
Technical Report 
RAl-TR-95-052 

CLRC 

Effective Potential and Effective Hamiltonian 
in Quantum Statistical Mechanics 

A Cuccoli RGiachetti V Tognetti RVaia and P Verrucchi 

September 1995 

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS 



C Council for the Central Laboratory of the Research Councils 1995 

Enquiries about copyright, reproduction and requests for 
additional copies of this report should be addressed to: 

The Central Laboratory for the Research Councils 
Library and Information Services 
Rutherford Appleton Laboratory 
Chilton 
Didcot 
Oxfordshire 
OX110QX 
Tel: 01235 445384 Fax: 01235446403 
E-maillibrary@rl.ac.uk 

ISSN 1358-6254 

Neither the Council nor the Laboratory accept any responsibility for loss or 
damage arising from the use of information contained in any of their 
reports or in any communication about their tests or investigations. 

mailto:E-maillibrary@rl.ac.uk


TOPICAL REVIEW 


Effective Potential and effective Hamiltonian in 
quantum Statistical Mechanics 

Alessandro Cuccolif:j:, Riccardo Giachettit§, Valerio Tognettif:j:, 

Ruggero Vaiall:l: and Paola Verrucchi~:I: 


t Dipartimento di Fisica, Universita. di Firenze, Largo E. Fermi 2, 1-50125 Firenze, 

Italy 
:I: Istituto Nazionale di Fisica della Materia INFM, Unita. di Firenze 
§ Istituto Nazionale di Fisica Nucleare INFN, Sezione di Firenze 
II Istituto di Elettronica Quantistica CNR, via Panciatichi 56/30, 1-50127 Firenze, 
Italy 
11 ISIS Facilit:". , Rutherford Appleton Laboratory, Oxfordshire OXIl OQX, U.K. 

Abstract. An overview on the theoretic formalism and up to date applications in 
quantum condensed matter physics of the effective potential and effective hamiltonian 
methods is given. The main steps of their unified derivation by the so-called 
pure-quantum self-consistent harmonic approximation (PQSCHA) are reported and 
explained. What makes this framework attractive is its easy implementation as well as 
the great simplification in obtaining results for the statistical mechanics of complicated 
quantum systems. Indeed, for a given quantum system the PQSCHA yields an 
effective system, i.e. an effective classical Hamiltonian with dependence on Ii. and 
f3 and classical-like expressions for the averages of observables, that has to be studied 
by classical methods. Anharmonic single-particle systems are analyzed in order to 
get insight on the physical meaning of the PQSCHA, and the extension of it to the 
investigation of realistic many-body systems is pursued afterwards. The power of 
this approach is demonstrated through a collection of applications in different fields, 
as soliton theory, rare-gas crystals, and magnetism. Eventually, the PQSCHA allows 
also to approach quantum dynamical properties. 

1. Introduction 

Microscopic phenomena obey the laws of quantum mechanics and the uncertainty 
principle is unavoidable each time that the considered actions are of the order of 
magnitude of the Planck constant [1]. The consequences of this fact are far reaching in 
the framework of statistical mechanics where, by definition, one tries to reconstruct 
the macroscopic behaviour of the system starting from elementary interactions of 
their microscopic constituents. Since the notion of phase space itself is deprived of 
a real meaning, the statistical averages cannot be computed any more "in the classical 
way" , namely by integrating dynamical variables over coordinates and momenta with a 
suitable distribution function: one has coherently to start from the quantum definitions 
and evaluate the appropriate operator traces [2]. 

Classical averages, however, are objects usually easier to handle, especially from a 
numerical point of view. Therefore large efforts have been devoted to investigate the 
possibili ty of defining some functions with properties similar to those of the phase space 
distribution functions and called "quasiprobability distributions". Although, in a strict 
sense, these functions cannot be considered probability measures (they lack, e.g., of 
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the fundamental property of being positive definite), still they can provide a nontrivial 
physical insight into the properties of the dynamical system. The mathematical 
problem of their explicit determination is often reduced to the choice of an appropriate 
representation for computing the operator traces. We shall be more precise on this in 
the following. Here we want rather to observe that the classical limiting conditions, 
obviously required, on the one hand allow for a careful investigation of the relevance of 
quantum effects, while, on the other, naturally suggest an approach of the semi-classical 
type. 

This review is devoted to a semi-classical approach leading to an effective potential 
and to an effective Hamiltonian, which allows to recover the phase-space formalism. 
The method was introduced by Feynman [1, 2], improved independently by two of 
us and Feynman and Kleinert [3, 4, 5, 6], and eventually extended to non-standard 
Hamiltonians [7]. Many applications proved the validity of the method. Indeed, reviews 
devoted to specific subjects of interest have been performed [8, 9, 10, 11, 12]. 

Semi-classical approximations can be obtained in several ways, by developing 
methods that lead to different final results. Although always exact and coincident 
in the classical limit, different methods have different conditions of applicability as far 
as the evaluation of quantum effects is concerned. The Wigner-Kirkwood expansion 
[13, 14, 15, 16, 17], the Weyl representation [18, 16] and the use of coherent states 
[19, 20, 21] are well known theoretical devices moving in this stream. Starting from 
the path integral approach to the statistical mechanics, the effective potential is based 
on the fundamental idea derived by the renormalization group theory. It is done by 
integrating out the quantum fluctuations around the classical trajectory in imaginary 
time so that one can recover a classical-like configuration integral, where the potential 
contains some renormalized constants. Although exact in principle, the calculation can 
be performed only at some level of approximation, using some perturbation scheme. 
The choice of the unperturbed system plays a crucial role for a successful application. 

In the Lagrangian form a temperature dependent effective potential was firstly 
introduced by Feynman [1, 2]. Using an inequality based on the convexity of real 
exponential functions (the Peierls-Jensen-Feynman inequality [22]) and free particles as 
a unperturbed systems, a variational procedure was carried out on a single parameter, 
depending on the average point of the path. This function represents the effective 
external potential seen by the particle in that point. At highest temperatures the 
Wigner expansion and eventually the classical potential are recovered, while the 
approximation is not sufficient to account for the low temperature behaviour of solid 
state systems, which are better described by a set of harmonic oscillators rather than 
free particles. 

In order to overcome these difficulties, the method was later on improved so to 
take exactly into account the contribution of quadratic terms [3, 4, 5]. In this case, the 
frequencies of the harmonic modes become themselves variational parameters and it is 
indeed possible to define an effective potential that reproduces the correct behaviour 
of the quantum harmonic oscillators at lowest temperatures. The presence of two 
variational parameters play a crucial role at difference with other attempts on this 
subject [23, 24]. 

Starting from the application to one particle [4, 25, 26, 27, 28, 29, 30, 31, 
32, 33, 34, 35], two-body systems [36], and transition-rate theory [37, 38, 39] 
this method has been successfully used mostly for investigating non-linear one­
dimensional fields [40, 41, 42, 43, 44, 45, 46, 47] as well as condensed matter systems 
[48,49,50,51,52,53,54,55,56]. 
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The variational inequality, however, turns out to be proved only for Hamiltonians 
containing a kinetic term quadratic in the momenta with constant coefficients and a 
potential energy depending only upon the coordinates. We shall refer to these as to 
standard Hamiltonians. Recently, the approach was revisited by several people, in order 
to overcoming the one loop approximation [35, 57, 58], for treating the anharmonicity 
of the ground state [59] and for casting the calculations in the usual diagrammatic form 
[60,61]' by an expansion based on the "Feynman centroid density". 

The generalization to many degree of freedom is not at all straightforward. 
A further approximation, called "low coupling approximation" (LCA) is required 
[3, 4, 62, 63] in order to do explicit calculations, even though some improving beyond 
LCA were suggested [56]. 

The appealing idea of including in the unperturbed system as much as we are able 
to deal with in an exact way can undergo some generalizations. It is worth to notice 
that attempts have been made of summing on a finite number of Matsubara frequencies 
[64, 65] and, more recently, new Trotter number extrapolations in path-integral Monte 
Carlo (PIMC) find their origin in the effective potential framework [66, 53, 67J. 

In many cases of physical interest the Hamiltonians are not standard, as it occurs, 
for instance, in the study of magnetic systems. The phase space of spin variables, 
indeed, has a geometrical structure in which a global distinction of coordinates and 
momenta is impossible, so that, in principle, the equations of motion can be given only 
in a canonical formulation. For general Hamiltonian systems the Euclidean action 
is no more real and the Peierls-Jensen-Feynman inequality cannot be proven for the 
reference systems [68] which are in general non local, because they are depending on 
the average point of the path. However, the general idea to integrate out the quantum 
contribution is still appealing and the method was generalized taking into account 
that, at least at one-loop approximation, the quantum behaviour can be separated 
from the classical one, so that the Gaussian approximation can be used only for the 
purely quantum fluctuations while the classical effects are treated exactly by well­
established (and much easier) approaches. This scheme, we introduced for the first 
time [7J, is the application of the "self-consistent harmonic approximation" to the 
quantum effects only. All the afore-mentioned results for the effective potential of 
standard Hamiltonians are recovered and an effective Hamiltonian can be also obtained 
in the general case [69, 70]. The latter derivation requires the use of the Hamiltonian 
path integral with some rules about the ordering procedure; it is indeed well known 
that different quantum systems have the same classical limit. However this approach 
presents not only a broader applicability, but it seems more meaningful and powerful 
for future applications to the fields. 

It is just along this more recent point of view, we derive the effective potential and 
the effective Hamiltonian for evaluating equilibrium average of quantum quantities. 
Starting with one degree of freedom, we parallel the "self-consistent harmonic 
approximation" (SCHA) to present the so called "pure-quantum self-consistent 
harmonic approximation" (PQSCHA), by which we recover the variational effective 
potential as a particular case. 

Some relevant applications, for non-standard systems like magnetic ones [71, 72, 
73, 74, 75, 76], showing the validity of the method for the thermodynamics of non linear 
condensed matter systems, are presented along this review. 

