,f1~LO) as well as for the less 

saturated Jg(x,f1~LO) = xg(x,f1~LO)' A purely dynamical [32] input Jg(X,f1~LO) = 0 

is also compatible with present data, but such a choice seems to be unlikely in view of 

Jq(x,f1~LO) =1= 0; it furthermore results in an unphysically steep [32] Jg(x, Q2 > f1~LO)' 

being mainly concentrated in the very small-x region x < 0.01, as in the corresponding 

case [16, 33] for the unpolarized parton distributions in disagreement with experiment. 

Similar remarks hold for the 'standard' scenario. 

A comparison of our results with the data on A~(x, Q2) is presented in Fig.1. The LO 

results [1] are indistinguishable from the NLO ones in Fig.1 and are therefore not shown 

separately. As already mentioned, fit results using a 'saturated' gluon Jg = 9 or Jg xg, 

or even Jg = 0 at Q2 = f1~LO are very similar to the ones shown in Fig.1. Note that 

A~ (x, Q2) -+ const. as x -+ 1. The Q2-dependence of A~(x, Q2) is presented in Fig.2 for 

some typical fixed x values for 1 :::; Q2 :::; 20Gey2 relevant for present experiments. The 

predicted scale-violating NLO Q2-dependence is similar to the LO one; for x > 0.01 this 

is also the case for the two rather different input scenarios (3.1), (3.2) and (3.1'), (3.2'). 

In the (x, Q2) region of present data [4-9], A)'{x, Q2) increases with Q2 for x > 0.01. 

Therefore, since most present data in the small-x region correspond to small values of 
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Q2;:':; 1 Gey2, the determination of gf(x, Q2) at a larger fixed Q2 (5 or 10 Gey2, say) by 

assuming Ai(x, Q2) to be independent of Q2, as is commonly done [4-9], is misleading 

and might lead to an underestimate of if by as much as about 20%, in particular in 

the small-x region x;:.:; 0.02. (For x;S 0.01 the effect will be opposite.) The situation 

is opposite, although less pronounced, for -Af(x, Q2) shown in Fig.2. This implies that 

Ig1'(x, Q2)1 might be overestimated at larger fixed Q2 by assuming A1(x, Q2), as measured 

at small Q2, to be independent of Q2. It is obvious that the assumption of approximate 

scaling for A1(x, Q2) is therefore unwarranted and, in any case, theoretically not justified 

as soon as gluon and sea densities become relevant, due to the very different polarized 

and unpolarized splitting functions (anomalous dimensions) in the flavor singlet sector. 

In Fig.3 we compare our NLO results for gf'(X,Q2) with EMC, SMC and SLAC­

E142/E143 data as well as with our original LO results [1]. The reason why the LO 

results are partly larger by more than about 10% than the NLO ones is mainly due to 

the LO approximation where RN = 0 in (2.1). Although the agreement between the 

NLO results and experiment has been significantly improved, the EMC [4] and E143 [6] 

'data' at fixed values of Q2 fall still below our NLO predictions in the small-x region. 

This is partly due to the fact that the original small-x Ai-data at small Q2 have been 

extrapolated [4,6] to a larger fixed value of Q2 by assuming Ai(x, Q2) to be independent of 

Q2. According to the increase of Ai with Q2 in Fig.2, such an assumption underestimates 

91 in the small-x region at larger Q2. On the contrary, our results for gi,d do not show such 

a disagreement in the small-x region when compared with the SMC data [5, 7] in Fig.3a 

where each data point corresponds to a different value of Q2 since no attempt has been 

made to extrapolate gf' (x, Q2) to a fixed Q2 from the originally measured Af'(x, Q2). Our 

predictions for the NLO parton distributions at the input scale Q2 PJno in eqs.(3.6) 

and (3.6') and at Q2 = 4 Gey2, as obtained from these inputs at Q2 = PJno for the 

two scenarios considered, are shown in FigsAa and 4b, respectively. The polarized input 

densities in FigAa are compared with our reference unpolarized NLO dynamical input 

densities of ref.[I4] which satisfy of course the positivity requirement (1.3) as is obvious 

from eqs.(3.6) and (3.6'). Since not even the polarized NLO gluon density 6g(x, Q2) is 

strongly constrained by present experiments, we compare our gluons at Q2 = 4 Ge y2 in 
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Fig.5 with the ones which originate from imposing extreme inputs at Q~ = f-tJvLOl such as 

og = g, og xg and og = 0, instead of the one in (3.6') for the 'valence' scenario. The 

results are very similar if these extreme gluon-inputs are taken for the 'standard' scenario 

in (3.6), and the variation of og(x, Q2) allowed by present experiments is indeed sizeable. 

