
Technical Report
: ('4 2 RAL-TR-95-014
. a 8
84:

CLRC

Comparison of ONTOS and the Manifesto
for Obiect-Oriented Database Systems

C Rolker

May 1995

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH .COUNCILS

© C:ouncil for the Central Laboratory of the Research Councils 1995

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory for the Research Councils
librory and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OXll0QX
Tel: 01235445384 Fax: 01 235 446403
E-mail library@rl.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

mailto:library@rl.ac.uk

Studienarbeit:

Comparison of ONTOS and the Manifesto * for
Object-Oriented Database Systems

by
Claudia Rolker

Advanced Database Section
Data Engineering Group
Systems Engineering Division
Computing and Information Systems Department
Rutherford Appleton Laboratory,
Chilton, Didcot
aXON aXIl OQX
UK

Universitat Karlsruhe
Postfach 6980
76128 Karlsruhe
Germany
email: s_rolker@ira.uka.de

Rutherford Appleton Laboratory, February 1995

* 	 Atkinson, M.; Bancilhon, F.; DeWitt, D.; Dittrich, K.; Maier, D.; Zdonik, S.: The object-oriented data­
base system manifesto; in Deductive and Object-Oriented Databases. Proceedings ofthe First Interna­
tional Conference (DOOD89), p. 223-240;

mailto:s_rolker@ira.uka.de

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems ONTOS

Acknowledgments

This report is the result of 4 months intensive work between November 1994 and February
1995. The work took place at Rutherford Appleton Laboratory (RAL) which is part of the
Council for Central Laboratory of the Research Councils, UK.

I am a student at the Technical University of Karlsruhe, Gennany (TUK) and I was allowed to
do my "Studienarbeit" as a student project at RAL.

I thank Prof. P. Lockemann (TUK and FZI), Prof. K. Jeffery (RAL) and Eric Thomas (RAL)
who enabled me to do this project. I thank my supervisor John Kalmus (RAL) for his scientific
guidance during my whole project, for his corrections of this report and his administrative
work.

Thank you as well to Hartmut Schreiber (FZI, Gennany) for his scientific support and adminis­
trative work.

Last, but not least, I would like to thank all those from RAL and TUK who have discussed par­
ticular scientific problems which arose during the project: Una l'Estrange (RAL), Damian Mac
Randal (RAL), Dr. Michael Wolverton (RAL), Dr. Gerd Hillebrand (RAL), Manfred Maennle
(TUK), Harald Weidner (TUK), Gerhard Wickler (RAL), Myles Chippendale (RAL), Dr. Si­
mon Dobson (RAL), Dr. Chris Wadsworth (RAL).

Finally, I thank all colleques at RAL who created a relaxed atmosphere and who contributed to
a pleasant stay for me in Didcot, which I enjoyed very much.

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems ONTOS

Contents

1 Introduction... 1

2 The Object-Oriented Database System Manifesto ... 2

3 ONTOS Overview ... 3

3.1 Process and netarchitecture 3

3.2 Steps to run an ONTOS DB application ... 4

4 Example ... 7

4.1 Description of example 7

4.2 Object-role-modelling for the example ... 7

4.3 Description of the implementation .. 9

5 Comparison of Mandatory Features ... 10

5.1 Persistence ... 10

5.1.1 The Manifesto's demands ... 10

5.1.2 Persistence in ONTOS .. 10

5.2 Complex objects ... 11

5.2.1 The Manifesto's demand ... 11

5.2.2 Objects in ONTOS .. 11

5.2.2.1 Simple objects in ONTOS .. 11

5.2.2.2 Structures of complex objects in ONTOS .. 11

5.2.2.3 Operations on complex objects in ONTOS 13

5.3 Object identity ... 14

5.3.1 The Manifesto's demands ... 14

5.3.2 Identifying objects by name .. 14

5.3.3 Object identity provided by the system ... 15

5.3.4 Operations in context with object identity .. 16

5.4 Encapsulation .. 17

5.4.1 The Manifesto's demands ... 17

5.4.2 Encapsulation in ONTOS .. 18

5.5 Types and classes 19

5.5.1 The Manifesto's demands ... 19

5.5.2 Classes in ONTOS .. 20

5.6 Class and Type Hierarchies ... 21

5.6.1 The Manifesto's demands ... 21

5.6.2 Inheritance in ONTOS .. 21

5.7 Overriding, overloading and late binding ... 22

5.7.1 The Manifesto's demands 22

5.7.2 Overriding, overloading and late binding in ONTOS 23

5.8 Computational completeness ... 24

i

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems ONTOS

5.8.1 The Manifesto's demands ... 24

5.8.2 Computational completeness in ONTOS .. 25

5.9 Extensibility .. 25

5.9.1 The Manifesto's demands ... 25

5.9.2 Extensibility in ONTOS .. 25

5.10 Secondary storage management .. 25

5.10.1 The Manifesto's demands ... 25

5.10.2 Secondary storage management in ONTOS .. 26

5.11 Concurrency .. 27

5.11.1 The Manifesto's demands ... 27

5.11.2 Concurrency in ONTOS .. 28

5.11.3 Defining concurrency protocols in ONTOS .. 29

5.12 Recovery.. 31

5.12.1 The Manifesto's demands ... 31

5.12.2 Recovery in ONTOS ... 31

5.13 Ad hoc query facility... 31

5.13.1 The Manifesto's demands ... 31

5.13.2 Query facility in ONTOS .. 32

6 Comparison of Optional Features ... 34

6.1 Multiple inheritance.. 34

6.2 Type checking and type inferencing 36

6.3 Distribution... 37

6.4 Design transactions....................................... 38

6.5 Versions... 39

7 Conclusion ... 40

8 References .. 42

ii

1

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

Introduction

ONTOS is one of the currently available commercial object-oriented database systems (OOD­
BSs). It was developed by Ontologic Inc. and has been available since 1989. Since that time
there have been several versions of ONTOS. We use ONTOS Version 2.2 in our evaluations.
Every version usually has significant new code or new functions and an improvement in the
functionality or speed of the product. ONTOS is one of the systems that is widespread and
seems to fulfil the user's idea of an OODBS. But is this the same idea which researchers have
of an OODBS? The basic aim of the project is to answer this question.

We have based our investigation on the paper "Object-Oriented Database System Manifesto"
by Malcolm Atkinson, Fran90is Bancilhon, David DeWitt, Klaus Dittrich, David Maier and
Stanley Zdonik, written in August 1989 [ABDB 89]. It describes the main features and charac­
teristics that a system must have to be considered to be an object-oriented database system.

The report is organized as follows. Section 2 gives an overview of the OODBS Manifesto. Sec­
tion 3 explains the ONTOS architecture and how the user's application interacts with tools and
utilities.

Some of the features demanded by the Manifesto can be checked by writing an application.
Others are internal, so we have to rely on what the ONTOS user manual says. Our application
is a management of a video-shop which is described in Section 4 in more detail. In Section 5
and 6 we compare the features demanded by the Manifesto with the actual features of ONTOS
and give examples, where possible, using our video-shop application.

Section 7 summarizes all examined features of ONTOS and assesses ONTOS with regard to
the theoretical demands of OODBS.

1

2

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

The Object-Oriented Database System Manifesto

One of the major motivation for the object-oriented data model was a desire to bring some of
the concepts of object-oriented programming languages (such as Smalltalk and C++) into data­
base systems. The large number of concepts that have been imported into object-oriented re­
search means that there is really no common object-oriented data model. Different OODBS
products offer different capabilities from the possible set. This is detrimental to product sales,
since commercial business prefers to deal with a standard interface.

Because of the lack of a common data model, the lack of formal foundations and strong exper­
imental activities in the OODBS field, six highly respected practitioners in the field wrote a pa­
per entitled "The Object-Oriented Database System Manifesto" in 1989 [ABDB 89]. They
attempted to prioritize features of OODBS. They distinguished between mandatory, optional
and open features.

The 13 mandatory features, also called "Golden Rules" for an OODBS, are those ones which a
system must satisfy in order to be termed an object-oriented database system. An OODBS is a
database management system and an object-oriented system. Along these lines the mandatory
features can be subdivided into

• 	 DBMS features:
persistence, secondary storage management, concurrency, recovery and an ad hoc query
facility

and

• 	 features of object-orientation as usual in object-oriented programming languages:
complex objects, object identity, encapsulation, types or classes, inheritance, overriding
combined with late binding, extensibility and computational completeness.

The 5 optional features are the ones that are desirable because they make the system better, but
which are not mandatory. Most of them are for support of special applications (CAD, CAM,
etc.). The so-called goodies are: multiple inheritance, type checking and type inferencing, dis­
tribution, design transactions and versions.

Last, the open features which are those where the designer of the OODBS can select from a
number of equally acceptable solutions. The Manifesto leaves these features as open choices.
The authors see no point in preferring one alternative to another. The open features are: pro­
gramming paradigm, representation system, type system, uniformity.

We examined ONTOS only in regard to the mandatory and the optional features.

The authors of the Manifesto describe the characteristics a system must have to be an object­
oriented database system, but they clearly see this paper not as the definition of OODBS for all
eternity but as a first step to characterize OODBSs.

2

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

3 ONTOS Overview

3.1 Process and netarchitecture

ONTOS is the successor to Vbase and is a distributed object-oriented database system that uses
client/server architecture to distribute the database around a network of homogeneous worksta­
tions. It runs on UNIX environments such as SUN, HP Apollo and DEC workstations. ONTOS
is also available for the OS/2 operating system. Its approach toward object-orientation is to add
persistent storage to the C++ programming language.

A client is created by linking the ONTOS Client Library into a C++ application. The client
communicates with the "primary server" which is the primary manager of the distributed data­
base.

Application Process

Client Library
ClasslFunction
Interface

Network

Distrilrut&l - ­
Datab,se

_~ Database

Registry

L _________________ ~

Figure 1 -The client- server architecture

The database is divided into areas. Each area has a dedicated server process, but any YO on an
object in any area of the database is channelled through the primary server to the server of the
appropriate secondary area. The primary server handles storage and retrieval (get/puts) of ob­
jects in its own area in addition to managing the secondary servers.

Each of the areas is a physical file where the objects are stored. One of the areas must include
the kernel area, which consists of objects in the ONTOS-Schema (= ONTOS DB metaschema
classes, which the installation of ONTOS DB is shipped with).

The user must specify one of the areas as the primary area, whereas the other areas become
secondary areas. Along these lines the user defines implicitly the primary server process. The
usual policy is to make the primary area the one that experiences the most get/puts from client
applications since it is the default storage for new objects and since it is the only area in the da­
tabase that has a direct server connection to clients.