The last part of the paper is devoted to the challenging problem to calculate the 
quantum dynamic correlation functions at finite temperatures. We remember that 
these quantities are directly related with the spectral shape as probed, for instance, 
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by neutron scattering. It is well known that field theories at finite temperatures are 
crucial in condensed matter, but present many difficulties both from the analytical 
and the numerical point of view. Since any static correlation can be calculated by 
this methods [77, 6, 60, 78, 79], we have calculated the quantum dynamic correlators 
improving the behaviour of the naive moment expansion in time domain [78, 80,81,82], 
by the continued fraction representation of its Laplace transform according to Mori­
Dupuis [83, 84, 85]. Finally, a generalization of the explicit expression obtained for 
the quantum averages was proposed [86, 61] for calculating averages of operators 
at different imaginary times, thus permitting an analytic continuation [87, 88, 89]. 
From this observation, and from the assumption that the classical motion could be 
separated from the quantum Gaussian fluctuations, at some level of approximation, 
the possibility to extend the molecular dynamics to some quantum systems has been 
recently suggested[90, 91]. 

2. Standard systems - One degree of freedom 

In this section we will derive the pure-quantum self-consistent harmonic approximation 
(PQSCHA) [7,69] in its simplest version, namely the one suitable for studying a single 
one-dimensional non relativistic particle of mass m, with canonical coordinate- and 
momentum operators ij and p such that [ij,p] = in, and subjected to a potential V(ij). 
This system is described by the standard Hamiltonian 

it = _1 p2 + V(q) . (2.1)
2m 

After a brief description of the harmonic (HA) [92, 93] and self-consistent harmonic 
(SCRA) [94, 95, 96, 97] approximations, either in the classical and in the quantum 
case, it will be clear to the reader how the effective potential method arises updating 
the main ideas underlying those simpler approximations by means of the new ideas and 
mathematical tools introduced by the path-integral formulation of quantum Statistical 
Mechanics. 

2.1. Harmonic approximations 

2.1.1. Classical case. Let us consider a classical system in thermal equilibrium at 
temperature T f3- 1 : its thermodynamic behaviour is completely determined once 
the (unnormalized) canonical distribution function p(p, q) = exp[-,B1l(p, q)] is known. 
The thermal average of any physical quantity O(p, q) is indeed given by the phase 
space integral 

1 j dpdq
{O(p, q)) Z 27rn O(p, q) p(p, q) , (2.2) 

where Z ::::: exp(-f3F) is the partition function and F the free energy of the system. In 
the standard case, if we restrict our interest to those observables O(q) depending just 
on q, the kinetic contribution can be integrated out and equation (2.2) takes the form 

{O(q)) =~J m jdq O(q) e-f3V (q) . (2.3)
Z 27rn2f3 

The recipe for a harmonic approximation is given by the introduction of a quadratic 
trial potential 

Vo(q) (2.4) 
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whose parameters w, w and qo have to be determined according to some optimization 
criterion; the thermal average is then approximated in terms of a Gaussian distribution 

1 (q_qo)2J 
(O(q)):::: (O(q))o = ~ dqO(q)e - 2ac , (2.5) 

where 

1 
O:c o:c(w) = -(32 (2.6)

mw 

represents the thermally induced mean square fluctuations of q around qo. The simplest 
way to determine the parameters is to require that the true and trial potentials, as well 
as their first and second derivatives, take the same value in qo, 

V(qo) Vo(qo) = w , 


V'(qo) V~(qo) = 0 , 


(2.7) 


This criterion defines the usual HA, in which anharmonic effects are completely 
neglected: what is done is in fact nothing but the second order expansion of V(q) 
around its minimum. It can be easily realized that this approximation worsens when 
the temperature is raised, since configurations far from the minimum become more 
and more likely. 

One can go beyond the HA by requiring that Vo(q) at best approximates V(q) 
in the whole thermally relevant region rather than in its minimum: this would mean 
generalizing conditions (2.7) as (Vo(q» = (V(q» etc., but, since the exact probability 
distribution is supposed to be unknown, one resorts to the trial Gaussian one, writing 

(V(q))o = (Vo(q))o = w + ~mw2o:c , 

(V'(q))o (VJ(q))o =0 , 

(VI/(q))o = (VJ'(q))o = mw2 . (2.8) 

These equations define the SeHA, the self-consistency being due to the w-dependence 
of o:c, i.e. of ( .. ')0' 

It is easy to check that a variational approach based on the inequality 

(2.9) 


which is a straightforward consequence of the Jensen's one [98], gives exactly the same 
result, in that conditions (2.8) minimize the right-hand-side of this inequality. 

In the zero temperature limit O:c -+ 0 and the distribution ( .. -)0 becomes a delta 
function; therefore conditions (2.8) become identical to (2.7) and the simple HA is 
recovered. 

2.1.2. Quantum case. Facing the quantum problem, we have now to deal with the 
(unnormalized) density operator p exp(-(3ii.) and with statistical averages 

(0) = ~Tr (pO) (2.10)
Z 

where Z == exp(-(3F) =Tr P and 0 is an observable. As in the previous subsection, 
we consider the case of 0 depending just on the coordinate, so that 0 O(q), although, 
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at difference with the classical context, the extension to the general case is not trivial 
at all (see section 3.3). 

A harmonic approximation with the trial potential Vo(q), equation (2.4), again 
reduces the average (2.10) to the Gaussian form 

. 1(O(q)) ::: (O(q))o = J21ffiQ
211'aQ 

Jdqe -~ 2aQ O(q) , (2.11) 

where now 

aQ 
Ii, f3hw 

aQ(w) = 2mw coth -2­ (2.12) 

is the mean square fluctuations of a quantum harmonic oscillator (see Appendix A). As 
in the classical case, conditions (2.7) and (2.8) determine the value of the parameters 
appearing in the quadratic trial potential and then define the quantum HA and SCHA, 
respectively. 

A variational approach which turns out to give the same results of the SCHA is 
still possible, thanks to the Bogolubov inequality [2], 

(2.13) 


In the zero temperature limit the quantum SCHA remains different from the HA, 
since the distribution does not reduce to a delta-function, as aQ -+ li,f(2mw) > 0 due 
to the zero-point energy. 

Example. Let us consider the anharmonic potential (m 1, Ii, 1) 

(2.14)V(q) 

2The HA, through equations (2.4) and (2.7), simply gives qo =0, W 0 and w w5. 
On the other hand, the SCHA, through equations (2.8), gives qo 0 and 

2 
W =-3>' ab,Q(w) , W =w~ + 12>' ac,Q(w) . (2.15) 

The last equation has to be solved self-consistently together with the definition of 
ac = (.8w2)-1, in the classical case, or aQ coth(f3wf2)f2w, in the quantum one. 

2In the former case the solution is w = w5 + JW6 + 48>'T, whereas it can be found 
numerically (e.g., by iteration) in the second one. Of course, the solution is temperature 
dependent, and it is seen that the non linear part of the potential is partly taken into 
account as both wand w depend on >.. 

In figure 1 we report the exact quantum density P(q) = (S(q - q)) numerically 
obtained for this example, compared with its approximations by HA and SCHA, as 
well as with the classical result for an intermediate temperature T 0.3 in natural 
units. It appears that the classical density is not yet a good approximation as it indeed 
becomes at higher T, whereas the HA overestimates the width of fluctuations due to 
the strong nonlinearity. Eventually, the SCHA turns out to be superior, in spite of its 
constraint to be a Gaussian. 

As we have seen above, a harmonic approximation leads to a Gaussian configuration 
density, the difference between the classical and the quantum case being in the actual 
value of the variance (ac or aQ). Since the variances of Gaussian are additive under 



7 

1.0 ,"""'" ............... 


/ "­ T=O.3/' ,--.... \ 
I -/ .....'/ /./ " \ 

I ;; !\. \ 

I 
/ \ 

, 

0.5 

\'"j""
\ ~ "'" 

\ " , " " 
"" 

\ "'... 
"" 

'''­0.0 
-1 o 1 q 

Figure 1. Normalized configuration probability distribution P(g) = (t5(q-g») for 
the quartic oscillator (2.14) with wo = 1, .\ = 1, at T 0.3. Solid line: exact quantum 
result; long-dashed: quantum SCHA; dotted: quantum HA; dash-dotted: classical. 

convolution, we can rewrite equation (2.11) separating the classical thermal fluctuations 
ac: 

Jdq (-J;1ra Jd{ O(q + {) e -~) e ('1;;~)2, (2.16) 

where a aq ac can be naturally thought of as the purely quantum contribution to 
the fluctuations of the particle. Equation (2.16) can be interpreted as the classical 
average of the Gaussian broadening of O(q) on the scale of the pure-quantum 
fluctuations, Now, in view of the existence of plenty of theoretical and numerical 
methods for calculating classical averages, one could speculate whether it is really 
necessary to retain the HA in the outer classical average, or it could be possible to 
restore the full classical Boltzmann factor. This idea is suggestive, because in this way 
one would build up an improved theory describing exactly the effects of nonlinearity at 
the classical level, as well as the full quantum harmonic behaviour. However, a firmer 
mathematical basis is in order, and the tool to accomplish this goal is Feynman's 
path-integral formulation of quantum Statistical Mechanics. 

2.2. Feynman does it better! 

The (diagonal) density matrix elements in the coordinate representation are expressed 
by Feynman's path integral as 

p(q) (qlplq) = j'1 1J [q(u)].e S[q(u)] (2.17) 
q 

where the path integration is defined as a sum over all paths q( u) closed on q 
(q(O) =q(flh) = q) and the Euclidean action 

S[q(u)] ~ lP1i du [; q2(u) + V(q(u))] (2.18) 

has been introduced. 
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Although the exact evaluation of this integral is possible just in a few cases for 
simple potentials, the expression (2.17) makes possible a new kind of approximation 
through a simple and nice idea due to Feynman. The argument proceeds as follows: 
instead of summing over all paths in just one step, one can classify the paths by an 
equivalence relation, and consequently decompose the integral into a first sum over all 
paths belonging to the same class, and a second one over the equivalence classes. 