This implies, in particular, that the Q2-evolution of gl (x, Q2) below the experimentally 

accessible x-range is not predictable for the time being. 

Finally let us turn to the first moments (total polarizations) b.f(Q2) of our polarized 

parton distributions, as defined in (1.1), and the resulting rf,n(Q2) in (3.3). It should be 

recalled that, in contrast to the LO, the first moments of the NLO (anti)quark densities 

do renormalize, i.e. are Q2-dependent, due to the non-vanishing of the 2-1oop 01~~)1 in 

(A.9) and 0,~1\1J +1) in (2.10). Let us discuss the two scenarios in turn: 

'standard' scenario: From the input distributions (3.6), being constrained by (3.1) and 

(3.2), one infers 

Q2 (Gey2). b.uv b.dv b.q b.s = b.s b.g b.L; rf rn 
1 

2
f-tNw 0.9521 -0.3052 -0.0607 -0.0437 0.156 0.317 0.1255 -0.0430 

1 0.949 -0.304 -0.063 -0.047 0.438 0.299 0.137 -0.049 

5 0.948 -0.304 -0.064 -0.048 0.764 0.292 0.142 -0.052 

10 0.948 -0.304 -0.064 -0.048 0.893 0.292 0.143 -0.053 

Table 1. First moments b.f of polarized parton densities of(x, Q2) and of gf,n(x, Q2) 

as predicted in the 'standard' scenario. 

which is in satisfactory agreement with recent SMC and EMC measurements [4, 5, 

7] 

ri(1O Gey2) = 0.142 ± 0.008 ± 0.011, r~(5 Gey2) -0.063 ± 0.024 ± 0.013 (3.7) 

as well as with the most recent E143 data [9] implying rf(2 Gey2) -0.037 ± 

0.008 ± 0.011. 
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'valence' scenario: From the input distributions (3.6'), being constrained by (3.1') and 

(3.2'), one infers 

Q2 (Gey2) ~uv ~dv ~ij ~s=~s ~g ~I; ri rn
1 

2 
f-tNLo 0.9182 -0.3391 -0.058 0 0.200 0.347 0.1231 -0.0455 

1 0.916 -0.338 -0.061 -3.2 x 10-3 0.530 0.328 0.134 -0.052 

5 0.914 -0.338 -0.062 -4.6 x 10-3 0.915 0.319 0.139 -0.055 

10 0.914 -0.338 -0.062 -5.0 x 10-3 1.067 0.318 0.140 -0.056 

Table 1'. First moments ~f of polarized parton densities Jf(x, Q2) and of gf,n(x, Q2) 

as predicted in the 'valence' scenario. 

which again compares well with the experimental results in (3.7). 

Apart from the Q2-dependent ~g(Q2) in LO and NLO, the Q2-dependent first moments of 

NLO (anti)quark densities in Table 1 and l' should be compared with the Q2-independent 

LO results [1] as discussed in the Introduction which, in absolute magnitude, are similar 

to the NLO ones. 

In both scenarios the Bj¢rken sum rule manifestly holds in NLO due to our constraints 

(3.1) and (3.1'), i.e. eq.(3.3) yields 

rHQ2) r~(Q2) = ~9A (1- as~Q2)) (3.8) 

It is also interesting to observe that at low scales Q2 < 1 Gey2 the nucleon's spin is 

dominantly carried just by the total helicities of quarks and gluons, ~~I;(Q2) +~g(Q2) I"V 

0.5 according to Table 1 and 1', which implies for the helicity sum rule 

1 1 2 2 22" = 2"~I;(Q ) + ~g(Q) Lz(Q) (3.9) 

that Lz(Q2) ~ 0 for Q2 < 1 Gey2, similarly to the LO case [1]. The approximate vanishing 

of the latter non-perturbative angular momentum, being build up from the intrinsic kT 

carried by partons, is intuitively expected for low (bound-state-like) scales but not for 

Q2» 1 Gey2. 
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4 Summary 

Based on a recent complete NLO calculation [11] of all spin-dependent two-loop splitting 

functions SpS)(x), i,j = q,g (or, equivalently, anomalous dimensions s,g)) in the con­

ventional MS factorization scheme, we have first presented a consistent NLO formulation 

of the Q2-evolution of polarized parton distributions. For calculational purposes we have 

concentrated on (Mellin) n-moments of structure functions where the solutions of the 