3

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

The binder acts as a global network service and sits out on the network. It is responsible for
connecting clients to servers managing the database of interest. The binder consults the data­
base registry for information. The registry is the control structure that stores the list of regis­
tered areas, hosts, databases and their respective mappings. The binder is the only component
which has direct access to the database registry. So if the binder breaks down, no database is
accessible no more and the whole system stops.

The user can only access the registry by means of the DBATool, on behalf of which the binder
acts to the registry as a server. The DBATool helps the user to configure the database and to
look at the already registered databases and areas.

Each server has a cache, which is a chunk of memory and allocated at the time that an area is
opened. The cache is used to hold segments of data that have been read from or are to be writ­
ten to the database. A segment in ONTOS is the unit of transfer from disk into the server
cache, which contains a group of objects. All objects in a segment are transferred into the
cache when any object in that segment is activated. The default cache size is set low, to 1 Mh,
in order to conserve memory. The maximum size is 2 Mh.

Objects are requested singularly or in groups by the client, are retrieved by the servers and
handed to the client. These objects are activated in the client application's virtual memory and
manipulated as C++ structures. When the application finishes with these objects, it deactivates
them, optionally deallocates their memory, and passes them to the client. The client portion
transfers them back to the servers where they are kept in the server cache until it makes sense
to make the changes to the area.

3.2 Steps to run an ONTOS DB application

In the following the steps to run an ONTOS application are described:

1. 	 The user configures the database with the help of the DBATool and registers it so that it is
accessible by client applications.

2. 	The user uses the ONTOS classify utility which processes his C++ header files and which
builds a representation of this information in the database. The classify utility can build the
representation of C++ classes, including data members and member functions, as well as
free functions. These representations allow ONTOS DB to store data whose structure is de­
fined by a C++ class, and to provide the user access to this data, its schema, and to any free
functions represented in the database.
When the user submits a C++ source file, containing one or more persistent class definition,
the classify utility reads the file and creates the objects that correspond to each class de­
scription and puts theses objects into the database. These objects are:

• 	 A Type object
The Type object contains the specifications that are used to construct instances of the
class in the database. They are used by the database as templates for handling objects
(instances) of the Type and for converting object references between their in-memory
and database forms. Type objects are also available to the application as runtime-acces­
sible descriptions of persistent classes.
When a Type is generated, Procedure and Property Type objects that correspond to the
class members are also generated and put into the database.

4

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

• 	 Procedure objects

Procedure objects represent methods and their signatures.

• 	 PropertyType objects

These are run-time accessible representations of class members.

These created objects are instances of the ONTOS DB metaschema classes. The user can
use control files with the classify utility ie. to break the created schema up into parts that
can be stored in different areas of the database.

3. 	 The user compiles his C++ program modules with the cplus compilation utility which pro­
vides a transparent way to compile extra information required by ONTOS DB into C++
program modules and which links the modules with the ONTOS DB client library.

4. 	The user executes his application. When the client application calls ~C_open to open the
database, the binder looks up the mapping between the database name and its areas, starts
the server (the database process) for the primary area (secondary servers are not started un­
til access to their specific areas is required), and then returns a handle that the client uses to
connect to the server. If a client calls ~C_open on a database and that database has an area
with an already active server, the binder connects the new client to the existing server. The
binder's job is finished once the primary server is activated for the database. The server
handles transaction starts, commits and get/puts to the database.

C++
/----....... Compiler

Application
Program

ONTOS
DBDesigner

C++
Class
Header
Files

classify

C++
Class
Definition
Files

ONTOSDB
Class
Library

cplus

Figure 2 -ONTOS tools and utilities

5

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

The user can also work with the DBDesigner, which is an X windows based tool used for sche­
ma design and browsing. It shows the user a schematic diagram of the classes in a selected da­
tabase. It lets him view the schema and contents of the database and allows him to modify
them by adding, deleting and rearranging the elements of the diagram. It also provides auto­
matic generation of C++ header files to implement the designs the user creates with this tooL

6

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

4 Example

4.1 Description of example

The goal of the example is to check as many features, commands and characteristics described
in the ONTOS manual as possible in order to be sure that they are really provided by the sys­
tem while retaining a fairly simple, "common sense" example which is easy to understand.
Moreover, we wanted to get the feeling for this OODBS. The application chosen is a video­
shop management system.

Our videos hop software deals with adding new videos to the stock, getting information about
the videos (titles, number of copies, medium: tape or LDLaserDisk) and removing old, worn
out videos. Before someone can rent or reserve a video for his first time, he has to give his ad­
dress and further personal information. Our software generates a unique membership number
for him, which the member must use whenever he wants to rent or reserve a video. Our soft­
ware manages both rental and reservation of videos. Our imaginative videoshop offers a spe­
cial service: it picks up and delivers videos which of course entails additional costs. Members
may pay by cash, by creditcard or use a special account at our videoshop, which adds together
all costs during a month, which are then paid by cash.

The main task of the software is of course to manage who has reserved/rented which video and
when.

4.2 Object-role-modelling for the example

Before we implemented the videoshop example we made an object-oriented design of our ap­
plication to ensure clarity. We took the object-role modelling approach from T.A. Halpin, Uni­
versity of Queensland, Australia [Halpin 94]. It is very similar to entity-relationship modelling,
but has some additional features. We chose this design approach because it is an up-to-date ap­
proach which has recently attracted much interest in UK academic communities. The tech­
nique was new to the author, but now she has gained some experience in it.

In the object-role modelling technique entity types (object types) are depicted as named el­
lipses. Predicates are shown as named sequences of one or more role boxes, with the predicate
name starting in the first role box. Each role is ordered, from its first role box to the other end.
A role is mandatory for an object type if and only if every object of that type which is refer­
enced in the database must be known to play that role. This is explicitly shown by means of a
mandatory role dot where the role connects with the object type. If two or more roles are con­
nected to the same mandatory role dot, this means the disjunction of the roles is mandatory
(each object of this type must play at least one of these roles). Exclusion is indicated by the
symbol ® that is one role or another, but not both. A bar across n roles of a fact type indicates
that each corresponding n-tuple in the associated fact table is unique (no duplicates are allowed
for that column combination). Finally, subtypes are defined as directed line segments from
subtypes to supertypes.

Figure 3 shows the result of the object-role modelling for our video-shop software. A video is
a subtype of a videomedium, which is the pure tape or LDLaserDisk, and a subtype of a video­
movie, which is defined by a title, a duration, a main star and the kind of movie. The video has
several copies which belong to the video-shop. This is the "video-part".

7

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

The "member-part" at the bottom of the diagram consists of the members that are identified by
their member number. Each member is a person which has a name and an address.

member-part

Figure 3 -Object-Role Model ofthe video-shop example

8

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

If a member always pays by cash, then he does not need to have an account or a saved credit­
card number. If a member has an account, then it is unique. He can share this account with oth­
er people if he wishes to (e.g. relatives). The same is true for the saved creditcard number. To
each account or saved creditcard number a total is associated which is initialized to zero when
the objects are created.

The "member-part" and the "video-part" are connected through rental and reservation types
which are subtypes of arrangements where the rental/reservation conditions are defined. The
conditions are for which period of time the member wants to rent/reserve the video, which kind
of payment he will use, and if he want the video-shop to pick-up or deliver the video from/to
home.

4.3 Description of the implementation

The class video has two superclasses: video-medium and video-movie. Along these lines we
experimented with multiple inheritance. The video instances are organized in two directories,
depending on their medium (tape or LDLaserDisk). The reason for this is that a member who
asks for a special video probably only has one video system at home and so the search can be
restricted to one dictionary from the beginning. This reduces the search time.

Each video instance itself comprises a dictionary which maps the copy number to the actual
video-copy. When an old video-copy instance is removed from the stock, we only have to de­
lete the entry in our dictionary. When a video-copy is added to the stock, we only have to go
along in our dictionary and find the first copy-number without a mapping object. This trick is
used to implement the l:n relationship.

Each member can rent/reserve a number of videos. That is why we used here the same princi­
ple, but this time we made use of sets instead of dictionaries to replace the l:n relationship.
The instance member has references to an account instance or creditcard instance, if necessary.
Within those two an instance of charge is embedded.

The rental and reservation classes are subclasses of the arrangement class. Along these lines
we checked simple inheritance. All the big ellipses in Figure 3 are transferred into classes. All
the smaller ellipses in Figure 3 are implemented as attributes to the next ellipse transferred into
a class.

All role objects are transferred into references from one instance of a class to an instance of an­
other class, apart from those exceptions described above.

Throughout the implementation of the rental class and the reservation class as two distinct
classes we have to be very careful in our application program, when a reservation becomes a
rent. This action takes place within a transaction so that in case of a crash no inconsistent state
remains. The deletion of the reservation object and the creation of the new rental object must
be in one transaction.

The implementation of the example was actually not very hard, but the error messages which
are sent out either at compile time or at runtime were not very helpful. Most run-time errors
could only be found by using a debugger or adding output messages into the program code.

Moreover, we could not manage to achieve a bidirectional reference although the manual says
that it is possible.

9

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

5 Comparison of Mandatory Features

5.1 Persistence

5.1.1 The Manifesto's demands

Persistence means that an object can persist beyond application session boundaries. The object
can be retrieved by another application session and will have the same state and relationships
to other objects as at the time when it was saved.

The Manifesto demands that objects of any type, including arbitrary complex user-defined
types may be allocated in either persistent or volatile store. The user should not have to explic­
itly move or copy data to make it persistent.

5.1.2 Persistence in ONTOS

In ONTOS, persistence is orthogonal, since it is independent of its type, whether or not the ob­
ject is persistent.

A separation of classes for persistence and volatility is made at the level of the class descrip­
tion. The persistent class must be derived from a superclass, the class Object. A persistent class
description must satisfy the following criteria [Ontos 92a]:

1. 	 It must derive from the class Object

2. 	 A special constructor member function (in addition to the usual C++ constructor) must be
included. It is used to search for an object in the database and move it to an application pro­
gramm.1t is the activation constructor and takes an argument typed as "APL*".

3. 	 A getDirectType() member function must be included to return a pointer to the persistent
representation of the class in order to access it from a program.

4. 	If a class description has a destructor, then a Destroy function must be added to run when
any exceptions are raised to remove the object from memory.

5. 	If a class description contains an operator new, then its signature must be identical to that
which is used by ONTOS to allocate memory for a newly allocated object.

When an instance of a persistent class is created, it is not stored in the database until the put­
ObjectO function is called, which takes care of putting the instance to the database and the user
does not have to deal with this problem. The putObjectO function belongs to the class Object.
So if the programmer creates an object of a persistent class, but does not use the putObject()
function, this object is volatile. On the other hand, when a persistent object is retrieved from
the database and is changed in some data members, the changes are not updated in the database
if the putObjectO function is not called and so the changes can be made explicitly persistent
object in the database.

If an instance of a volatile class is created, this cannot be made persistent.