If the equivalence relation among paths is, as Feynman suggested, that of having 
the same average point, defined as the functional 

f3/i1 Jf'''0 du q(u) , (2.19) 

then each class is labeled by a real number ij representing the common average point, 
and we can separate from equation (2.17) an ordinary integral over ij, 

p(q) Jdij p(q; ij) . (2.20) 

The reduced density p(q, ij) represents the contribution that comes from all those paths 
with ij as average point; its explicit expression is therefore 

q 

p(q;ij) == l D[q(u)] <5(q AIt" duq(u)) eS[q(u)] (2.21) 

Let us now consider p(q; ij) as an unnormalized probability in the variable q and define 
its normalization constant as Peff(q), so that p(q; il) Peff(ij) P(q; ij). Then the average 
of O(q) can be written using (2.21) as 

(O(q) >= ~ Jdq O(q) p(q) ~ Jdij (J dq O(q) P(q; ij)) Peff(ij) , (2.22) 

and one recognizes Peff(ij) as a classical-like effective density, whereas the probability 
distribution P(q; ij) concerns the particle fluctuations around the point ij. In the 
classical limit it can be seen that P -t <5(q-ij) and Peff(ij) tends to the classical 
Boltzmann factor; it follows that the probability P describes the pure-quantum 
fluctuations of the particle. In other words, we have made an exact formal separation 
between a classical-like and a pure-quantum contribution to (O(q)). 

The main problem is now the explicit evaluation of the reduced density p(q; ij), 
still containing a path integral: it is here that some kind of approximation is in order 
but, thanks to the formalism we are using, it can be a specialized one. As the path 
integration has been reduced to paths belonging to the same class, we can develop a 
different approximation, the most suitable, for each class! 

In more details, as only paths with average point ij do contribute to the path 
integral (2.21), in the action (2.18) we replace V(q(u)) with a trial potential quadratic 
in the displacement from the average point 

(2.23) 


where the parameters w = w(q) and w2 w2 (ij) are now to be optimized so that the 
trial reduced density Po (q; ij) at best approximates p(q; ij) for each value of ij. 

The explicit evaluation of po(q; ij) (see Appendix B) gives 

- (-) ~ -f3w f (1 -~) (2.24)Po q; q =V211'/i2 f3 e sinh f V211'(} e 2a , 
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with 

a a(q) == 2~ (cothl -}) , 1= I(q) == ~pnw(q) , (2.25) 

In equation (2.24) one immediately recognizes that, within our approximation, P(q; q) 
is the Gaussian enclosed in brackets and 

Peff(q) J m e -P"Veff(q)
21rn2p 

(2.26) 

with the effective potential 

_ 
Veff(q) 

_ _ 1 sinh/(q) 
= w(q) + pIn I(q) (2.27) 

Eventually, the average (2.22) becomes 

<O(q)) (2.28) 

where € == q - q replaces the variable q; as a consequence, no confusion arises if we rub 
out the bar on ij. We use a double angle-bracket to denote the Gaussian average over 
the pure-quantum fluctuations defined by P, so that we rewrite the last equation as 

(2.29) 

This equation constitutes the result of a rigorous derivation along the ideas developed 
at the end of the preceding subsection: in particular it is to be underlined that the 
variance a, heuristically introduced as a = aQ-ac, turns out to be just that difference, 
but it is now well-defined as a formal result. However, an essential condition for 
expression (2.29) to be meaningful is that a(q) remains positive for any q. As a 
function of temperature, a is positive and decreasing, taking the value n/(2mw) at 
T = 0 and vanishing as n2p/(12m) for T -+ 00. 

Now, in order to close the approximation scheme, we still have to devise an 
optimization criterion for the parameters w(q) and w2 (q). 

2.3. The pure-quantum sell-consistent harmonic approximation 

After the choice (2.23) of the trial potential, one could try to make use of the same 
ideas underlying the usual HA and SeHA, taking into account that, as a new essential 
feature of the method, both wand w2 are functions of the position. For the HA, we 
simply identify the trial potential (2.23) with the expansion of V(q) up to second 
order: this amounts to requiring that w(q) = V(q) and w 2 (q) = VI/(q) for any 
q. This recipe can be called the pure-quantum HA. This is surely an improvement 
over the HA discussed in section 2.1, but in many cases it can lead to unphysical 
results [4]. Indeed it can happen that V"(q) is negative: in this case a(w) can be 
analytically continued and in terms of the "dimension-less frequency" I = pnw/2 
one has a = (pn2 /4m)(cothl/1 liP); if P is negative, setting I = i<p, one has 
a = (pn2/4m)(1/<p2 cot <p/<p), which diverges to +00 for <p -+ 1r- (or P -+ _1r2) 
and is negative for <p > 1r (12 < _1r2). As a consequence, if w2(q) is negative, at 
sufficiently low temperature we have P < _1r2 and the pure-quantum HA breaks 
down. 
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We then come back to the SCHA conditions (2.8) to push them down at the pure­
quantum level, eventually defining the pure-quantum SCHA, or PQSCHA: 

(V(q+e)} = (Vo(q+e)} == w(q) + ; w2(q) a(q) , 

(V"(q+e)} = (It({'(q+e)>> == mw2(q) . (2.30) 

Here the equation for the first derivative has been omitted, as possible linear terms of 
the trial potential do not contribute to the action. Once this self-consistent system has 
been solved, we have all the necessary ingredients to explicitly evaluate the effective 
potential and all the thermal averages through the classical-like expression (2.29). It 
is seen that for the most usual potentials the self-consistent solution for a(q) turns out 
to be always positive, even though w2 (q) can be negative. 

We can now carryon a deeper discussion of the final results we expect to obtain 
by means of this method: from (2.22), where the separation between the classical and 
the pure-quantum contributions has been performed, it should be already clear that 
the Classical behaviour will be exactly described, whatever the approximations used 
in evaluating the residual path integral. In other terms, the specific choice of that 
approximation only affects the pure-quantum contribution to the thermodynamics of 
the system; in particular, as we have used a quadratic approximation for the trial 
potential, we expect to describe exactly also the pure-quantum harmonic contribution. 
In the definition of the effective potential (2.27) a logarithmic term does appear, in 
the same form of the difference between the quantum and the classical free energy of 
a harmonic oscillator with frequency w(q). That term assures that the harmonic free 
energy is exactly reproduced. 

It is to be noticed that the PQSCHA and the SCHA are equivalent in the zero 
temperature limit, where quantum and pure-quantum become the same thing as any 
classical fluctuation is suppressed. It is less trivial, but perhaps even more interesting, 
to verify that applying the quantum SCHA one gets, at any temperature, the very same 
results that would have been obtained applying the classical SCHA to the pseudo­
classical system described by Veff. 

Example. Let us now apply the PQSCHA to the quartic potential (2.14). 
Equations (2.30) and (2.27) give: 

w2(q) w~ + 12A[q2 + a(q)] , 

1 2 2 [ 4 ] 1 sinhf(q)
Veff(q) = 2woq + Aq - 3a(q) + pIn f(q) , (2.31 ) 

and the first one, self-consistently with the definition (2.25), determines the parameter 
w2 (q) and hence the effective potential. 

In figure 2 we again consider the normalized configuration density P(q) = (o(q­
ij), comparing the various approximations with the exact result, for two different 
temperatures. The explicit expressions of the PQSCHA density [99] is found from 
equation (2.28) to be 

P( ) = ~J m e -,8VL(q) (2.32)q Z 21f'n?,8 , 

where the local effective potential VL(q) == eVL(q/u) is defined by 

- ~ e-,8VL(q) = jd e-,8Veff(q+e) 1 e -2a(qH) . (2.33)e 
J21f'a(q+e) 
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Figure 2. Normalized configuration probability distribution P(q) = (8(q-q)) for 

the quartic oscillator (2.14) with Wo = 1, .A = 1, at temperature T = 0.5 and T = 2. 
In the latter case the PQSCHA curve can hardly be distinguished from the exact one. 
Solid lines: exact quantum result; short-dashed: PQSCHA; long-dashed: quantum 
SCHA; dotted: quantum HA. dash-dotted: classical. 

Note that, at difference with the HA and the SCHA, the PQSCHA density is not 
constrained to be a Gaussian and is indeed superior in all cases: at T = 2 it is 
practically indistinguishable with the exact result! While both the HA and the SCHA 
worsen by raising the temperature, the PQSCHA becomes better and better. 

2.4. The variational method 

We have already noticed that the very same results of the SCHA, both in the classical 
and in the quantum case, can be obtained through a variational approach; this is still 
true in the pure-quantum case, although some essential differences make the PQSCHA 
a more general method with respect to the previous variational one. 

The variational approach is based on the so called Feynman's inequality 

(2.34) 

where S is the true Euclidean action of the system under investigation, and So a trial 
one, the functional average ("')5 being taken among all closed paths with weight 

0 

exp {So [q( u)]}. Feynman's fundamental idea is the same we have borrowed and used 
to derive the PQSCHA, namely that of classifying paths by the equivalence relation of 
having the same average point, in order to decompose the path integral. 

At this point, instead of defining the reduced density, Feynman directly jumped to 
the introduction of a trial action So , letting it be a nonlocal functional through the 
dependence of its parameters on g. The simplest choice of a free particle action 

1 f{3/j q2(u) 
So[q(u)] = -h J du 2m - (3w(g) (2.35) 

o 

led him to a first effective potential that, though successfully applied to the polaron 
problem, lacks the desirable property of exactly describing the harmonic oscillator 
behaviour. Indeed it corresponds to set w 2 == 0, imposing only the first of 
equations (2.30) so that a is found to be a = ft2f3!(12m) and the effective potential 
would not contain the logarithmic term. 
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The great improvement has been achieved [3, 4, 5] with the resort to a quadratic 
trial action 

PW(ij) , (2.36) 

where if is meant as the average point functional (2.19), leading to results identical to 
the PQSCHA. 

What is perhaps less transparent in the variational derivation, is the actual meaning 
of the dependence of wand w2 on the average point if: although it is clear that such 
a dependence makes So a nonlocal functional and allows then to look for the best 
approximation of the true action in a richer reservoir of mathematical objects, it is 
not immediately apparent that what one is actually doing is to develop a different 
approximation for each different class of paths. To make the variational approach 
suitable also in the nonstandard case, one has not only to introduce the Hamiltonian 
formalism of the path integral, but also to check that Feynman's inequality can 
be generalized to this formalism, thus providing the necessary variational principle. 
Unfortunately this is not the case, as Feynman's inequality is rigorously valid just in 
the standard case, although it is sensible to think that it could be at least verified for 
some class of nonstandard systems, and such a conjecture could be (and has been) 
used in some specific situations. As a matter of fact, however, it does not exist at the 
moment any variational principle safely available in the general non standard case, and 
this makes the PQSCHA approach a fundamental tool. 