NLO evolution equations can be obtained analytically for the parton densities. Using 

these formal results we have performed a quantitative NLO analysis of the longitudinal 

spin asymmetry Ai,n(x, Q2) and of gi,n(x, Q2). Within the whole relevant x- and Q2-region 

(x ;:.:: 10-3 , Q2;:':: 1 Ge y2) we found a remarkable perturbative stability between LO and 

NLO results. The scale violating Q2-dependence of Ai,n(x, Q2) turned out to be similar 

to the one obtained in LO [1] and is non-negligible for (x, Q2) values relevant for present 

data. The assumption of approximate scaling for A1(x, Q2) is therefore unwarranted and 

theoretically not justified. We presented two plausible sets of polarized NLO (MS) parton 

densities Sf(x, Q2) which describe all presently available data very well. In contrast to 

polarized quark and antiquark densities, the gluon density Sg(x, Q2) is rather weakly con­

strained by present data. It should be reemphasized that only processes where Sg occurs 

directly already in LO (with no Sq and Sij contributions present) appear to be the most 

promising sources for measuring Sg(x, Q2). This is the case for ,*(,)Sg ----f cc responsible 

for open charm or J/w production (see, e.g., ref.[15]). Our results demonstrate the com­

patibility of our restrictive radiative model, cf. eq.(1.3), down to Q2 JlJvLO 0.34 Gey2, 

with present measurements of deep inelastic spin asymmetries and structure functions. 

A FORTRAN package containing our optimally fitted 'standard' and 'valence' NLO 

(MS) distributions can be obtained by electronic mail from stratmann@het.physik.uni­

dortmund.de or vogelsang@v2.rl.ac.uk. 
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Appendix 

The spin-dependent LO anomalous dimensions (splitting functions 1 
) have been originally 

calculated in [34, 35] and are given by 

8"",(0)n
Iqq 4CF [2S1(n) - 1 - ~]

n(n + 1) 2 

8"",(0)n _ n 1 (O)n _ _ n +2 
Iqg 8Tf n(n + 1)' 8'gq - 4CF n(n + 1) 

8"",(0)n 4 11] 8 
Igg 4CA [2S1(n) - - - + -Tf (A.l)

n(n + 1) 6 3 

where CF = 4/3, CA = 3 and Tf f /2, with f being the number of active flavors (f = 3 

8"",(0)n "",(O)n where the latterhas been used when calculating 8,ij)' Note that 8,~1n Iqq Iqq , 

quantity refers to the spin-averaged (unpolarized) anomalous dimension. Furthermore, 

for the first n 1 moment we have 8"",(0)1 8,~~)1 = 0 as a consequence of helicity Iqq 

conservation at the quark-gluon vertex. 

The spin-dependent NLO (MS) two-loop flavor non-singlet anomalous dimensions 

8,~bn('l]), required in (2.10) for the evolution of 8qNS'I'/:=±(Q2), are the same as found for 

the spin-averaged case, 8,~1n('l]) = ,~1n('l]) with ,~1n('l] = ±1) being given by eq.(B.18) 

of [36]. Note that 8,~1n('l] = +1) governs the evolution of the NS combinations 8q - 8ij, 

while 8,~1n('l] -1) refers to the combinations 8q + 8q appearing in the NS expressions 

(2.11). The NLO flavor singlet anomalous dimensions 8,g)n in the MS scheme are as 

follows [11]: 

(A.2) 
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with "/~1n(rJ = -1) being again given by eq.(B.18) of [36] and 

4 3 	 2a (l)n _ 16C T n + 2n + 2n + 5n + 2 (A.3)"/PS,gg -	 F f + 1 

a'V(I)n
Igg 8CFTf [2 n~n~\) (S2(n) S;(n)) +4 n2~:+II) SI(n) 


2 
_ 5n5 +5n4 - 2n3 - n - 5n - 2] 

n3(n + 1)3 


+ 	 16CA Tf [n~~\) (-S2(n) +S; (~) +S;(n)) n(n: I)2SI(n) 

4 _n5 +n -	 4n3 +3n2 - 7n - 2]-	 (A.4) 
n3(n + 1)3 

2 
a'V(1)n 32C T [_ n + 2 S (n) 5n + 12n + 4]


Igg F f 3n( n + 1) 1 + 9n( n + 1)2 

2
2 [ n + 2 ( 2) 3n + 7n + 2 

+ 4CF 2 n(n + 1) S2(n) + S1 (n) - 2 n(n + 1)2 Sl(n) 

+ 9n5 +30n4 + 16n3 - 31n2 32n 4] 

n3 (n + 1)3 


2 
n + 2 	 ( I (n) 2 ) lln + 22n + 12 

+ 8CA CF [n(n + 1) -S2(n) + S2 2" SI (n) + 3n2(n + 1) SI(n) 