10

http:gramm.1t

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

S.2 Complex objects

5.2.1 The Manifesto's demand

Complex objects are created by applying constructors to objects, building arrays or sets of ob­
jects, and naming the resulting aggregate as a new object. So complex objects are objects
which have a complex structure consisting of other sub-objects. The structure can be (for ex­
ample) a tuple, a set, a bag, a list or an array. But the Manifesto demands at least set, list and tu­
ple. The sub-objects can be simple objects like integers, characters, byte strings of any length,
booleans and floats (there might be more!) or again a complex object.

Moreover the Manifesto demands that the object constructors (tuple, set, etc.) must be orthogo­
nal which means that it is possible to construct every complex object that you can imagine
when you know the simple objects and the constructors the OODBS offers. You should not
have to take into account any prohibitions, as for example in the relational model where a set
can only be constructed with tuples as members.

Having complex objects the OODBS must provide some operators to retrieve, delete, make a
deep copy of a complex object. (In a deep copy the whole complex object is copied inclusive
of referenced objects, whereas in a shallow copy only the first layer is copied but not for exam­
ple copies of referenced objects are created.) Apart from this, other operations may be defined
by the user of the system. Nevertheless two types of references must be provided:

• 	 is-part -of reference: which has the consequence that with deletion of the comprising ob­
ject the referenced object is deleted

• 	 general reference: which has the consequence that a deletion of the comprising object
does not affect the referenced object at all

5.2.2 Objects in ONTOS

5.2.2.1 Simple objects in ONTOS

Complex objects in ONTOS are based on the simple objects char, int, char*, short, long, float,

double, which C++ offers, and on OC_Boolean which is defined as a enum type:

enum OC_Boolean {FALSE=O,TRUE=l}.

So all demanded simple objects of the Manifesto are offered by ONTOS.

5.2.2.2 Structnres of complex objects in ONTOS

One of the demand structures of an object is the tuple structure which is implicitly given by the
way new classes are defined in ONTOS (is defined as in C++). In our video-shop example we
defined the class "member" which has a tuple structure and stores information about the mem­
bers of the video-shop. Each "member" object consists of

• 	 an integer number of the member

• 	 an object of the class Person (which stores information about the person's name, address
etc. and we implemented it as a pointer to the object)

• 	 an object of the class Account (which stores information about a video account and the
total and we implemented it again as a pointer to the object)

11

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

• 	 an object of the class Creditcard (which stores a member creditcard number and the total
and which we implemented again as a pointer to the object)

• 	 a set ReservedVideoSet (which stores all videos that are reserved by that person, the
dates, how the member will pay later for renting the videos. We implemented it again as
a pointer to the object)

• 	 the set RentedVideoSet (which stores all videos that are rented by that person, the dates,
how the member will pay later for renting the videos. We implemented it again as a
pointer to the object)

The class "member" is declared as follows in ONTOS:

class member: public Object
(

int member_number;

Reference has_creditcard;

Reference has_account;

Reference is-person;

Reference reserves;

Reference rents;

public:
member();
... ..11 more constructors and methods ofthis class

J
As we have used abstract pointers (declared with "Reference") you cannot see which object
type is referenced. But it is guaranteed with the help of the methods of the member class.

Apart from tuples, ONTOS offers some other structures. They are represented by the persistent
class aggregate and its derived classes: set, list and association. The last one itself has subclass­
es array and dictionary. The aggregate class defines some common properties for all subclass­
es: 1) memberSpec, which return a type of the aggregate, and 2) cardinality, returning the
number of objects. Aggregates also specify a number of procedures: isMember, isSubSet,
checkMemberSpec, getIterator, getClusterSize, putCluster. Each of the aggregates defines an
isSimilar procedure.

Lists are ordered, unkeyed aggregates that represent linked lists, sequences, queues or stacks.
A list stores members serially; each member has a position in the list. Insertion into the List at
a particular position increments the position of all members following that position. Removal
of a member does the opposite. Lists are implemented so that insertions and removals are fast
relative to arrays and ordered dictionaries. Insert, remove, and access operations near the start
of the list or at the very end are faster than those in the middle [Ontos 92c].

Sets are unbounded, unordered aggregates. Set members can be inserted, removed and tested
for membership. Unlike the other aggregate-based classes, sets do not support multiple entries
for the same element [Ontos 92c].

In an array keys must be the continuous range of integers between the specified lower and up­
per bounds, either of which may be positive, negative or zero. All the elements of an array are
allocated and initialized to NULL. Arrays can be resized by specifying new bounds [Ontos
92c].

12

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

Dictionaries map tags of any class to elements of any other class. Unlike an array's indices, a
dictionary's tags can span a wide range of values without incurring overhead for "unused" tag
values that fall within the range but have no entries. Dictionaries may be ordered or unordered.
Ordered dictionaries use B*tree access structures to sort entries based on the relative ordering
of their tag values; unordered dictionaries use hash-table access structures. Dictionaries may
be defined to allow for duplication (that is a dictionary may have two different objects that
have the same tag) [Ontos 92c].

ONTOS fulfils the minimal set of constructors that the Manifesto demands.

In ONTOS all constructors can be applied to any object and are orthogonal. So also this Mani­
festo demand is fulfilled.

5.2.2.3 Operations on complex objects in ONTOS

There are two major possibilities of how objects can belong to a tuple: either referenced or em­
bedded.

In a retrieval, embedded objects are always retrieved with the comprising object and deleted if
the comprising object is deleted.

ONTOS offers two kinds of references: abstract reference which provides the user with some
methods or direct reference which is the kind of reference used in C++. Using abstract refer­
ences the referenced object is automatically retrieved by traversing the reference if the refer­
enced object has not been in memory before. Whereas when you use direct references it is left
to the user to retrieve the referenced object before traversing the reference. As a difference to
the Manifesto, both kinds of references leave the deletion of the referenced object with the
comprising object to the user, but it is quite easy to implement.

In our video-shop example we have embedded the object total of the class charge into the class
creditcard. So with the creation of a creditcard object the object charge is created and initial­
ized to zero and with the deletion of a creditcard object the total object is deleted:

class creditcard: public Object
(
private:

char *creditcard_number;

charge total;

public:

creditcard(char * the_number);

creditcard(APL* theAPL);

Type *getDirectType();

char* gecnumber();

void geccharge();

void seccharge(int the-pounds,int the-pennies);

void add_charge(int the-pounds,int the-pennies);

OC_Boolean isZero();

void dump();

};

In the class member we want to delete the according personal information with the deletion of
the member. As the usual deleteObjectO method does not do this, we had to redefine this meth­
od. But we do not necessarily want to delete the creditcard information with the deletion of a

13

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

member because it may belong as well belong to another person for example to the spouse, to
the parents etc. So we do not add this in the redefined method deleteObjectO of the class mem­
ber.

void member::putObject(OC_Boolean deallocate)
(

((Object*)isPerson.Binding(this))->putObject(FALSE);

Object: :putObject(deallocate);

}

The retrieval of the objects of aggregates is done with the retrieval of the aggregate, but again
the deletion of the whole aggregate is not supported by ONTOS, but can easily be arranged by
the user by a redefinition of the deleteObjectO method.

A method that makes a deep copy of a complex object is not provided by ONTOS, but can be
defined by the user. Depending on how complex the object is the definition might be not that
easy.

5.3 Object identity

5.3.1 The Manifesto's demands

Every database system must have some way of distinguishing one object from another. This
can be done in a value-based system by introducing explicit object identifiers, but then the user
has to insure the uniqueness of object identifiers. But this is not a very neat solution. That is
why the Manifesto demands the system itself to define and maintain unique identifiers for ob­
jects. This implies that objects have existence independent of their values. So even if they have
the same values they can coexist.

This results in two definitions of equivalence:

• two objects are identical when they are the same object

• two objects are equal when they have the same values

So in an identity-based model two objects can share an object and when in one of the objects
the shared object gets new values, these can be seen as well in the other object. For example
object! and object2 comprise object3, then when in object! object3 is changed, it is automati­
cally changed in object2 as well because it is the same object.

Moreover, the Manifesto demands operations like object assignment, object copy (deep and
shallow) and tests for object identity and object equality (deep and shallow). One object is as­
signed to another when both objects are already created and memory is already allocated and
now the values are copied. We make a copy of an object when we create a new object and ini­
tialize it with the other object's values.

5.3.2 Identifying objects by name

In ONTOS the user may assign a name to an object, so that there is a named access to the ob­
ject in the database. The name is treated as a kind of persistent variable. Names can serve as an
entry point into the database for activating the first few objects. From there, the application can
access further objects either by name or by object-to-object references. The object bound to the
name can be changed. To find an object by a name ONTOS uses directories which map names

14

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

to objects. Within one directory the names must be unique. But there can exist several objects
with the same name when their mappings are declared in different directories. The database
name space is organized into a hierarchy of directories. So within the search for an object the
directories where to look for the object must be given to let the system know in which order the
directories should be looked for the object.

It is not mandatory to give an object a name. This would be too much effort for the user be­
cause he has to find unique names. That is why ONTOS manages and maintains objects as well
with an interior object identifier for every object.

5.3.3 Object identity provided by the system

The ONTOS database is a single uniform object storage space. Within this storage space each
object has its own unique identity (UID), which is persistent and immutable. The identity
comes into being when the object is created and continues to represent that object from then
on. The UID is a unique 64-bit value [Ontos 92a], not exported to the user application. Thus
the number of objects is bounded (but is very large!).

Other objects in the database can use the UID to unambiguously reference the object. We used
this feature in our video-shop example as it is possible that two members want to pay with the
same creditcard. Proceeding on the assumption that the husband is already a member of the
video-shop, but his wife wants to become a member as well, it sounds reasonable to debit their
costs to the same account at the video-shop. This is implemented as follows:

(In the comment we play through the above described husband-wife situation.)

char mem_obLname[40]; II is the object name ofthe object wife
concatenate(member _nr, "mem", mem_obl'-name);

member *new_member = (member*) OC_lookup(mem_obLname);11 new_member is the object wife
account *new_account; II new_account will be the wife's account
int other_nr; Ilother_nr is the husband's member number

char other _mem_obj[40]; II will be the object name ofthe object husband

if(!new_member == NULL) II test ifwife exits as an object in our db
{

char answer;
cout« "Use existing account? (y=yes n=no)\n";

Gin » answer;

switch (answer)

(

case 'n'; II case 1: Wife wants to have her own account

case 'N';

new_account =newaccount(); II create and initialize the wife's account

new _member->secaccount(new _account);11 connect object Wife with wife's account

new_account->putObject(); II save change in db

new _member->putObject(); II save change in db

break;

case)i'; II case2: wife want to use her husband's account

case 'f';

cout «'trom which member..n"; II gives the husband's member number

Gin» other_nr;

concatenate(other _nr, "mem ",other _mem_obj);

member *other _membe r = (member*) OC_lookup(other _mem_obj);

II search for object husband in db
if(other_member ==NULL) II test ifhusband exists as an object in our db

15

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

{
cout «"does not exist";

return;

}
new_account =other -,nember->gecaccount(); IIfind husband's account in db
new_member->secaccount(new_account); II connect husband'saccount to object wife
new_account->putObject(); II store changes in db
new_member->putObject(); II store changes in db
break;

default:
cout < < "Sorry, "

« answer
« " is an illegal choice. Try againl\n";

}

}

else cout< <"member doesn't exist! \n ";

The Reference is hidden behind the gecaccountO and the seCaccountO member functions of
the class member, which are defined as follows:

account *member: :gecaccount()
{

return (account *)has_account.Binding(this);
}

The Binding function returns a pointer to the referenced object and activates the object if nec­
essary.

void member: :secaccount(account* the_account)
(

has_account. Reset(the _account, this);
}

The Reset function is used to make a Reference to a new object account called the_account.