2.5. Application to some nonlinear potentials 

In order to quantify the strength of the quantum character of a system described 
by the Hamiltonian (2.1) with a given potential V(q), it is convenient to devise its 
characteristic energy scale c: (e.g., the barrier height for a double well potential, the 
well depth for physical potentials that vanish at infinity, etc.) and length scale (J' 
(such that variations of V comparable to c: occur on this length scale) and write 
V(q) c:v(q/(J'). In this way one better deals with a dimension-less coordinate x= q/(J'. 
If Xm is the absolute minimum of v(x), the system is characterized by the HA frequency 
Wo = JC:"f2 / m(J'2, with "f2 = v" (xm), and a dimension-less coupling parameter 9 for 
the system can be defined as the ratio between the HA quantum energy level splitting 
nwo and the overall energy scale c:, 

nwo 
g=­ (2.37)

c: 

The case of weak (strong) quantum effects occurs when 9 is small (large) compared to 
1. In the following applications we shall make use of the dimension-less variables only, 
i.e. energies are given in units of c:, lengths in units of (J', frequencies in units of Wo, 
and so on; the reduced temperature is t =1/{c:P). 

2.5.1. The double well quartic potential This potential is 

(2.38) 
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with two symmetric minima in Xm = ±1. From the PQSCHA equations (2.30) and 
the definitions (2.27) and (2.25) we obtain 

2 sinhf(x)
Vetr(x) = (1 - x2)2 3a (x) + tin f(x) , 

f2(x) = 8t
g2 

2 (3x2 - 3a(x) 1) , 

a(x) = :;t f(~) (cothf(X) ftx)) 
The last two equations have to be solved self-consistently. This task is done 
numerically, and exact reference data can be obtained by numerical solution of the 
stationary Schrodinger equation. 

In figure 3 we report a comparison concerning the local effective potential (2.33), 
VL(q) == EVL(q/(J') , that describes in a direct classical-like way the configuration density; 
in terms of the effective potential it is given by the integral 

~ 
e -/WL(q) = Jdt; 1 e - 2a(qH) e -,BVeff(q + e) . (2.39)

J27fa(q + t;) 
High values of the coupling have been chosen in figure 3, in order to show how in the 
strongly quantum regime the PQSCHA can still reproduce extremely well the exact 
data. 

1.0 

0.5 

0.0 

t - 0.1,0.2,0.5,1 t = 0.5, 1, 2, 5 

,, ,. g=5 

1 0 1 -1 0 
 1 qq 

Figure 3. The local effective potential vdx) (see text) of the quartic double well, 
at different temperatures, for quantum coupling 9 = 1 and 9 =5. Solid lines are the 
PQSCHA result and dots are the exact data. By rising t the local effective potential 
tends towards the original one (dashed line). The exact energy levels are also reported 
by horizontal lines. 

We refer to the literature for further details on the PQSCHA of the quartic double 
well [4, 5, 99, 29]. Interesting singular potentials for which the effectiveness of the 
PQSCHA has been tested [30) are the Dirac delta potential v(x) = -o(x), the harmonic 
plus delta potential v(x) x2 /2 - o(x) [100], the one-dimensional Coulomb potential 
Ixl/2, the Morse potential v(x) (e- X _1)2. In Ref. [30) one can also find a discussion 
about the high-temperature expansion of the effective potential. 
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An interesting application of these one-particle results has been done for calculating 
the order parameter of ferroelectrics [101]. At difference with the SCHA calculation, 
the effective potential method can describe the behaviour of the order parameter up to 
the transition temperature. 

2.5.2. Central potential in three dimensions In the case of a central potential V(q) 
in three dimensions (q == Iql) it is possible to reduce the computations to the case of one 
degree of freedom. Indeed the angular part of the quantum problem can be separated 
and solved exactly. Exploiting this fact the particle density can be written as 

1 00 

p(q) = 42 L)2£ + 1) Pl(q) , (2.40) 
rrq £=0 

where N(q) == (qle -/1lll lq) are the one dimensional particle densities for the 
Hamiltonians 

'p2 p2 n?£(£+ 1)
1ll = -2 + Vi (q) = -2 + V (q) + 2 2 (2.41) 

m m mq 

that describe the separated contributions of different values of the angular momentum. 
In principle, an infinite number of Pl(q) has to be calculated. However the centrifugal 
term makes their values less and less relevant for increasing £ , in such a way that the 
series (2.40) converges exponentially rapidly. 

The same approach can be used for the central interaction of two particles, after 
the separation of the center-of-mass motion, in terms of the relative coordinate and 
the reduced mass. A coupling constant is naturally introduced as in equation (2.37). 
In figure 4 we report the results obtained in the case of a Lennard-Jones potential 
model v( x) = 4(X- 12 - x- 6 ), with the parameters € = 36.7 ]{ and (J = 2.959 A suitable 
for describing the interaction of hydrogen molecules (m = 2.01 uma). The resulting 
coupling 9 = 2.93 tells that this is a strongly quantum system, as witnessed by the 
comparison with the classical limit and by the inadequacy of the quantum corrections 
introduced by the Wigner expansion [13,17,14,102,103]. For a deeper discussion of 
this system and details about the regularization of the diverging integrals arising from 
the singularity of the potential, see Ref. [36]. 

A similar system, the Coulomb potential in three dimensions, is analyzed by 
PQSCHA in Ref. [28]. 

3. Standard systems - Many degrees of freedom 

The previous section has shown that the PQSCHA is quite effective in treating 
simple one-particle quantum systems. Of course, in order to make the method 
useful for interesting problems and realistic physical models, the successive step is 
the extension of the formalism to the many-particle case. Therefore, let us consider a 
general system with M degrees of freedom, i.e. canonical coordinate and momentum 
operators ij == {qJ.<}J.<=l, ... ,M and p == {PJ.<}J.<=l, ... ,M , with the commutation relations 
[qJ.<'Pv] = i oJ.<v (we set n= 1 from now on), and described by the standard Hamiltonian 

M 

' 1 ,tA 2' V(') 1 '" 'A2 ' V(')1l = "2 P P + q ="2 ~ PJ.< J.<V Pv + q. (3.1) 
J.<,v=l 
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Figure 4. The pair correlation function 9(1') for the Lennard-Jones interaction 
model for two hydrogen molecules at the temperatures T = 0.54e ~ 20K and 
T = 1.08e ~ 40 K. Solid lines are the PQSCHA result and the squares are numerically 
obtained exact data [104]. The dashed lines report the classical result, and the dotted 
ones are the high-temperature approximation from the vVigner expansion. 

As the matrix A 2 = {A 2 1'1o'} is real symmetric and positive definite, there exist its 
positive square root A and its inverse A- 1

. 

The corresponding path integral for the equilibrium configuration density at 
temperature p-1 is now a sum over paths q(u) in the M-dimensional configuration 
space, 

(3.2) 


where the action is 

S[q(u)] = -10(3 du[~ (Y(u)A-2q(u) + V(q(u))] , (3.3) 

P
and the measure of the path integral includes a factor [(211"p / p)M/2 det Ar in the 
discretized version with P imaginary-time slices. 

3.1. The PQSCHA 

Let us now generalize the single-particle framework of the PQSCHA. The average point 
functional in the M-dimensional configuration space is ~ Jt du q(u) . The reduced 
density 

(3.4) 

is such that the density matrix is obtained by ordinary integration over q, 

p(q) =Jdq p(q; q) . (3.5) 
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The same argument of section 2.3 leads us to approximate V(q) by a quadratic 
polynomial in the deviation from q, 

(3.6) 

Therefore, we have as parameters the scalar w(q) and the M(M+l)/2 independent 
components of the symmetric matrix B 2 (q) = {B2/JII{q)}, replacing the previous 
scalar mw 2(ij). The trial reduced density po can be evaluated analytically as shown 
in Appendix C. The calculation involves the diagonalization of the dynamical matrix 
AB2A by an orthogonal matrix U(q) == {Uk/J(q)}, 

(3.7) 


The reduced configuration density po(q; q) turns out to be a Gaussian centered at 
q. We then proceed as in section 2.2, introducing e q q and suppressing the 
bar of q. (3.7) tells that Vo is diagonal in terms of the "normal mode" variables 
~k L/J {UA -1 h/J~/J' where we distinguish between the original variables and their 
normal modes by the use of greek and latin indices, respectively, in order to maintain a 
self-contained notation. The Gaussian average «...» over eis defined by the moments 

(3.8) 

where 

(3.9) 

Now, the pure-quantum fluctuations described by eappear to be properly taken for 
each normal mode. 

As we know from the one-particle case, the PQSCRA consists in imposing SCRA 
conditions to the reduced density Po, 

{V (q+e))) (Vo(q+en =w(q) + ~ L:k w~(q) O'k(q) , (3.10) 

(Oql' Oq" V(q+e))) (Oql' Oq" Vo(q+e)>> = B2/JII(q) . (3.11) 

The first equation determines w(q) and the second one, that has a self-consistent 
solution together with (3.7), determines at the same time the matrix B 2 (q) and 
the moments (3.8). The average of a configuration dependent observable O(q) IS 

approximated (see Appendix C) by the classical-like formula 

(3.12) 

with the effective potential 

(3.13) 

The above framework is also obtained [3, 5] by minimizing the right-hand-side of 
Feynman's inequality (2.34) [2, 68]. The physical interpretation of equation (3.12) 
parallels the one we already made in section 2.3. The pure-quantum fluctuations are 
approximated as a multidimensional Gaussian with variance O'k(q) for each normal 
mode; we will call renormalization parameters its (correlated) moments in direct space, 

(3.14) 
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It is easy to express the double-bracket averages like those appearing in 
equations (3.10), (3.11), (3.12), and (3.13), in terms of a (usually limited) number 
of the Dl'v(q), using the well-known properties of Gaussian distributions. 

Let us introduce a shorthand notation by means of the q-dependent second order 
differentiation operator 

(3.15) 

It is easily seen that, if the Dl'v(q) are understood to be unaffected by A, 

«O(q + e)} = eA(q) O(q) . (3.16) 

This exponential gives rise to a power series (in the D's) that parallels the Hartree­
Fock resummation of one-loop diagrams, and turns out to be very useful in practical 
calculations. With this notation (see Appendix C) the effective potential can be written 
as 

[1- A(q)] eA(q) V(q) +.!.L: In sinh/k(q) , (3.17)
f3 k Jk(q) 

where it appears that the correction to V(q) from the first term is of the second <?rder 
in the D's, since (1 A)e A "'-' A2. 