_ 76n
5 + 271n4 + 254n3 + 41n2 + 72n + 36] (A.5) 

9n3 (n+ 1)3 
3n6 + 3n5 + 5n4 + n - 8n2 + 2n + 4a'V(I)n


Igg 8CFT f . n3(n+lp 


4 3 2 
+ 	 32C T [_ ~S (n) 3n + 6n + 16n + 13n - 3]


A f 9 1 + 9n2 (n + 1)2 


8 
+ 	 4C~ [-S~ (~) -4S1(n)S; (~) +8S(n) + n(n + I)S; (~) 

4 3 2
+2 67n + 134n + 67n + 144n + 72 Sl(n) 

9n2(n + 1)2 

_ 48n
6 + 144n5 + 469n4 + 698n3 + 7n2 + 258n + 144] (A.6) 

9n3(n + 1)3 

where 
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n (_)j ,

S(n) L -'-2Sl(J) 


j::::l J 

-~((3) + 1] [Sl(n) + ((2) G(n) + r dx xn-1 Li2(X)] (A.7) 
n28 2 10 1 + x 

with G(n) ~ (n~l) ~ (~) and 1] ~ (_)n -t ±1 for 8,~1n(1] = ±1) and 1] -t 1 for 

the flavor singlet anomalous dimensions (evolutions). The analytic continuations in n, 

required for the Mellin inversion of these sums to Bj¢rken-x space, are well known [16]. 

It should be noted that the original results for 8,g)n have been presented [11] in 

terms of multiple sums, denoted by Sk(n), Sk,l(n) and Sk,l(n), which cannot be directly 

analytically continued in n. The following relations have been used in order to arrive at 

(AA)-(A.6): 

n (_)j
L-'-k 
j=1 J 

1 S~ (~) Sk(n) 

~ [lS2(i) + i~SI(i)] 
Sl(n)S2(n) + S3(n) 

n 1­L -;-S2(i) 
i=1 % 

Sl(n)S2(n) + S3(n) - S(n) (A.8) 

where for the latter sum we have used the identity 

n inn n j-l
LLaij = LLaij - LLaij 
i=l j=1 i=l j=1 j=li=1 

in order to relate SI,2 to the expressions in (A.7). 

Finally, the first n = 1 moments of the q -t q( (1) and 9 -t q(q) transitions reduce to 

[11, 37] 

r (1)1(
G'NS 1] (A.9) 
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Figure Captions 

Fig.1 Comparison of our NLO results for Ai"(x, Q2) as obtained from the fitted inputs 

at Q2 = J-lJvLO for the 'standard' (eq.(3.6)) and 'valence' (eq.(3.6')) scenarios with 

present data [4-9]. The Q2 values adopted here correspond to the different values 

quoted in [4-9] for each data point starting at Q2 ;::: 1 Ge y2 at the lowest available 

x-bin. The LO results [1] are indistinguishable from the NLO ones shown. 

Fig.2 The Q2-dependence of Ai,n(x, Q2) as predicted by the NLO QCD evolution at 

various fixed values of x. The LO results are from ref.[I]. 

Fig.3a Comparison of our 'standard' and 'valence' NLO results (the LO ones are from 

[1]) with the data [4-9] for gf,d(x, Q2). The SMC data correspond to different 

Q2;::: 1 Gey2 for x ~ 0.005, as do the theoretical results. 

Fig.3b Same as in Fig.3a but for gr(x, Q2). The EI42 and EI43 data [8, 9] correspond 

to an average (Q2) = 2 and 3 Gey2, respectively. The theoretical predictions corre­

spond to a fixed Q2 = 3 Ge y2 . 

Fig.4a Comparison of our fitted 'standard' and 'valence' input NLO (MS) densities in 

eqs.(3.6) and (3.6') with the unpolarized dynamical input densities of ref. [14]. 

Fig.4b The polarized NLO (MS) densities at Q2 = 4 Gey2, as obtained from the input 

.. Q2 2 • F' 4densltles at = J-lNLo mIg. a. 

Fig.5 The experimentally allowed range of polarized gluon densities at Q2 = 4 Gey2 for 

the 'valence' scenario with differently chosen 8g(X,J-lJvLO) inputs. The 'fitted 8g' 

curve is identical to the one in FigAb and corresponds to 8g(x, J-lJvLO) in eq.(3.6'). 

Very similar results are obtained if 8g(x,J-lJvLO) is varied accordingly within the 

,standard' scenario. 
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