So after this procedure two member objects (of the video-shop) share an object account, and
every change in this object can be found out either through the first member or through the sec­
ondmember.

5.3.4 Operations in context with object identity

To compare two objects for identity ONTOS provides a member function of the class Entity
which is the base class for all objects:

virtual OC_Boolean operator==(Entity& anotherEntity)

In case of simple objects, this function compares their values.

But ONTOS does not give much help for comparing two complex objects for equality. If these
are objects of the list class, dictionary class, array class or set class, there is a member function
called isSimilar. .

In the case of dictionaries these functions compare two dictionaries and return TRUE if all the
attributes of the two dictionaries are the same. They must contain the same (identical) objects
and must have the same memberSpec which means that in the declaration of the dictionaries
the same class from which the members of the dictionaries must come must be specified.
Moreover, the two compared dictionaries must have the same values for isOrdered and hasDu­
plicates to return TRUE as the result of the comparison.

16

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

In case of a list comparison this function returns TRUE if both lists contain the identical mem­

bers (and no additional members) in the same order.

In case of a set comparison this function returns TRUE if both sets have exactly the same

members.

In case of an array comparison this functions returns TRUE if both arrays contain the same

members at the same index and have identical values for LowerBound and UpperBound.

But ONTOS provides no function for deep equality. It must be implemented by the user, which

can be hard depending on the complexity of the objects.

In ONTOS an object is assigned to another by the assignment operator which has the form:

X& X::X operator=(const X&);

There are a number of problems when the predefined operator is used. The assignment fails for
example for persistent classes that have a Reference object as one of their data members. That
is why the assignment operator has to be redefined for every class to ensure that it works.

The same applies to copies of objects. The predefined copy constructor causes failure for some
persistent classes and especially it does not save these objects in the database. So again it
should be redefined for every class. The copy constructor has the following signature:

X::X (const X&);

5.4 Encapsulation

5.4.1 The Manifesto's demands

Encapsulation is the principle that a module can only be accessed via its external interface. It
strictly distinguishes between the implementation of a module, which is only visible to the im­
plementor and therefore hidden, and its interface which describes only the way in which users
can view the module. Along these lines modularity is achieved.

In an object-oriented system the unit of modularity is the object, and thus, an object is the sub­
ject of encapsulation. Looking at the object from an abstract point of view, it consists of an in­
terface part and an implementation part.

The interface part is realized by a set of operations fully defining the object's behaviour. The
user of the object does not need to understand how these operations are implemented or how
the object is represented internally. The operations which come with an object define the only
way in which an object can be accessed. This restriction holds for update and retrieval opera­
tions.

The implementation part of the object describes the internal representation of the object (data
part) and the implementation of each of the operations (operation part). When storing an object
the data and the operation names are stored in the database.

The Manifesto demands encapsulation since it allows the programmer to change the imple­
mentation of a type without any program working on that object. Implementation independ­
ence is realized. Thus, application programs are protected from implementation changes in
lower levels of the system.

17

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

The Manifesto points out that in the database world the structural part of a type sometimes is
part of the interface. The Manifesto admits that sometimes a system can be simplified when it
allows encapsulation to be be violated under certain conditions, for example with ad-hoc que­
ries the need for encapsulation is reduced since issues such as maintainability are not impor­
tant. Thus, the Manifesto demands that encapsulation mechanism must be provided by an
OODBS, but there appear to be cases where its enforcement is not appropriate.

5.4.2 Encapsulation in ONTOS

ONTOS keeps mainly to the principles of encapsulation of C++ and leaves it to the program­
mer of the database schema whether he wants to give the user access to the data members of
not. The programmer has to specify for each data member if it is

• 	 public: accessible by the user and within any function of the class

• 	 private: accessible within functions of the class

• 	 protected: accessible within functions of the class and within functions of those classes
who are inherited from this class

Functions of a class have to be specified in the same way. Moreover, it is possible to give spe­
cial functions of other classes access to the private elements to the class explicitly by declaring
them as friend functions to the class [Lippm 92].

The ONTOS manual recommends the following practices to achieve encapsulation:

• 	 Attributes and relationships (=pointers) are recorded as private data members.

• 	 Member functions are supplied to provide public access to the data members.

So a "normal" declaration of a class looks like the following of the class creditcard (this is the
file creditcard.h).

#include <ONTOSIObject.h>

#include <oNTOSIReference.h>

#include <ONTOSIDirectory.h>

#ifndef CHARGE_H

#deftne CHARGE_H

#include "charge.h"

#endif

class creditcard : public Object
(
private:

char *creditcard_number;

charge total;

public:

creditcard(char * the_number); l/constructor

creditcard(APL* theAPL); l/constructorfor retrieval

Type *getDirectType();

char* gecnumber(); Ilreturns creditcard_number
void geccharge(); II prints out the total
void seccharge(int the-pounds,int the-pennies); II sets the total
void add_charge(int the-pounds,int the-pennies);

18

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

IIadds to the actual total the-pounds and the-pennies
OC_Boolean isZero(); II returns TR UE if the total =0.0 else FALSE
void dump(); IIprints out the total and the creditcard number

J;
The creditcard number and the total are declared as private and therefore only the member
functions can access them. GeCnumberO simply returns the value of creditcard_number.
geCchargeO prints the total and dumpO prints the total and the creditcard_number.
add3hargeO and seCchargeO manipulate the total, whereas isZeroO tests the total if it is zero.
These functions define the interface to the object, and are used to enforce hiding of the internal
structure and state maintained by the object. The methods define ways to communicate with a
creditcard object and access its data members.

The declaration of the class (as above of the class creditcard) is in header-files which are to be
detected by the".h" ending (here creditcard.h). The implementation of the methods of a class
are in so called implementation-files which end with ".C" (here creditcard.C) and must include
the according header-files. ONTOS demands this separation because first all header-files are
"classified" with the classify-utility and the schema is built. Then the implementation files and
the main-file is compiled and the application is built. With the separation of implementation
and declaration it is possible to change the implementation of a member function but not the
declaration and the schema.

ONTOS allows the user to get information about the structure of a class. Every class descrip­
tion is transformed into a Type object, PropertyType objects, Procedure objects, ArgSpecList
objects and ArgSpec objects. The Type specifies the class' name and its base class, its data
member (PropertyType), its member functions and constructors (Procedure objects) and their
arguments (ArgSpecList and ArgSpec objects). These objects are constructed automatically
from C++ source code by the classify utility, which generates instances of Type from C++
class definitions. The user can find out everything what stands in the class declaration with the
help of the Type objects. Moreover he can get the values of every data member independent of
the declaration as public, protected or private.

SQL-queries have also access to private data members (for an example see Section 5.13).

Thus ONTOS provides an encapsulation mechanism, but if there is a need to work without it, it
is possible. ONTOS appeals to the programmer to keep the rules of encapsulation.

5.5 Types and classes

5.5.1 The Manifesto's demands

The Manifesto distinguishes between two categories of object-oriented systems depending on
the data structuring mechanism. It says that the database schema should consist either of a set
of Classes or a set of Types. (The term 'Type' has here a different meaning than in C, Pascal,
etc !)

Types emphasize the fact that all instances of the Type have the same characteristics and it
summarizes the common features. The Type consists of two parts: the interface part and the
implementation part. The interface part is visible to the user and consists of a list of operations
together with their signatures. The implementation, which is only visible to the Type program­

19

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

mer, consists of the data part and an operation part. The data part describes the internal struc­
ture of the object's data, whereas the operation part consists of procedures, which implement
the interface part.

Types should force the user to declare the structure of the objects he manipulates and the sys­
tem can check that the user does not perform wrong assignments to, or manipulations on, ob­
jects. Thus Types are used at compile-time to check the correctness of the program. The Types
have no special status and cannot be modified at run-time.

A Class describes the common behaviour of a set of objects. The specification is the same as
that of a type, but it is more a run-time notion. A Class not only describes how an object must
behave to belong to that Class. It also serves as the repository of all objects which currently be­
long to the class. This means that the notion of class is somewhat connected to run-time con­
siderations. Classes are not only used for checking the correctness of a program, but rather to
create and manipulate objects. Classes are first class citizens which means that the class itself
is an instance of another type (metaclass). So it may be subject to operations such as creation,
modification or deletion, or it may establish a relationship with another class. The metaclass
provides the OODBS with a powerful tool for self-description. While providing the system
with increased flexibility and uniformity, this renders compile-time checking impossible.

The Manifesto admits that these two notions are often used in both senses. It does not prescribe
which approach is the best for an OODBS, but one form of data structuring mechanism should
be offered by the OODBS.

5.5.2 Classes in ONTOS

We grade ONTOS as an OODBS that uses "Classes" in the sense of the Manifesto. All instanc­
es of a Class have the same structure and consist of an interface part and an implementation
part.

Classes can be created in two ways in ONTOS:

The first way to run the classify utility on C++ header files that contain class definitions. This
utility automatically generates instances of the metaclasses Type, PropertyType and Procedure
from standard C++ class definitions. The classify utility processes the C++ information and
uses it as model to build the corresponding Type object, PropertyType objects and Procedure
objects within the database. During compile time all these objects exist. This way is the most
common way.

The other way to create Type, PropertyType and Procedure objects in the database is to directly
create instances of the metaclasses Type, PropertyType and Procedure by including the appro­
priate C++ code in the database application. This manner of Class creation is called program­
matic type creation because it occurs from within the program at run-time. Along these lines,
class definitions can be created, modified and deleted at run-time.

ONTOS offers the programmer of a Type to maintain the extent of a Class (ie. the set of objects
of a given Class in the database) if he wants the Type to have so. After the creation of the Type
object this is not changeable. So ONTOS makes all objects of a Class accessible to the user, if
the Type has an extent.