3.2. The low-coupling approximation 

As in the case of one degree of freedom only, the implementation of the method requires 
a self-consistent solution of a set of equations, for any value of q. This task becomes 
very difficult for a many-particle system, since solving the set of equations (3.7), (3.8), 
(3.9), and (3.11), could become numerically as heavy as affording the same system by 
quantum Monte Carlo simulation. Therefore, a further simplification is in order. So, 
let us analyze the form of the fundamental formula, equation (3.12). It is apparent 
that, at low temperatures, the main contribution to the configuration integral arises 
from a neighborhood of the minimum qo of V'etr(q). In this regime we could then safely 
approximate the renormalization parameters Dl'v(q) (or ak(q), i.e. the pure-quantum 
fluctuations) starting from their values in qo. On the other hand, when the temperature 
raises, the renormalization parameters decrease, becoming less and less relevant; in 
particular, for Ik » 1, ak(q)"'-'f3h 2/12 and looses its configuration dependence, so that 
such an approximation would have little effect. 

Therefore, we are led to introduce what has been called the low coupling 
approximation (LCA). We expand the dynamical matrix B 2 (q) around the minimum 
qo of Vetr(q) , 

B2(q) =B2 + oB2(q) , (3.18) 

where B2 B2(qO)' and consequently we expand the frequencies w~(q) w~+ow~(q)\ 
the orthogonal matrix U(q) = U + oU(q), and so on (for all quantities taken in qp 
we omit the argument). This allows us to deal with Gaussian averages « .. '))0 which 
do not depend anymore on the configuration: the self-consistent equations have to be 
solved only once, with a great simplification in implementing the method. After this 
expansion (see Appendix D for details) the effective potential reduces to the simpler 
form: 

(3.19) 
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and qo is the solution of e~8q V (q) =0 , since the other terms of Veff are independent 
of q. Here, a self-consistency arises from the dependence on qo of the renormalization 
operator e~. Actually, in most cases the solutions of this equation can be picked out 
by symmetry considerations. 

The calculations are particularly easy in the case of a translation invariant system, 
with a translation invariant minimum: the matrix U is just a standard real Fourier 
transformation, which also diagonalizes the "reciprocal mass" matrix A 2 , 

(3.20) 


and the renormalization parameters can be written as 

D,J.V L" U""U"v m;;l a" . (3.21) 

Using this expression, the LCA effective potential (3.19) can be easily obtained from 
the true one, V(q). Only a reduced set of the renormalization parameters will be 
explicitly needed in Veff . For instance, an additive local interaction term in V(q) like 
~(q) = 2:::" v(q,,) involves the only renormalization parameter Do D"" (due to 
translation symmetry, it is independent of p), 

(3.22)Do =L" 2m:w" (coth I" ),,). 

Indeed, ~ v(qt,) = D",,8~,. v(q,,), so that it is immediate to get 

(3.23) 

where v(2n) is the 2n-th derivative of g(q,,). This example can be easily generalized to 
other kinds of interaction terms, with the possible appearance of a few different D's, 
which are the only ones to be determined (for instance, by an iterative method), because 
only they do appear in the right-hand side of the LCA version of equation (3.11). 
Moreover, their evaluation has to be performed only once at a given temperature. 
Therefore, by the LCA we benefit of the great advantage that the effective potential 
can be directly used in classical-like calculations. This means that any known classical 
results and methods can be applied, and, e.g., classical Monte Carlo computations can 
be used. In addition, improvements of the LCA are possible, for instance by accounting 
at lowest order for the corrections to the renormalization parameters [78]. 

It is apparent that for a harmonic potential the exact results are still recovered 
in the LCA. As for the comparison with the SCHA, one can verify that there is still 
full agreement at zero temperature. Note that the effect of the classical part of the 
fluctuations onto the renormalizations themselves has been disregarded. Moreover, it 
has been shown [30, 7] that in the high-T limit the above framework agrees, at least 
within order n,zf3, with the Wigner-Kirkwood expansion method [13,15,16,17,14]. 

3.3. More general averages and Weyl ordering 

Let us face the problem of calculating averages of a !1ieneral observable O(p, q), that 
depends on both canonical variables. The hat over 0 tells that we cannot regard it 
as a simple functional dependence on (p, q), since these variables do not commute. 
In order to write a classical-like expression for (0), we need a one-to-one rule for 
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associating functions, defined in the phase space of points (p, q), to operators, acting 
in the Hilbert space of states of the system. There is arbitrariness in this choice, due to 
the infinite possible choices of ordering rules for the pairs (PI" fJ.,,). Here we use Weyl 

ordering [14, 105], which associates to any operator 6 a function O(p, q), called the 
Weyl symbol for 6, in the following way: 

(3.24) 

This rule satisfies a number of nice properties [14]. Among them, we recall that the 
trace of the product of two operators 61 and 62 coincides with the phase space integral 
of the product 0 10 2 

(3.25) 

and that O(p, q) is real if and only if 6 is self-adjoint. The function O(p, q) IS 

connected with the matrix elements of 6 in the coordinate representation by 

Note that the arguments are used to distinguish between the matrix elements O(q", q') 
and the Weyl symbol O(p, q) for the operator 6. It is sometimes useful to obtain the 
Weyl symbol from the p-q symbol Op-q(p, q) [105] whose functional dependence is 
obtained by shifting all momentum operators to the left of the coordinate operators, 
taking into account their commutation rules, 

(3.27) 

The quantum thermal average of an observable 6 being defined as Tr(6 p), we have 

, 1 Jdpdq
(0) = Z (27r)M O(p, q) p(p, q) , (3.28) 

so we can find the wanted expression by calculating the Weyl symbol for the PQSCHA 
density matrix, as done in the end of Appendix C, equation (C.10). Eventually, one 
gets the following PQSCHA expression for thermal averages: 

, 1(2 )M/2 1 J(O(p q)) = - ~ -- dq e-/3v"ff(q) 
, Z /3 det A 

1 .El. 
x dp <O(p, q+e)>> I] J27rAk e - 2,\'k , (3.29)J 

where 

(3.30) 

By the average over the coordinates it appears that the momentum distribution 
(o(p - p)) is not a Gaussian. However, in the LCA, where expression (3.29) is formally 
identical, it becomes Gaussian, since Ak == Ak (qo) is fixed at its value in qo. 
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4. Standard systems - Applications 

4.1. Kink bearing fields in one dimension 

This has been the first application of the PQSCHA in a system with many degrees 
of freedom [3,4, 41, 42, 43, 44, 45, 106, 107]. A Lorentz-invariant Hamiltonian for a 
scalar one-dimensional field -J;(z) (Ii = c 1) is 

1i-2 1 (fJ-J;) f.l2 .]it. dz 2 + 2 fJz + g2 v(g'¢;) , (4.1)J [ 2 

where v(q) is a local potential with v"(qm) = 1 in its absolute minimum qm, f.l is 
the "field mass" and g2 is the usual field theoretical coupling constant. 1i-(z) is the 
momentum density, [-J;(z), *(z')] = i 6(z - z'). The low-energy excitations are quasi­
particles with relativistic energies eh = Jf.l2 + k 2 . If the absolute minimum of v(q) is 
degenerate, the classical field admits kink excitations that connect different minima. 
In particular we have the <p4 model for v(x) = (x2 1)2/8 and the sine-Gordon (SG) 
model for v(x) = (1 cos x), with classical kink energy eK = 2f.L/3g2 and eK = 8f.l/g 2 , 

respectively. The discretized version of the above model for a chain with spacing a and 
N sites is it. g2/2a 2:, pt + V(q), with 

V(q) = ~t [(q, 2:~-1)2 +f.L2v(qil] . (4.2) 
9 i::::1 

The coordinates are q {qi=9-J;(Zi)} and their conjugate momenta p = 
{Pi=ag- 1*(zt}}. Equation (3.19) gives the LCA effective potential; it can be calculated 
using (3.23) in terms of the renormalization parameter Do(T), equation (3.22), with 
mh = ag-2 and w~ = f.L2K,2(T) + 4a-2sin2 (ka/2), where K,2(T) depends on Do(T). 
Eventually, Veff(q) is expressed as the original potential (4.2), with V(qi) replaced by 
a proper Veff(qi). For the two models considered we have: 

K,2(T) = 1 3Do , Veff(X) k(x2 1 +3Do)2 + ~D5 +H(T) , (<p4) 

!2.fl. !2.fl.
K,2(T) = e - 2, Veff(X) = e - 2 (1 cos X) + kDa + H(T) , (SG) 

where H(T) = f.L 2a2/(g2 N 13) 2:h In(sinh /h/ /h)' The quantum thermodynamic 
quantities can be then obtained by numerical transfer matrix [108], making their 
calculation not only feasible, but also very easy. The results are reliable as long 
as the Ginzburg condition v~~(qo) Do(T)/2K(T) « 1 is satisfied; if the coupling is 
strong enough, it breaks at sufficiently low T. The reasonability of this criterion has 
been recently proven through a check against accurate quantum Monte Carlo data for 
the <p4 chain [109]. The cited paper also proves the enormous amount of simplification 
obtained by the PQSCHA, since the quite long Monte Carlo runs made in order to get 
accuracy for the internal energy turned out to display a considerable statistical error 
on the specific heat. 

Furthermore, we would like to note that the PQSCHA approach to the SG chain 
model justifies and improves an earlier [110] rearrangement of the high-T expansion, 
made by adding the (bare) harmonic behaviour and simultaneously subtracting the 
corresponding terms from the series. 

The PQSCHA approach also permits analytical work, and in the case of the sine­
Gordon and of the <p4 fields all the results that were obtained by specializing the 
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quantum SCRA to the vacuum and the one-kink sectors [111, 112, 113] are naturally 
recovered by performing the classical SCRA with the effective model [43, 44], starting 
from the absolute minimum and from the kink configuration. 

In the continuum limit (Do(T) ---T (0) one replaces the bare field mass ;t with 
its zero-T renormalized counterpart ;to = ;tfi(O) , obtaining a formally identical 
expression of Veff(q) up to order g4,in terms of the finite renormalization parameter 
D'(T) = D(T)-D(O). In the r.p4 case the coupling constant has to be renormalized 
as well [45]. In figure 5 we report a comparison with quantum Monte Carlo data 
and exact Bethe Ansatz results for a quantity that is very sensitive to nonlinearity, 
namely the excess specific heat (that is the difference between the specific heat and 
its counterpart in the harmonic approximation). The PQSCRA turns out to be 
complementary to Bethe Ansatz, whose equations are affordable only for very high 
values of the coupling [114]. 