20

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

5.6 Class and Type Hierarchies

5.6.1 The Manifesto's demands

In object-oriented systems, the concept of inheritance permits objects to be organized in taxon­
omies in which specialized objects inherit the properties and operations of more general ob­
jects. Similar classes of objects which share properties and functions can be modelled by
specifying a superclass, which defines the common part, and then deriving specialized classes
(subclasses) from this superclass. This feature clearly provides powerful support for reusability
and extensibility since the definition of new objects can be based on existing classes [Jeffery
92]. That is why the Manifesto demands inheritance as it is normal in object-oriented systems.

There are two possibilities of inheritance depending on the number of superclasses which may
inherit their properties and functions to one subclass. Here the Manifesto demands only single
inheritance, ie. every subclass has only one superclass.

5.6.2 Inheritance in ONTOS

As the DML of ONTOS is based on C++, inheritance is possible in ONTOS. As in C++ there
is single inheritance and multiple inheritance (for details in mUltiple inheritance see Section
6.1).

The declaration of a class with name classname that inherits from class superclassname is:

class classname : public superclassname

The class classname gets all functions and data members from the superclass and then adds
some data members and functions. It is possible to override functions of the superclass. When
an object of the subclass calls this function, the function runs as it is declared in the class and
substitutes the function of the superclass. (For more detail see Paragraph 6.6.2 .)

There is one special inheritance in ONTOS: every class that should be persistent must be de­
rived from the class Object. When a class has a super-class that derives from the class Object,
then all classes in this hierarchy are persistent.

In our video-shop example we used simple inheritance for the class "reservation" that inherits
from class "arrangement". As the arrangement class is persistent the reservation class is as
well. The declaration of both is as follows:

class arrangement: public Object
(
private:

Date *from;

Date *to;

char *payment;

char *transport;

public:

arrangement();
arrangement(APL* theAPL);

Type *getDirectType();

Date *getJrom();

void setJrom(Date *the_Date);

21

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

Date*gecto();
void secto(Date *the_Date);

char *getyayment();

void setyayment(char *theyayment);

char *geCtransport();

void sectransport(char *the_transport);

void dump();
};

class reservation: public arrangement
(

char *the_video;

Reference hasJeservationer;

public:

reservation(char *video _name);
reservation(APL* theAPL);

Type *getDirectType();

char* gecvideo();

member* geCmember();

void secmember(member *the_member);

void dumpJeservation();

};

Every object of Type reservation contains an object of Type arrangement (here called subob­
ject). The subobject is created before the comprising object. The superclass constructor calls
the subclass constructor. In the same order these objects are activated when they are retrieved
from the database. So every function of the superclass can be called from an object of the sub­
class, as long as they are declared as public or protected. In our example all functions of class
arrangement can be used within objects of class reservation or rental. Both subclasses have
some additional methods and data members.

In contrast to C++ ONTOS does not allow virtual classes as superclasses [Ontos 92a]. But all
the other features are the same.

5.7 Overriding, overloading and late binding

5.7.1 The Manifesto's demands

In some cases it is useful to have the same name for more than one operation.

Overriding is one form. The subclass contains a method with the same name as the method in
its superclass. An instance of a subclass will execute the method defined in the subclass, when
it is called with that function name.

Overloading is a more powerful form which contributes very much to get the writing of more
legible program code. It permits the use of the same name (independent of any type- subtype
relationship) to denote different functions. Ambiguities are resolved by the system examining

22

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

a syntactic facility which permits programmers to use the same name for different implementa­
tions of similar operations. An often used example is as follows: one may wish to use the same
name for operations to add two integers, two real numbers or even two character strings. An
add operation on variables vI and v2 is invoked by the call:

add (vl,v2)

and the system decides which function to apply by examining the types of vI and v2. Ambigu­
ities may be resolved either at compile time or at run-time.

The Manifesto demands late binding which is the process, by which the version of the opera­
tion to be applied is determined at run-time or at least delayed.

5.7.2 Overriding, overloading and late binding in ONTOS

ONTOS has all the demanded features of Section 5.7.1, as they are already fulfilled by C++,
which the DML is based on.

In our video-shop application we have used overriding. The class arrangement has a method
called dumpO which prints out the values of all data members. The reservation class also has a
method called dumpO, but we have redefined it. After that it did not only print out the values of
the (inherited) data members, but also the name of the video and its copy number, which the
reservation is made for.

(The method dumpO is as well implemented in the class person, rental, member, video, video
copy.)

We have also used overloading in our application program. Our database has three entries.
From there you have to follow references to find objects of other classes. Every object of these
three classes has a unique name. The "entry classes" are: member, video and video copy.

When a member gives his number, we just concatenate it with Amem. So a member with a
member number 123 is represented by an object with the name I23Amem.

A video object is identified by the video title and the medium (t for tape, 1 for LDLaserDisk):
titleAmedium, so for example rainmanAt.

A video copy object is identified by the video title, the medium and the copy number: for ex­
ample rainmanAtA2

To simplify the program code we have written 4 concatenate functions which create the object
name from the given elements:

void concatenate(char s[J, int i,char t[J);

void concatenate(int i,char s[J,char t[J);

void concatenate(char s[J, char c,char t[J);

void concatenate(char s[J, char s2[J,char t[J);

So within the program we just use concatenate, but do not care which of these functions actual­
ly runs.

Late binding is provided through the mechanism of virtual member functions. A virtual routine
is provided with a definition in its original class, but may be redefined in descendant classes
and it is the responsibility of the run-time system to find the appropriate version for each call of
the virtual function.

23

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

In the predefined classes there are a lot of virtual functions, but the user can also write his own
virtual functions. For example the predefined class Entity has the virtual function getDirect­
Type:

virtual Type *getDirectType() =0;

It returns the object's Type (Type is a class which represents C++ class definitions). It has to be
redefined in every persistent class definition. This requirement ensures that an object's Type is
always known at run-time. So, for example, in the member class:

Type *member::getDirectType()
{

return memberType;
}

(memberType is set to memberType = (Type *)OC_lookup("member") in the main program.)

The use of the virtual function can be seen in the following part of our implementation:

member *my_member;

char mem_obLname[40];

concatenate(member _nr, "mem ",mem_obj_name);

Entity * the_entity = (Entity*) OC_lookup(mem_obLname);

i/(thejntity == NULL)

{

cout < < "member does not exist";

return;

}
if ((the_entity->getDirectType()) = = memberType) II here is the call for the virtual function
{

}
else
{

cout «"error: wrong object retrievementl";

return;

}

When an object is retrieved from the database by name, we cannot be totally sure that it really
has the Type we expect. Therefore we first retrieve it as an Entity and examine its Type by us­
ing the getDirectType function which then runs the implementation of the getDirectType func­
tion as defined in the member class. Then we can create an object of the class member with the
retrieved values and so we do not risk to work with a wrong Type. ONTOS would not notice if
the retrieved object is put in a wrong Type and would work then with the Bits and Bytes from
the database as if they were of the right Type which is not very sensible.

5.S Computational completeness

5.8.1 The Manifesto's demands

In sharp contrast to programming languages, traditional database query languages usually im­
pose very severe restrictions on the kind of computation that can be performed. As a result, ap­
plication programs must be implemented in a general-purpose language (host language) while
access to data is realized via declarative data sublanguage, like SQL. As a consequence, data
has to be passed between these two languages. Since both languages usually differ semantical­
ly, as well as structurally, such transformations may lead to a loss of information. This problem
is known as impedance mismatch.

24

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

To avoid this, the Manifesto demands that one can express any computable function, using the
DML of the database system. It does not need to be a new programming language for the data­
base, but computational completeness can be introduced through a reasonable connection to
existing programming languages.

5.8.2 Computational completeness in ONTOS

In ONTOS, the DML is the object programming language C++. As the object programming
language is also the host programming language, programmers code only in one language. Re­
trieval of objects is done directly into and out of the host programming language, so no trans­
formation of the object structure is needed.

C++ is computational complete. So ONTOS is capable of handling complex mathematical ma­
nipulations of data without a loss of information on the way between the database and the host
language.

5.9 Extensibility

5.9.1 The Manifesto's demands

Within the OODBS there exist already some system-defined types. The user uses these types,
but can also define new types. The user should not notice the difference between system de­
fined and user-defined types, although there might be a difference in how the system supports
them, but the user should not be aware of this.

The Manifesto does not demand that the user can extend the type constructors (e.g. sets, lists).

5.9.2 Extensibility in ONTOS

ONTOS does not provide a lot of system defined types. There are the primitive types like inte­
ger, character, float. Moreover, ONTOS has some predefined pointers and which are mainly
pointers to the simple objects and there exists a date type. But all these cannot be made persist­
ent by its own, only when using a constructor.

There is no difference between using user defined types or system defined types. The newly
created types have the same status as the existing ones in our experience. So the extensibility
demand is fulfilled.

5.10 Secondary storage management

5.10.1 The Manifesto's demands

The success of database systems, of course, largely relies on their ability to provide fast access
to objects in the database. This can be supported through a set of mechanisms.

• 	 index management: Indexing is well-known from conventional database systems where
a database index consists of a set of index entries that are stored on disk, one index entry
for each row existing in a table specified and responsive to future updates. Index entries
look like rows of a table with two columns: the index key, consisting of the concatena­
tion of values from certain column values in the row, and a row pointer to the disk posi­

25

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

tion of the row from which this specific entry was constructed. In object-oriented
database systems the question is whether, with respect to encapsulation, one should in­
dex on the structure of the objects of a class (neglects encapSUlation) [Jeffery 92].

• 	 data clustering: The goal of clustering is to reduce the number of disk I/Os for object re­
trieval. The unit of data transferred from disk is a page instead of an individual object. If
two objects are clustered on the same page, it will only take one disk I/O to access both
objects successively. The second object is actually prefetched when the first one is ac­
cessed. If the page size is larger, more objects can be clustered on a page and one disk
I/O can access them all.

• 	 data buffering: Usually a buffer manager maintains a buffer of page frames and attempts
in that buffer data that are likely to be accessed again soon. Transactions must issue a re­
quest to the buffer managing subsystem to load an item of data into the buffer before the
transaction can access it. When the transaction is finished with the data it informs the
buffer manager that the space occupied in the buffer by the data may be overwritten. A
data item is thus guaranteed to remain in the buffer while it is in use.

• 	 access path selection and query optimization: The goal is to get the result of a query
very fast. The system should determine the best way to approach the database and exe­
cute the query over the database. It may make use of information in the database or
knowledge of the whereabouts of particular data on the network to optimize the retrieval
of a query.

These mechanisms are demanded by the Manifesto, but they should be invisible to the user.
The application programmer should not have to write code to maintain indices, to allocate disk
storage or to move data between disk and main memory. The programmer should work on a
logical level of the system independent of the physical level below.

5.10.2 Secondary storage management in ONTOS

In ONTOS the server controls the physical storage manager that actually stores and retrieves
objects to and from disk. The servers use segments of units of transfer fromlto secondary stor­
age, thus providing segment-based prefetching and buffering.

When the user wants to read or store an object, he must first activate it. The activation process
involves allocating memory, reading the entire segment into the client cache and copying the
object into the memory. In the process, references are translated from their database forms to
either direct references or abstract References. But the user does not need to care about these
representations.

After modifying the object, the user deactivates it, which means it is written to the server cache
and when the transaction is committed, it is written to the database.

The scope of the activation refers to how many objects are activated in a single call. Objects
may be activated singly or in groups. A group activation activates all objects contained in one
of the aggregate classes. It may consist of any user-defined group of objects.

The storage management is handled through the user-accessible storage manager classes:

• 	 Standard Storage Manager

• 	 Group Storage Manager

26

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

• In-Memory Storage Manager

Each storage manager controls the storage behaviour of the object assigned to. This relation is
defined at the creation of the object. The three kinds of storage managers can coexist in the
same application, managing different objects.

All three allocate and deallocate memory, activate and deactivate objects, set locks and release
locks, cluster objects in the database, maintain and resolve references from objects under its
control to other objects and delete objects from the database. These services are performed
transparent!y.

The objects are clustered via either system default or application control. The storage manag­
ers perform application specific clustering by specifying the location of an object relative to
another; then they store the new object in the same segment as the target segment. (With the
same function the user can define in which area he wants to store his object.)

Each of the three storage managers has a special feature:

• 	 The Group Storage Manager is optimized for handling a group of small objects (smaller
than 500 Bytes each) when they are all needed in one transaction.

• 	 The In-Memory Manager is optimized for non-persistent objects.

• 	 The Standard Storage Manager is the default storage manager.

Moreover, ONTOS offers the possibility to access data members via indexing. The default be­
haviour of classify is not to create an index. But if the user wants to have one, he can get it. The
user has to specify to create an unordered or an ordered index. The manual advises only to use
indices on data members that have a simple type like integer or char*. Creation of an index al­
lows fast access to the set of instances having a given value (a range of values) for the data
member via an InstanceIterator.

As pointed out in the manual, ONTOS provides query optimization, but we could not test it.

So all demands of the Manifesto in this respect are fulfilled.

5.11 Concurrency

5.11.1 The Manifesto's demands

It is generally expected that user programs will attempt to read and write the same pieces of in­
formation at the same time. Doing so creates an access conflict for the data. That is why the
Manifesto demands a concurrency control mechanism that is established to mediate between
these conflicts and that does so by instituting policies that specify how read and write conflicts
will be handled.

Usually a "sequence of operations" must be executed as a unit which is called transaction. In­
termediate states, which exist after individual statements of an updating transaction have been
performed, may be inconsistent. Therefore, to guarantee the consistency of the database, the
Manifesto demands that transactions must be processed entirely or not at all (ie. transactions
are atomic). All transactions must preserve the consistency and correctness of the data stored
in the database. That is, the operations performed by a transaction should transform the data­
base from one consistent state to another.

27

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

To give the user an understandable view of the database the effect of transactions must be that
which he would be obtained if no other transactions were executed concurrently. The effect of
executing several transactions concurrently, therefore, must be the same as if they had been ex­
ecuted serially in some order. Concurrently executing transactions whose effect is equivalent
to that of some serial execution are said to be serializable. This, at least, is demanded by the
Manifesto.

5.11.2 Concurrency in ONTOS

In ONTOS each access to the database has to be done within a transaction, which has to start
with the command OC_transactionStartO and end either with OC_transactionCommitO or
OC_transactionAbortO. With the start of a transaction the OODBS user defines the concurren­
cy control. Whenever he wants to read or write from/to the database, he must acquire a lock for
this object. ONTOS provides several locks, but in the sense of concurrency only ReadLock and
WriteIntentLock are important. Whenever an object is activated, the user can determine which
lock he wants for this object or just rely on the default lock, which depends on the concurrency
protocol (see below). The locks are released at commit time at the earliest, which is usually the
case, but the user cannot determine the point of time.

ONTOS supports the conservative, the time-based and the optimistic concurrency protocol. In
the conservative concurrency protocol the object is checked for access conflicts when a lock
for this object is requested. It enforces serialization. A process attempting to get a ReadLock or
WriteIntentLock on an object WriteIntentLocked by someone else or attempting to get a
WriteIntentLock on an object that already has a ReadLock, cannot access the object.

The time-based concurrency protocol is a middle alternative to conservative and optimistic
control. It assumes (with some confidence) that all conflicts can be serialized, but checks peri­
odically to be sure that the transaction does not continue uselessly with an undetected and irre­
solvable lock.

Under the optimistic policy, each transaction performs its updates on a private copy of data and
the transaction is validated at commit time by ensuring that the original data is not also been
accessed by a concurrently executing transaction. That is also the point of time when conflicts
are detected. The optimistic policy provides the widest overall access to data and accepts a rel­
atively higher risk of abort due to irresolvable conflict than either of the other policies. The op­
timistic concurrency protocol allows a ReadLock to be set on an object that has a
WriteIntentLock if conflicting transactions can be serialized. The difference between the time­
based and the optimistic policy is the point of time when possible conflicts are detected.

ONTOS has no variable which the OODBS user just sets to one of the 3 policies. The user has
to set 3 object-handling protocols. Depending on the combination the user has chosen the con­
currency protocol is one of the concurrency protocols described above or somewhere between
them. Section 5.11.3. describes the procedure in more detaiL

The ONTOS manual says that the transactions are atomic. We have made no other experiences
in our tests with the example.

As explained above, ONTOS fulfils the concurrency demands of the Manifesto.

28

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

5.11.3 Defining concurrency protocols in ONTOS

With the start of the transaction the OODBS user defines 3 object-handling protocols which are
global to the transaction. These protocols are

• 	 A conflict detection protocol which is for identifying the conflicts arising from the cur­
rent attempts to access an object.

• 	 A conflict response protocol which is for responding to conflicts arising from attempts
to lock an object for reading or writing

• 	 . A buffering protocol which defines how many objects are buffered on the client side be­
fore they are output to the server cache.

ONTOS offers two conflict detection protocols. (They help to find conflicts before the object
copy comes into the client cache. This protocol does not prevent the user from changing a lock
when an object copy is already in the client cache.):

1. 	 RWConflict
Under this protocol the only concurrent access allowed is to read on an object that is already
ReadLocked. By default objects are activated with WritelntentLock.

2. NoRWConflict
This protocol maximizes overall concurrency across all applications accessing the database.
It allows processes to obtain ReadLocks on an object that has already been Write Intent­
Locked. The readers of the object see an earlier version if they are serialized earlier than the
writers to the object. A preemptive abort occurs if a reader and a writer of "object!" ex­
change roles for "object2" (deadlock!). Here objects are activated with Readlock by default.

Table 1 shows what happens when one transaction tries to lock an object that has already been
locked by another transaction depending on the kind of lock and on the kind of conflict detec­
tion protocoL

Table 1: Conflict resolution of concurrent processes depending on conflict detection
protocol and kind of lock

new lock requester

NoRWConflict RWConflict

ReadLock WriteIntentLock ReadLock WriteIntentLock

I-<

:9
0

oJ::
~
(.)

0-

NoRW-
Conflict

ReadLock success success / abort success conflict I abort

WriteIntentLock success I abort conflict! abort conflict I abort conflict I abort

RWCon
f1ict

ReadLock success contlict / abort success contlict / abort

WriteIntentLock conflicts I abort conflict / abort conflict / abort contlict / abort

29

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

The conflict response protocol defines what should happen when there is a lock conflict detect­
ed with the help of the conflict detection protocol. ONTOS provides a choice of two conflict
response functions:

1. 	 OC_ waitOnConflict
Waits until the lock is relinquished by the locking process to complete the database opera­
tion

2. OC_notifyConflict
Raises the "WaitException" if there is a conflict. So the application can regain control after
a lock conflict and can retry the database access or do other work.

The second conflict response function is used as below. If a conflict occurs the transaction rais­
es the ExceptionHandler and then the transaction is aborted and the "else" part runs.

ExceptionHandler lockError("WaitException ");

if(lockError.doesNotOccur()

(

OC_transactionStart(RWConflict, OC_notifyConflict);

..... here are the commands within the transaction

OC_transactionCommit;

}
else OC_transactionAbort();

...... Iithis part runs when a confict occurs

When objects are put to the database, they must be transferred from the client to the server,
usually over the network. This transfer can be made more efficient if the objects are buffered in
client memory and transferred in groups. However, until a put is actually made to the server,
the application cannot get any information on lock conflicts that could not be caught with the
conflict detection protocol when the locks were requested for the objects in the database.
Therefore, it is the best to group only a moderate number of objects into a single transmission.
ONTOS leaves this decision to the user. It provides 3 buffering protocols:

1. 	 OC_noBuffering
Each put call results in an intermediate transmission to the server.

2. OC_defaultBuffering
Objects are buffered and sent in small groups to the server (usually after 10 put operations,
but the user can define this number).

3. 	 OC_bufferUntilCommit
Objects are buffered during the transaction and transmitted all at once when the transaction
is committed. But if the buffer is exhausted, the system will make interim transmission.

Some combinations of the different protocols are known as concurrency control policies:

• 	 Conservative concurrency control is achieved when the RWConflict detection protocol
and OC_noBuffering is used.

• 	 Time-based concurrency control is achieved when the NoRWConflict protocol and ei­
ther the OC_noBuffering or the OC_defaultBuffering is used.

• 	 Optimistic concurrency control is achieved when the NoRWConflict protocol is com­
bined with the OC_bufferUntilCommit buffering protocol. Conflicts are realized only at
commit or checkpoint time.

30

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

5.12 Recovery

5.12.1 The Manifesto's demands

The Manifesto demands software tools to implement recovery in the event of system failures.
These tools have to ensure atomicy and to avoid inconsistent data states. So in case of hard­
ware or software failures, the system should recover, ie. bring itself back to some coherent
state of data.

5.12.2 Recovery in ONTOS

ONTOS maintains special repositories called journals. Every area has its journals. The journals
record the history of each transaction which has updated the area since the last back-up copy of
the area was made. The journal saves which transaction has updated or created which object,
its old value and the new value. Moreover key points in the progress of transactions, such as
their start and end times, are stored and the point at which a transaction commits is recorded.
When all changes of a transaction have been recorded in the journal, the transaction issues the
commit message which makes the server of the area to transmit the changes from the journal to
the area. The server reads from the journal at two specified times only:

• when it updates the area

• when it is first activated (if recovery is required)

In an event of a hard crash the DBA Tool can be used to recover a single area or all the areas in
the logical database and roll a back-up copy of the area / areas forward to its state prior to the
crash by replaying all the journals from the area / areas. That is why back-up copies should be
made occasionally. It is essential to backup all databases that use the same kernel area as one
unit. With this back-up one must also make a copy ofthe registry. So if the it has been corrupt­
ed one just restores the old registry file and replace the current registry with the old one.(For
more details about registry, kernel area, etc, see Section 3.)