We refer to the references quoted at the beginning of this subsection for a deeper 
discussion. 

0.1 

Be 

0.0 

0.0 0.5 

Figure 5. Nonlinear contribution to the specific heat density vs temperature for 
the sine-Gordon field. The length unit has been chosen according to the convention 
1i = c =Eg 1. Solid lines: PQSCHA data for different values of g2. Dashed line: 
Bethe Ansatz exact results from [114] for the lowest availablecouplingg2 0.81i. For 
this strong coupling the difference agrees with the estimation of the terms'" g4 that 
are neglected in the LCA [45]. Symbols: quantum Monte Carlo data for g2 0.8, at 
"discreteness" parameter p.a 0.34 (triangles) and 0.10 (circles) from [66], properly 
scaled as discussed in Ref. [45]. 

4.2. Toda and Lennard-Jones chain 

One-dimensional (I-d) systems of atoms tighten together by non-linear forces represent 
the field of application where the effective potential method displays at best all 
of its power. In fact, apart the almost trivial case of a single particle, in I-d 
systems we get the biggest gain by the use of the effective potential. The actual 
computational effort needed to evaluate quantum thermodynamic properties, which by 
Trotter decomposition is easily shown to be equivalent to that of a 2-d classical system, 
is in fact brought back to that of a classical 1-d problem. And for the latter different 
methods, both numerical [108] and analytical [115, 77] are available to evaluate, in 
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principle exactly, the partition function and other relevant static quantities. In this 
section, we give a survey of the applications of the effective potential method to systems 
where the interaction is only between nearest neighbours, i.e. 

(4.3) 


For such systems, within LCA, the effective potential may be written again as a 
sum of pairwise interactions, Vetr(q) = Lp Vetr(qj.l - qj.l-l), where 

Vetr(r) = ~ ~[v(U)(r) - fv(2!) (d)] (~lr+ H(T) , (4.4) 

Dl =: Dj.lj.l+l == ~ L 4sin2 (kd/2) Q;k (4.5) 
k 

being the renormalization parameter typical of one dimensional systems with nearest 
neighbours interaction only, and d the lattice constant, i.e. the thermal equilibrium 
average distance between two neighbouring particles. 

As a first example of a non-linear chain we consider the Toda lattice. Such model 
lattice is known to be exactly integrable both in the classical [116, 117, 118] and 
quantum case [119], and even if dynamical integrability does not imply necessarily that 
also thermodynamic quantities can be exactly evaluated, the exact partition function 
of the Toda lattice is known in analytic form for the classical system [120], and has been 
obtained numerically for the quantum one by Bethe-Ansatz [121, 122, 123, 124, 125], 
so that reference data are available to appreciate the value of the effective potential 
method. 

The nearest-neighbour interaction potential introduced by Toda is: 

(4.6) 


ro is the position of the minimum of v(r), the constant b rules the non-linearity of 
the potential, while the ratio alb sets the energy scale. In terms of it and of the 
characteristic frequency of phonons Wo Jvll(ro)/m == Jab/m of the system, we 
define the coupling parameter 9 =: (liwo)/(2a/b) :::: (lib~)/(2y1am), which rules the 
strength of the quantum effects. When g::; 1 the LCA may be applied, and the effective 
nearest neighbour potential is [46]: 

a D b
2 b( )vetr(r) == - e~ e- r - ro + a(r ro) + B(T) + H(T) ; (4.7)

b 

B(T) and H(T) (H(T) is the logarithmic term introduced in equation (3.13) ) are 
constants depending only on temperature. 

As the effective potential (4.7) has the same functional form of the original potential, 
the partition function, relevant thermodynamic quantities, and correlation functions of 
the quantum system, can be obtained analytically [46] in term of the Euler r-function 
and its derivatives, as in the classical system. Examples of the results obtained [46] 
are shown in figures 6 and 7 where the specific heat and the displacement correlation 
function of two neighbouring atoms are reported. Specific heat results reproduce those 
of the more cumbersome Bethe-Ansatz calculation, while the correlation function of 
the quantum Toda lattice appear as a result actually attainable only by the effective 
potential method. 
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Figure 6. a) Specific heat at constant length CL as a function of t, for d ro and 
different values of 9 (solid lines); the dotted lines give the corresponding curves in 
the self-consistent harmonic approximation, and the dashed line is the classical result 
(9 0). The filled circles are the Bethe-Ansatz results by Hader and Mertens [123] 
for 9 0.5 (Please note that in the paper by Hader and Mertens [123] a different 
definition of the reduced temperature is used, so that the reduced temperature of this 
figure, t = kB Tb/2a, differs by a factor 4 from that one of Fig. 7 and 8 of Ref. [123]). 
b) Specific heat at constant length, eL, for d = ro, and at constant pressure, Cpt for 
p =0, as a function of t for 9 0.5; the solid lines are the results of the variational 
method, the open and filled circles the Bethe-Ansatz results (cp. Fig. 7 of Ref. [123]) 
and the dashed lines the classical results. 
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Figure 7. Position-position correlation function Cqq(n 1) (Cqq(n) 
{(qi+n qi nd)2») for 9=0.5 versus the reduced temperature t kB Tb/2a. The 
units of the y-axis are 1jb2 • Solid line: quantum Toda chain; dash-dotted line: 
quantum harmonic chain; long-dashed line: classical Toda chain; dotted line: classical 
harmonic chain. 
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By the same procedure introduced for the Toda lattice, the LCA effective potential 
for a Morse interaction may be also constructed, and the thermodynamic quantities 
can be computed again analytically [47]. 

When more realistic potential are used, one has to resort to numerical calculation. 
However [77], for I-dimensional systems with nearest neighbours interaction this entails 
only a numerical integration and the numerical solution of a non linear equation. 

One of the most widely used interaction potential in solid state and molecular 
physics is the Lennard-Jones potential: 

(4.8) 


whose coupling parameter may be defined as 9 = [(li.2ufl (ro))j(mc0"2)]!, ro \Y20" 
being the classical equilibrium distance of nearest neighbours atoms. The Lennard­
Jones chain has been studied as a prototype model of 3-dimensional rare gas solids, 
and both static and dynamical behaviour has been addressed, by Monte Carlo 
computation [126], molecular dynamics simulation [80] and effective potential [48, 
78, 80, 82]. For such a potential, as for all the potentials not having a very simple 
analytical form like Toda, Morse or Sine-Gordon (see the preceding subsection), the 
series given by the application of the operator Ll cannot be resummed in a closed 
form, and the LCA effective potential has to be taken in its original form (4.4). For ill­
behaving potentials like Lennard-Jones, care must be taken with the series expansions 
of Equation (4.4), as they have only asymptotic character, diverging for any finite value 
of the renormalization parameter D 1 . Despite of this, when the LCA makes sense, 
only the very few first terms of the series are relevant, and reliable results may still 
be obtained. In figure 8 the internal energy and specific heat as given by the effective 
potential [48] are reported for 9 = 0.76, a coupling which corresponds to the values of 
the Lennard-Jones parameters typical for neon, and compared with heavily computer­
time consuming PIMC simulations results [126]. The good agreement between effective 
potential and PIMC data is not limited to macroscopic thermodynamic quantities, but 
is maintained also when more complicated static correlation functions are considered, 
as it will be shown in section 7.2 (figure 14). 

4.3. Rare gas solids 

In the previous sections we showed some applications of the effective potential method 
to simple 0- and I-dimensional quantum models, where full benefits results from the 
simplicity of the corresponding classical problem. However, the method displays 
all of its power also when it is subjected to the most stringent test for a physical 
theoretical device, i.e. when its ability to reproduce experimental data is probed. 
Indeed, the effective potential method has been successfully employed to describe 
the thermodynamic properties of rare gas solids at low and intermediate temperature 
[49, 50, 53, 52, 51, 54, 127, 11, 56, 59]. It is in the last temperature region that it 
reveals particularly useful, as the other available theories, e.g. the SCHA and the 
ISC (Improved Self Consistent) methods, become rapidly no more reliable when the 
temperature is not very low [50, 51, 11]. 

All the applications of the effective potential method to rare gas solids are based 
on its variant usually known as EPMC (Effective Potential Monte Carlo). Indeed, 
the definition and evaluation of the effective potential for a rare gas solid, modeled 
as a 3-d array of atoms interacting by a pair-wise potential, closely resemble the 
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Figure 8. Equilibrium internal energy 'U and specific heat c per atom for the infinite 
Lennard·Jones chain and 9 = 0.76. Full line:. results of the effective potential 
calculation; dotted line: first order results; dashed line: harmonic approximation; 
dash-dotted line: classical result; triangles: Quantum Monte-Carlo data from 
Ref. [126]. 

procedure already described for the Lennard-Jones chain, apart from some technical 
modification due to the appearance of different phonon branches and the possible 
inclusion of interactions beyond the nearest neighbours. But the biggest difference 
between 1- and 3-dimensional systems is that, for the latter, the classical problem itself 
is not easy and can be afforded only numerically, i.e. by Monte Carlo simulations or 
Molecular Dynamics (MD) calculation. By the way, we would like to remark that MD 
in conjunction with the effective potential may be safely used only to access quantum 
static averages, as there is no ground that the classical dynamics driven by the effective 
potential can constitute a good approximation of the true quantum dynamics of the 
system. 

The numerous papers devoted to rare gas solids addressed different aspects of the 
problem, showing the effectiveness of EPMC; here we give only a sketch of the main 
results. For heaviest rare gas (Xenon, Krypton and Argon) the LCA at the lowest 
order already allows to reproduce the' experimental data for the specific heat and the 
equation of state, starting from the lowest accessible temperature up to the melting; 
an example of the result obtained for argon using the Lennard-Jones potential (4.8) is 
shown in figure 9. When Neon is considered the contribution coming from LCA highest 
order terms becomes more important [50]; an improvement of EPMC which takes into 
account, in a perturbative way, also the renormalization effects of the cubic term of 
the expansion of the potential around the minimum, has been recently proposed [56], 
so that also at very low temperature EPMC is competitive, with respect to all other 
methods, in describing the thermal properties of solid neon. 

As already shown for the Lennard-Jones and Toda chain, EPMC allows us also to 
evaluate the quantum thermodynamic average of microscopic quantities. Among them, 
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Figure 9. Equilibrium density p (in units l/er3 ) at zero applied pressure (a) and 
specific heat per atom Cv at constant volume (b) of solid argon. Open diamonds and 
full line through them: MC classical results; open circles and full line through them: 
EPMC quantum results [53]; filled squares: experimental data [128]. 

the kinetic energy per particle may be of interest, as it has been directly measured in 
Deep Inelastic Neutron Scattering (DINS) experiments [129,130]. The LCA expression 
for the kinetic energy per particle [54J: 

(k) = 2~ I::>'k + ~ L {[{UIl(Xll')G - ull(d)]'I?L 
k 2 II-l'l=d 

+ [(u,~::~,t .'~d)] ~+ (4.9) 

where 

.Q -.!..~4· 2 k . d (d'EJ.!(k))2_h_( th"­ (4.10)ilL - N 	L...J sm 2 d 8mwk co JkJ.! 
k,J.! 

1 ~ k·d [ d. EJ.!(k)) 2]_h ( h "­ (4.11) 
k,J.! 

mw'l?T = N L...J 4sin2 -2- 1 ( d 8 k cot JkJ.! 

clearly shows how the classical Gaussian distribution of momenta is modified by the 
quantum interplay between coordinates and conjugate momenta, which makes (k) 
dependent on the interaction potential u between particles. Figure 10 shows the results 
obtained using the Lennard-Jones interaction potential, compared with some DINS 
experimental data. The agreement for argon may be considered very good, if we 
remind that the L-J potential is a crude approximation of the true potential, which 
should include multi-body effects. 

A more complete discussion on the application of EPMC to rare gas solids, together 
with a comprehensive account of open problems for such system and a comparison with 
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Figure 10. Kinetic energy per atom versus temperature [54]. Data for solid LJ neon 
(full triangles) were obtained by PIMC; data for argon (diamond,s), krypton (circles), 
and xenon (squares) by EPMC. The solid line is the classical result eK = (3/2)T, 
the open triangles are experimental data for neon [129J, and open diamonds are 
experimental data for argon [130]. The scaling used in (a), where reduced units are 
used for both axis, gives a representation depending only on the coupling constant 
g. Plot (b), where dimensionful units are employed, shows as the quantum kinetic 
energies at low tem'peraturesare comparable for different rare gas, in spite of the 
quite different quantum couplings. 

other theoretical methods, may be found in the papers cited above, and especially in 
the review paper by Cowley and Horton [11]. 

5. Nonstandard systems 

5.1. Phase-space path integral 

In this section we briefly recall the expression ofthe Hamiltonian (or phase-space) path 
integraL Let us consider a quantum Hamiltonian it. (p, q) representing a system with M 
degrees of freedom. The path integral giving the Weyl symbol (see section 3.3) for the 
quantum mechanical propagator exp [-:iit. (t2 -h)] is derived and discussed in Ref. [105], 
and the path integral for the matrix elements p(q", q') can be obtained by performing 
the Wick rotation to the imaginary time (3 ;;::: i(t2-h), and using equation (3.26), as 
shown in Appendix E. The outcome is 

~ q" 
p(q",q) == (qllie-rm Iq') =JV[P] k, V[q] eS[p,q] (5.1) 

The limits on the integral imply that the sum is over all paths (p{u), q(u)) , u E [0,{3], 
with the constraints q(O)=q' and q({3)=qll. The action S[p, q] is a local functional 
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containing the Weyl symbol for il, 

P 
S[p, q] =l du[ipt(u)q(u) -1l(p(u), q(u))] (5.2) 

For standard Hamiltonians (3.1) the momentum path integrals appearing in the above 
formulas can be explicitly evaluated, leaving Feynman's coordinate-only path integral, 
equations (3.2) and (3.3). 

5.2. PQSCHA for nonstandard Hamiltonians 

The derivation follows the same scheme of the standard case, section 3, so that we will 
comment only those parts that are peculiar to the nonstandard case. First, since we 
are dealing with a phase-space path integral (5.1), the average point of a path is given 
by 

-gliP0 du (p( u), q( u)) , (5.3) 

so that (5.1) can equivalently be written as 

p(q",q') = Jdpdq p(q",q';p,q) , (5.4) 

where the reduced density 

collects the contributions from those paths with (p, q) as average point. In the place of 
the Weyl symbol1l(p, q) we put, generalizing the trial potential (3.6), a trial function 

1lo(p, q;p, q) = w + ~ c5pt A2 c5p + c5pt X c5q + ~ c5qt B2 c5q , (5.6) 

where c5p == p-p and c5q == q-q. Of course, the c-number wand the real MxM 
matrices A 2 = {A2 I'v }, X = {XI'v} and B2 = {B2 I'v} are allowed to depend on 
(p, q), and are to be determined in order that Po, i.e. the path integral (5.5) with 1lo 
instead of1l in the action (5.2), at best approximates p. 

In order to reduce 1lo to its normal form [131] we diagonalize the momentum part 
through the canonical transformation (p, q) -+ (A-lp,Aq), and then introduce the 
orthogonal matrix U(p, q) == {Ukl'(p, q)} that diagonalizes the coordinate part, 

(5.7) 

Transforming the original canonical variables as 

(p, q) -+ (U A -lp, U Aq) (5.8) 

the matrix X in the mixed term becomes then (U A- 1 XAUt)kl = (J"kl(P, q); therefore, 
in order to decouple 1lo as a sum of harmonic oscillators we must restrict the set of 
free parameters setting to zero the off diagonal elements of {(J"kt}, requiring 

(5.9) 
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Note that with this choice Jio cannot exactly describe quadratic couplings that are 
non-harmonic, as the charged particle in a uniform magnetic field [132]. In practice, 
the independent parameters of Jio are replaced by the scalars w~ and (Tk, and by the 
independent components of the matrices A and U. 

The evaluation of the path integral for the reduced density Po is reported in 
Appendix F. The Weyl symbol for Po, equation (F.5), determines a Gaussian 
distribution in phase space, centered in (p, q) , so that we use the pure-quantum 
fluctuation variables (11, e) in the place of (p, q), 

(5.10) 

Again, we rub out the bar over p and q and use the double-bracket notation for the 
Gaussian average determined by Poi its moments are «11» «e» 0 and, from 
equation (F. 7), 

{1]k 1]£)) Ok£ [w~ (p, q)+(T~ (p, q)] elk (p, q) , 

((1]k<£) = -Okl(Tk(p,q).elk(P,q), 

{{k <l) Ok£ elk(p, q) , (5.11) 

where 1]k = {UAl1h, <k {UA-1eh, and 

elk(p,q) = 2 t )(cothfk(P,q) f / )), fk(p,q) = ~fJwk(P,·q). (5.12)Wk p,q k p,q 

It clearly appears that now, at difference with the standard case, the separation of the 
pure-quantum fluctuations is made also for the momentum variables, and the cross­
correlations are represented through the parameters (Tk. In the direct phase-space 
equations (5.11) correspond to the renormalization parameters 

D~PJ'}(p,q) = ((11p11I1», D~~q)(p,q) = ((11p<lI» , D~lqj'(p,q) ((<pell»' (5.13) 

Next, in analogy with equations (3.10) and (3.11), we impose the PQSCHA 
conditions in order to determine the parameters.of Jio. For w we have 

(5.14) 

and for the matrices A 2, X, B2, 

A2 pll (p,q) ((Op"op"Ji(p+l1,q+e))) , 

Xpll(p, q) = ((Op"Oq" Ji(P+l1, q+e) , 

B2pll (p,q) = {Oq"Oq"Ji(p+l1,q+e) . (5.15) 

Then we approximate the true density p(q", q') using Po in equation (5.4). The 
associated Weyl symbol is found by integrating equation (F.5), and by (3.28) the 
expected classical-like expression for the average of an observable O(p, q) follows: 

(5.16) 

with the effective Hamiltonian 

1" sinh fk (p, q)
Jieff(p, q) = w(p, q) + 73 L...Jk In fk (p, q) (5.17) 

http:parameters.of
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In the standard case the above expressions reduce to the corresponding equations of 
section 3. In particular the matrix A 2 becomes constant and X O. 

The differentiation operator (3.15) is naturally generalized in order to account for 
the momentum pure-quantum renormalizations, 

d(p,q) == L,.II/ [~D~IJ)(p,q)opl' 0pv +D~~q) (p,q) op,. Oq" +~D~~q)(p,q)Oq,.Oqvl (5.18) 

with the derivatives not operating on the D's, so that 

(O(P+l1, q+e)} == ed(p, q) O(p, q) , (5.19) 

and using the obvious generalization of the identity (C.g) 1£eff can be written in a form 
with a more evident the renormalization part: 

(5.20) 

Physically, equations (5.17) and (5.16) mean that the system tests its "energy 
surface" only on the average over a neighborhood of a phase-space point, and all 
observables are to be smoothed on the scale of the pure-quantum fluctuations, which 
at T = 0 satisfy Heisenberg's uncertainty principle. Remarkably, as all pure-quantum 
renormalizations are vanishing in the classical limit Ik = ~f3nwk -4 0, for high-T we 
have 1£eff -4 1£, so Weyl ordering appears to have a privileged role; this is not a 
bare consequence of our initial choice, as it can be verified that the PQSCHA gives 
Weyl symbols in the classical limit, even starting with different ordering rules. By 
construction this Hamiltonian PQSCHA formalism is exact when applied to harmonic 
Hamiltonians, and for standard systems it reduces to the effective potential method of 
section 3. 