The journals are implemented as files and are written to the same directory that contains their
area file. The name of a journal file is composed of three parts <areaname>.JRN.<number>.
The "JRN" suffix identifies the file as a journal file. The <number> suffix is used by the server
and the DBATool to determine which journals to replay and in which order.

Due to our experiences on this field ONTOS fulfils the Manifesto's demands for recovery.

5.13 Ad hoc query facility

5.13.1 The Manifesto's demands

The Manifesto demands a service which allows the user to ask simple queries to the database.
This has not to be in form of a query language, but it should have the functionality of a query
language. One way is to support it by the data manipulation language.

The Manifesto has some criteria which have to be fulfilled by the query facility:

1. It should be high level, ie. one should be able to express non-trivial queries concisely;

2. It should be efficient and optimize the query itself;

31

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

3. It should be application independent.

5.13.2 Query facility in ONTOS

ONTOS provides Object SQL which allows some of the basic SQL commands such as select,
from, where, and, or and standard Boolean and relational operators such as is in, is not in, etc.
ONTOS allows queries to be made over the properties (data members) and procedures of per­
sistent objects. Object SQL is implemented with a single class called Querylterator which gets
the SQL expression as a string as its argument and which allows queries to be stored as objects
in the database. Each instance of the class represents a particular query. The results of the que­
ry are obtained by calling the yieldRowStringO member function. Each call returns the next
row of results. The following is a part of the query application in which we ask for the first
name and the town of the person's address whose second name is 'Smith'.

char the_output[200};

Query/terator *my_iterator =new Querylterator("select p.firsCName,p.town from person p where

p.second_Name=\"Smith\";");

while(my_iterator->moreData()

[

my _iterator->yieldRowString(the_output, 200);

cout «""

« the_output

« "V1";

}

The query above accesses the data members of the class person which are declared as private
and usually only accessible via a function of the class. But Object SQL ignores these access
permissions and prohibitions. Actually the query would have been:

Query/terator *my_iterator =new Query/terator ("select p.get...Jirscname(), p.getjown() from per­
son p where p.geCsecond_name()=\"Smith\";");

This query has the same results as the one above.

We have shown how to access rows of the query's result, but it is also possible to break the row
into columns (with the help of the yieldRowlteratorO function) and so the user is able to pro­
grammatically access a property returned as a result of an SQL query. This is especially useful­
ly when the result contains objects. But in our example

IocaINameGenerate« Entity *)my _argument, the_output, 199,,)

returns the value of the string, but if it would be an object it would return the local name of it.
If it does not exist, ONTOS creates it.

char the_output[200};

Query/terator *my _iterator =new Query/terator{"select p.jirsCName from person p where

p.second_Name=\"Smith\"; ");

cout« "Programmatic version ofcolumns:\n";

while (my_iterator->moreData())

(

/terator *mYJow_iterator =my_iterator->yieldRowlterator();

while (mYJow_iterator->moreData())

(

Argument my_argument =(*mYJow_iterator)();
cout« OC_locaINameGenerate((Entity*)my_argument, the_output, 199,,)« "";

J
cout« '\nil;

J

32

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

Query iterators support recursive and hierarchical queries. The FROM clause in Object SQL
accepts any argument that evaluates to a collection of objects in addition to class names. The
SELECT clause accepts property names as well as member function invocations and naviga­
tional style property chain.

Scrutinizing ONTOS for the demanded criteria of the Manifesto, we have discovered the fol­
lowing.

ONTOS provides a high level query facility with OSQL as the query itself is formulated as a
string. But to run the query a whole application has to be written and compiled. We could not
check if the formulation of the queries lends itself to some form of query optimization, but the
manual says ONTOS does so. But as the queries are conducted against extensions of classes
and aggregates the last criteria of the Manifesto's demand is not fulfilled. It is not self-evident
that all classes have extensions. The user can determine which classes have extensions. More­
over, any functions which are to be used as part of a SQL query must not be declared inline.

So the ONTOS query facility does not fulfil all demands of the Manifesto for query facility.

In order to look at the data saved in the database ONTOS provides a browser. The browser can­
not look at all instances, ie. at instances of multi- inherited classes. It is very easy to use, but
cannot answer queries.

33

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

6 Comparison of Optional Features

6.1 Multiple inheritance

Multiple inheritance permits a new type to be derived from a number of other classes. This is
used in the video-shop application for the Type video which has two parent classes namely
videomovie and videomedium. The Type videomovie has information about the title of a mov­
ie, main star, the duration of the movie in minutes and the kind of movie (ie. humorous film,
thriller, etc.). Whereas the Type videomedium represents the material which the film is record­
ed on and is described by the kind of medium (tape or LDLaserDisk) and the length of maxi­
mal time that medium can record (in minutes). A video consists of the vidoemedium and the
movie, as a computer consists of hardware and software.

Here is the class description containing these three classes:

class Videomovie : public Object
(
protected:

char* titel;

int duration;

char* main_star;

char* kind_of-movie;

public:
Videomovie(char* the_objeccname,

char* the_tite],

int the_duration,

char* the_main_star,

char* kind_oCmovie);

Videomovie(APL* theAPL);

Type * getDirectType();

char* geCtitel();

int gecduratin();

char* gecmain_star();

char *geCkind()

void dump();;
};

class Videomedium : public Object
(
protected:

char media;

int length; lit == tape, I =LaserDisc

public:

Videomedium(char the_media,int the_length);

Videomedium(APL* theAPL);

Type* getDirectType();

char getmedia();

int getlength();

};

class Video: public Video movie, public Video medium
{
private:

int number _of-copies;

34

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

Reference iSJepresentative_oj;

public:
Video(char* the_objeccname,char* the_titel, int the_duration, char* the_main_star,char*

kind_oLmovie,char the_media='t',int the_length=J20,);
Video(APL* theAPL);

void* operator new(OC_size_t sz),'

void* operator new(OC_size_t sz.APL* the_APL);

void* operator new(OC_size_t sz.StorageManager* sm, Type* t);

void operator delete(void* v);

virtual void* startAddress() {return this;}

Type *getDirectType();

void putObject(Boolean deallocate = FALSE);

void deleteObject(Boolean deallocate = TRUE),'

int copies();

void inkremenCcopies();

void dekremenCcopies();

void secrepresents(Dictionary *dic);

Dictionary*getJepresents();

void dump(),'

};

The definition of persistent classes with multiple base classes is a little bit more complicated
than the definition of a persistent class with one base class. There are some additional require­
ments and some functions must be redefined.

As for every persistent class the user must define the special constructor that is used when in­
stances of the class are retrieved from the database. This constructor takes the argument typed
as "APL*". It must call the activation constructors of all base classes.

Video::Video(APL* theAPL).· Videomovie(theAPL), Videomedium(theAPL)
{

cout < < '\n Activating Video'vl ";

}

A problem is that all persistent classes inherit directly or indirectly from the class "Object".
Hence, the user must define one of the base classes as the primary (first) persistent base class.
All instances of the multi-inherited class use the instance of the class "Object" of the primary
persistent base class to manage storage and persistence. In our example we define Videomovie
as the primary base class. Through this base class we pass the object name and call the direct­
TypeO function, which sets a pointer to the persistent representation of a class (a pointer to the
Type object of this class):

Video.': Video(char* the_name, char* the_titel, char* the_main_star, char* thcdirector,
int the_length, char the_media)

.' Videomovie(the_name, the_titel, the_main_star. the_director), Videotape(the_length. the_media)
(

Videomovie:.·directType(VideoType);

number_of_copies =J;

iSJepresentative_of.initToNull();

cout« "Creating Video'vl";

}

35

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

The new operators and the delete operator must also be redefined and simply call the corre­
sponding operator on the primary persistent base class. The putObjectO and deleteObjectO
functions call as well the corresponding functions each of class Video's persistent base classes.

void Video::putObject(Boolean deallocate)
(

Videomedium:: putObject(FALSE);

Videomovie:: putObject(FALSE);

if(deallocate) delete this;

)

When we make a set of all Videos that are on tape, for every member of the set a reference is
stored to find the members. The reference is stored within the set to the start of the first persist­
ent base class of the instance. Even if we have a set of Videomedium, we can insert a Video in­
stance into our set, because after all, a Video is a Videomedium. When we retrieve our element
from the set, we must do some casting to get the set.

ONTOS does not allow virtual persistent base classes for multiple inheritance. Private persist­
ent base classes are not allowed either. The persistent base class must be public. But the base
classes do not need to be persistent. However, in order for the new class to be persistent, one of
its base classes must be persistent.

When the persistent base classes have some members that have the same name, ONTOS does
not know, which one to chose and sends an error message during the compilation. But it is pos­
sible to define the base class which the member should be taken from.

6.2 Type checking and type inferencing

In conventional typed languages, the compiler assigns a type to every expression and subex­
pression. However, the programmer does not have to specify the type of each subexpression.
Type information need only be placed at critical points in a program, and the rest is deduced
from the context. This deduction process is called type inference. Typically, type information
is given for local variables and for function arguments and results. The type of expressions and
statements can then be inferred, given that types of variables and basic constants are known.
Type inferencing reduces to type checking when there is so much type information that the
type inference task becomes trivial [CarWe 85].

The Manifesto does not prescribe the degree of type checking the system will perform at com­
pile time. But the best situation would be if all type errors were detected at run-time and a com­
piled program does not produce any run-time type errors.

The Manifesto also leaves it to the system designer if the system offers type inferencing. Again
the same principle: the more the better. It would be desirable if only the base types had to be
declared and the system inferred the temporary type.

The DML in ONTOS is based on C++ which is a strongly typed language. So it offers the abil­
ity to determine the type compatibility of all expressions representing values from the static
program representation at compile time as long as there is no interaction with the database.
Both the argument list and the return type of every function call are type checked during com­
pilation. If there is a type mismatch between an actual type and a type declared in a function
prototype, an implicit conversion will be applied if possible. If an implicit conversion is not

36

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

possible or if the number of arguments is incorrect, a compile-time error is issued. The func­
tion prototype provides the compiler with the type information necessary for it to perform type
checking at compile-time.

These conversions are only for simple types: from int to double, from C++ int to Integer which
represents values of C++ primitive data type int in ONTOS, etc.

ONTOS makes type checking for data going int%ut of the database against "classified" types.
However, on retrieval via "OC_IookupO" it relies on the programmer casting the returned data
to the correct type, so in this case there is a potential weakness. ONTOS prints out an error
message at compile-time for the following command:

account *a = (member *)OC_lookup("123");

But is does not notice when a retrieved object of the type video (ie. video with title "rainman"
which is a tape) is returned into an object of the type member and does not raise any error mes­
sages (neither at compile-time nor at run-time):

member *m =(member*) OC_lookup("rainmanl\t");

The user has to check the type of the retrieved object and then cast it to the correct type (for
further detail see Section 5.7.2).

6.3 Distribution

In a distributed database the data are held on a network of computers across different sites (or
nodes) which are geographically remote from each other. Each site holds a partition of the da­
tabase.

The Manifesto does not prescribe if the database must be distributed or not.

ONTOS manages a database that may be physically distributed over a local area network. But
the nodes must be of the same hardware family and must be running the same operating system
[Ontos 92a].

The database is subdivided in so called areas which are physical files where the objects are
stored. They can exist anywhere on the network. These files are configured by the user before
any application runs.

ONTOS distinguishes between the logical database and the physical database. The logical da­
tabase consists of areas and must include the kernel area which consists of the metaschema
classes. The physical database consists of a kernel area and all the files containing areas that
are rooted in the kernel area. All logical databases that share the same kernel area are part of
the same physical database. An area can belong to more than one logical database within the
physical database.

The locations of the area files are transparent to the user and so the user can get objects from
the database or put them into the database without having to specify the identity and/or loca­
tion of the physical file where the objects are stored. But he has the possibility to do so. More­
over, objects may reference other objects within the network without knowledge of the
network's actual configuration or the physical location of the objects at any given time.

37

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

6.4 Design transactions

The notion of a transaction in a design application can be very different to a business data
processing application. Design applications (ie. in CAD) are typically large and complex and
the transactions are usually of long duration. It must be expected, therefore, that for coopera­
tive design activities, information will be shared before the completion of a design transaction.
Hence, in some instances the traditional notion of serializability as a correctness criterion for
concurrently executing transactions may be too restrictive, as it insists that concurrent execu­
tion of transactions must produce results that are equivalent to some serial execution of those
transactions. This precludes data sharing during transaction execution.

The most optimistic approach to concurrency control which ONTOS offers is that several
transactions can read one object while another transaction writes on this object. Each transac­
tion performs its updates on a private copy. When the transaction commits, the updates are
made to the database if the transaction is serializable with other transactions. (For more detail
see Section 5.12.)

Much greater concurrency is possible if mUltiple versions of an object can exist. Then many
users can simultaneously access multiple versions of an object without conflict. Thus, a
number of OODBS handle concurrency using a check-in / check-out approach. When a user
wishes to change an object, a version of that object is checked out into the private workspace.
This effectively sets a write-lock on that version of the object, disabling other users from at­
tempting to change that version. Once the change has been made, the user checks-in the object,
which creates a new object version. Unfortunately, ONTOS does not have the check-in /
check-out approach and does not support versions of an object.

The long lifetime of design transactions means that traditional approaches to database recovery
based on transaction boundaries could result in a great deal of work being lost when a transac­
tion failure occurs. ONTOS offers checkpointing to help.

In order to commit all changes made to the database during a transaction, ONTOS has a func­
tion called OC_transactionCheckpointO. It does not terminate the transaction or release the
transaction locks, but it allows long transactions to be committed in stages and is a way of re­
ducing the amount of work exposed to a possible transaction abort. Once a checkpoint com­
pletes successfully, all objects that have been committed are safe even if the transaction is
subsequently aborted. In the event of system failure a transaction can be restored to the last
checkpoint. However, this technique may lead to significant loss of data unless checkpoints are
frequent.

Moreover, ONTOS offers nested transactions. A nested transaction is a transaction that begins
and ends between the beginning and ending of another transaction. Changes to the database
made in a nested transaction are contingent on the successful commitment of all its ancestral
transactions. Aborting any of its ancestor invalidates all its changes. If a nested transaction
aborts, the database state seen by its parent is the same as it was immediately prior to starting
the nested transaction. In ONTOS nesting may occur to a depth of 31 levels.

So with the help of nested transactions it is possible to group a subset of changes made by a
top-level transaction in contrast to a usual transaction. Between the beginning and the ending
of the transaction all incremental changes are made or none of them. So it is possible to abort
changes selectively. This is very useful for complex applications.

38

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

So all in all, ONTOS offers quite a lot for design transactions, but there are also some impor­
tant features like a check-inlcheck-out approach missing.

6.S Versions

Many database applications require the capability to create and access multiple versions of an
object. Important uses of versioning are to be found in databases underlying tools for Compu­
ter Aided Software Engineering (CASE), and Computer Aided Design (CAD). It is widely rec­
ognized that version control is one of the most important functions in environments in which
users need to generate and experiment with multiple versions of an object before selecting one
that satisfies their needs. It also helps to keep track of the evolution of design since objects may
store their version history. In the event that a design appears to be faulty at any stage, it is then
possible to rollback the design to some valid data state.

ONTOS does not support versions in our release.

39

7

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

Conclusion

We have presented a detailed evaluation of the object-oriented database system ONTOS Ver­
sion 2.2 with regard to the features the Manifesto demands of an OODBS. As these were not
factual enough, we had to put them in concrete terms. Then we scrutinized ONTOS to the ex­
panded demands by writing an application. We implemented a video-shop software which is a
well known test example in the United Kingdom. We could test most of the demanded features
with an application, but some were not checkable and so we had to rely on what the ONTOS
manual says.

An objective rating of our results on a scale of 0 (poor) to 5 (totally fulfilled) is shown in
Table 2. The scale should only help to roughly and clearly see the outcome of our studies. As
in the Manifesto the features are divided into mandatory and optional features. We did not
evaluate the open features because they were left as open choices by the Manifesto's authors
who did not agree on the kind of their realization. The open features do not contain any con­
crete expectations to a system.

Table 2: Evaluation of ONTOS with regard to the Manifesto's demands

Manifesto features ONTOS

complex objects 5

object identity 4

encapsulation 5

types and classes 5

i class or type hierarchies 5

C
~
'"d
§
S

,
overriding, overloading and late binding

computational completeness

extensibility

5

5

5

persistence 5

secondary storage management 5

concurrency 5

recovery 5

ad hoc query facility 3

-cd
c:
0

'..::1
0..
0

, mUltiple inheritance

type checking and type inferencing

distribution

design transactions

5

3

3

4

versions 0

40

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

Table 2 indicates that ONTOS satisfies the demands of the Manifesto to a very high degree. In
particular, eleven of the mandatory features are totally fulfilled and two of the mandatory fea­
tures (object identity, ad hoc query facility) are substantially realized. Furthermore, most of the
optional features, the so-called "goodies", are also satisfied.

The mandatory feature "object identity" is fulfilled in so far as ONTOS gives each object a
unique identity and manages it. But the Manifesto also demands operations like object assign­
ment and object copy which are not directly offered by the system. The user has to write the
code within predefined templates. The mandatory feature "ad hoc query facility" is partially
fulfilled since it exists, but it is not database independent and there is no high level query lan­
guage.

As far as the optional features are concerned, the requirements for versions do not exist. Distri­
bution is provided, but only over a network of homogeneous workstations. Multiple inherit­
ance is totally fulfilled. Design transactions, type checking and type inference are present, but
could be improved.

As can be seen, ONTOS does well with regard to the mandatory features. However, this result
cannot be qualified easily, as similar evaluations for other products are not available. ONTOS
may just be a very good system. On the other hand, there has been much time between the
Manifesto's publication and the delivery of ONTOS Version 2.2. As the Manifesto has become
a strong reference paper for the industry, the good results of ONTOS may be nothing unusual
for currently available OODBSs. An equivalent statement applies to the mentioned deficien­
cies in the optional features. It could not be clarified in this work whether some of them are
missing because of lower importance, or whether their realization turned out to be difficult for
this system.

Strictly speaking, ONTOS is not an OODBS in the Manifesto's sense. However, when choos­
ing a product the user must decide on the importance of each criterion for a particular applica­
tion.

41

8

Comparison of ONTOS and the Manifesto for Object-Oriented Database Systems

References

[AASW 94] K. Abramowicz, J. Alt, H. Schreiber, M. Wallrath : "Evaluierung objektorien­
tierter Datenbanksysteme u, FZI- Publikation 3/94, Forschungszentrum Infor­
matik an der Universitat Karlsruhe, Germany

[AASW 95] K. Abramowicz, J. Alt, H. Schreiber, M. Wallrath : UObject-Oriented Databas­
es: The Struggle for a Dominant Market Share ­ A Critical Evaluation of the
Leading Products <t, FZI- Publikation 1/95, Forschungszentrum Informatik an
der Universitat Karlsruhe, Germany

[ABDB 89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik: "The
object-oriented database system manifesto" in Deductive and Object-Oriented
Databases. Proceedings of the First International Conference (DOOD89), p.
223-240

[AtBuM 88] M. Atkinson, P. Buneman, R. Morrison: "Binding and Type Checking in Data­
base Programming Languages" in The Computer Journal, Volume 31, No 2, p.
99-109

[Brown 91] A. Brown: "Object-Oriented Databases ­ Applications in Software Engineer­
ing", McGRAW-HILL Book Company, 1991

[CarWe 85] L. Cardelli, P. Wegener: "On Understanding Types, DataAbstraction, and Pol­
ymorphism" in ACM Computing Surveys, Volume 17, No 4, p. 471-519

[Halpin 94] Halpin, T. A. :"Object Role Modelling ­ NIAM and Beyond" Tutorial, ER94
Conference, The University of Manchester Institute of Science and Technolo­
gie, Manchester, UK

[HuPa 93] A. Hurson, S. Pakzad : "Evolution and Performance Issues", in Computer,
February 1993, Volume 26, No 2, p. 48- 60

[Jeffery 92] K. Jeffery : "Expert Database Systems", Academic Press, 1992

[Kfoury 82] A.J. Kfoury, Robert N. Moll, Michael A. Arbib : "A programming approach to
computability", Springer-Verlag New York Heidelberg Berlin, 1982

[Lippm 92] St. Lippman: "C++ Primer", 2nd Edition, Addison-Wesley Publishing Com­
pany, 1992

[Ontos 92a] Ontos, Inc. ONTOS DB 2.2, Developer's Guide, 1992

[Ontos 92b] Ontos, Inc. ONTOS DB 2.2, First Time User's Guide, 1992

[Ontos 92c] Ontos, Inc. ONTOS DB 2.2, Reference Manual, vol.l. , 1992

[Ontos 92d] Ontos, Inc. ONTOS DB 2.2, Tools and Utilities Guide, 1992

[Solov 92] Valery Soloviev : "An Overview of Three Commercial Object-Oriented Data­
base Management Systems: ONTOS, ObjectStore, and O2 '' in Sigmod Record
Volume 21, No 1, March 1992, p. 93-104

42