5.3. The low-coupling approximation 

Solving the PQSCHA equations (5.15) and (5.11) is more involute than in the standard 
case, so the LCA is again in order. The reasoning made in section 3.2 is naturally 
generalized; namely, at low T the main contribution to the phase-space integral (5.16) 
arises from a neighborhood of the minimum (Po, qo) of 1£eff(P, q), and when T is 
risen, the renormalizations decrease and their dependence on (p, q) weakens as well. 
Following the procedure of section 3.2, we split the matrices (5.15) as 

A2(p, q) = A2 + oA2 (p, q) , 


X(p,q) =X+oX(p,q) , 

B2(p, q) = B2 + OB2(p, q) , (5.21) 


(arguments of quantities taken in (Po, qo) are omitted) and we end up with the LCA 
effective Hamiltonian 

(5.22) 

and the minimum (Po, qo) is the solution of (op, oq)eD..1£(p, q) = 0 . 
For a translation invariant system with translation invariant (Po, qo) the matrix 

U U(Po, qo) is a Fourier transformation and U A2Uke = m;l Okt, so that 

L UkP.Ukvedop,.op,,1£(Po,qo) = m;l , 
p.v 
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L Uk/JUkve!lOp..J)q/li(po, qo) Uk,
/JV 

L 
/JV 

Uk/J'Ukve !lOq"Oq,,1l(Po,qo) = mk(W~ +un (5.23) 

It is useful in practice that the parameters mk, Uk and w~ appear as the coefficients of 
the harmonic approximation to 1leff. In direct phase space the LCA renormalization 
parameters are then expressed as 

D}r!) = LkUk/JUkv mk (wZ+uZ) Q;k , 

D]!vq) = - LkUk/JUkv Uk Q;k , 

D(qq) - "U U -1/JV - L..tk k/J kv mk Q;k· (5.24) 

The same conclusions drawn in section 3.2 about the comparison with the SCHA are 
still valid here. 

6. Nonstandard systems - Applications 

Aim of this section is to show how to apply the PQSCHA to magnetic systems: the 
main peculiarity of such systems is that, as they are described in terms of angular 
momentum operators, their Hamiltonians are intrinsically non standard. 

The relevance of the PQSCHA is highlighted in this context, where semiclassical 
methods for standard systems cannot be used, unless one reduces the spin model 
to some canonical standard one, approximating or €<Ven canceling out those terms of 
the Hamiltonian that make it non stalldard, which usually means to renounce' the 
description of the most interesting and peculiar non linear behaviours of magnets. 

The ideal scheme to apply the PQSCHA is the following: First of all, as the method 
has been developed for canonical quantum Hamiltonians, the 'angular momentum 
operators have to be written in terms of canonical ones by means of a suitable spin­
boson transformation. Once derived the O(p, q) form of the operators corresponding 
to the interesting physical observables, the determination of their Weyl symbols is in 
order. The PQSCHA leads now to the evaluation of the renormalization coefficients 
appearing either in the effective Hamiltonian 1leff(p, q) and in all the other statistical 
averages. The inverse of the classical analogue of the spin-boson transformation used 
at the beginning, eventually leads to the effective spin Hamiltonian 1leff (s3: , sY ; SZ ), 

being now sf, sr and sf the three components of a classical unit vector sitting on site 
z. 

This scheme is somehow ideal in that some addi tional assumptions and 
approximations, depending on the specific system under investigation, have to be 
usually introduced on the way to the final result; in particular, either the quantum 
spin-boson transformation and the Weyl ordering have to be handled carefully, as they 
could hide subtle traps. 

6.1. Easy-plane ferromagnetic chain 

The PQSCHA has been first applied [72] to magnetic systems in order to study the 
thermodynamic properties of the easy-plane ferromagnetic chain (EPFC), described 
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by the spin Hamiltonian 

N 

1£ =L [-JSr SH1 + D(St)2 9mPBHSf] , (6.1) 
;=1 

where J and D are the exchange and anisotropy constants, 9m is the gyromagnetic 
ratio, H is an in-plane magnetic field, and (Sf, By, Sf) are spin operators with 

IS; 1
2=3(3+1). 

The EPFC is not only a "toy model": There is a real compound, CsNiF3, whose 
magnetic ions are arranged as chains in the lattice in such a way that the magnetic 
exchange coupling between the chains is very weak. Then, the behaviour is practically 
one-dimensional (above the 3-D ordering temperature TN=2.7 K) and is described by 
the Hamiltonian (6.1), with 3=1, J=23.6 K, D=9 K, 9m=2.4. One of the main reasons 
for this model to be the ideal candidate for the first application of the PQSCHA, resides 
in the plenty of experimental, theoretical and numerical works available on it, that allow 
to check the validity of the PQSCHA through an exhaustive comparison with previous 
results. 

The "easy-plane" character of the model suggests to make use, for each spin 
operator 5 (site index understood), of the quantum Villain transformation [133] to 
canonically conjugate operators [Ij?, SZ] = i 

(6.2) 

This transformation is sensible as long as (Sz) < S; if the temperature is not too high, 
this is ensured by the easy-plane anisotropy of the model. Note that, as Ij? represents 
the azimuthal angle, we prefer this notation in place of ij. 

The transformed Hamiltonian is a relevant example of a non standard one, whose 
Weyl symbol, defining S=3 + ~ and the scaled momentapi=Sf IS, turns out to be 

N 2 

ll(p,<p) = e L [~; - PiPH1 - V(I-plHl-p;+l) cos (<p;-<PHd - hVl-pl cos <Pi], 
;;:;:1 "I 

(6.3) 

where e=JS2 , h=9PBH/(JS) and "I=J/(2D); moreover we shall use in the following 
the reduced temperature t=T/e=T/(JS2 ). Note that disregarding anharmonic terms 
containing Pi leads to the planar model; and if one furthermore approximates 
cOS(<Pl-<PHd'" 1-(<P1-<PHd2/2 the (modified) sine-Gordon model [41] is recovered. 

The LCA and the symmetry properties of the model make equation (6.3) the only 
ingredient we need to write down the renormalizations coefficients 

D~p) = ---.!:- L bk (coth fk - f;1) cos k(i-j) ,
23N k ak 

1 L ak (coth fk - f;l) cos k(i-j) . (6.4) 
k bk 

The self-consistent "mass" and "frequency" parameters mk and Wk enter the definition 
of the dimensionless quantities 

a~ 1 = "1- 1 + [he -tDIl + 2e -tvu - 2{1 - cos k)] , 
emk 

b~=mkwZ h(Pe ~DII+204e-iVII(1 cosk) , (6.5) 
e 
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whose evaluation, being fk=akb,./(28t), closes our self-consistent renormalization 
scheme. The coefficients (6.4) appear in the meaningful combinations DJ.::D}fP), 

D -D(<P<P) V -2(D(<p<p) D(<p<p») d 02 - 1 lD11= ii ,11= it - i,Hl an = -'2 J.. 
After the effective Hamiltonian 1leff(P, r.p) corresponding to equation (6.3) has been 

determined, the transformation 

sf pdO, (6.6) 

eventually leads to the effective classical spin Hamiltonian 

1leff = c02~i [ - sfsf+1 T(si si+1+sf sY+1) + 2~ (s:)2 hsi] + cG(t) , (6.7) 

G(t) = t~k In Si:~/k - ~ [(2DJ. +04VII)e -~VII + h(DJ. +02 D II )] , (6.8) 

where si=(si, sf, st) are now classical vectors of unit length IsI 2=1, while -~DII 
2 _11'11and T=O e 2 • 

Equation (6.7) shows a renormalization of the magnetic field (h-+h) and of the 
overall energy scale (by a factor 02); an exchange anisotropy term (T) does appear 
as well; it accounts for the quantum enhancement of the out-of-plane fluctuations in 
competition against the easy-plane anisotropy. The quantum partition function is 
expressed, in terms of the effective Hamiltonian, as for a classical spin system 

Z=e (6.9) 

where Si varies on the unit sphere; in the one-dimensional case, integrals like the 
one appearing in equation (6.9) can be easily evaluated by means of the classical 
transfer matrix method [134}, so that, by means of equations (5.16) and (5.19) all 
the interesting thermodynamic averages can be studied. As an example we report 
in figure 11 the results for the "excess" specific heat of CsNiF3 , i.e. the measured 
difference between the specific heat with and without applied field (the experimental 
measurements are particularly accurate since the lattice contribution is subtracted). 
This quantity generalizes the one reported in figure 5 for the sine-Gordon model, and 
is particularly sensitive to nonlinearity. The perfect agreement of the PQSCHA result 
with experiments comes from the solution of the problem in two aspects. Firstly, the 
"classical counterpart" of the S 1 spin chain is identified by the correspondence 
with a spin length 8 = 3/2 (and not 1, as in a naive approach), which is the correct 
model to start with in accounting for quantum effects; secondly, the nonlinearity in 
the out-of-plane variables is kept into account thanks to the Hamiltonian PQSCHA, 
and this gives quantitatively correct results, whereas the (standard) quantum planar 
model proves to be inadequate. 

For the spin correlation functions, once determined the Weyl symbol for the operator 
product SfS:, evaluated the average e A SfS:, and reconstructed the spin variables 
following equations (6.6), one finally gets 

/SfS~) = 82 04e - DII [cosh D~'f<P) (SiC sa;) + sinh D~'f<P) (s1f sY.) ]
\ ' J 'J 'J eff 'J' J eff ' 

/Sr BY) 82 04e -DII [cosh D~'f<P) (s1f sY.) + sinh D~'f<P) (sf sa;) ]
\ ' J 'J 'J eff 'J' J eff ' 

(SiS;) = 82(02(sisj)eff+D~Y») . (6.10) 
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Figure 11. Excess specific heat per site ac=c(H)-c(O) of the quasi one-dimensional 
S = 1 compound CsNiFa vs. temperature, at field H::::5.8kG. Solid line: quantum 
EPFC; diamonds: experimental data from Ref. [135]. The dotted line refers to the 
classical counterpart of the Hamiltonian (6.1) taking a naive mapping of the spin 

operators onto vectors of length S = S; the dashed line refers to S = S + 1/2, 
and represents the meaningful classical limit given by the PQSCHA through Weyl 
ordering. The quantum planar approximated model (dash-dotted line) appears 
insufficient for a quantitative description. 

This holds for i#j. For i=j the calculation has to be done more carefully, since it 
involves products of operators that are noncummuting, as they act on the same site. 
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0.0 0.1 0.1 0.1kIn 0.0 kIn 0.0 kIn 

Figure 12. Combined components Fx(k), Fy(k), and Fz(k) of the static structure 
factor of CsNiFa. at field H=lOkG and temperature T=12K. Solid line: quantum 
EPFCj circles: experimental data from Ref. [136]. Overall intensity scale determined 
by least squares method. 

6.2. Two-dimensional magnets 

In the case of CsNiF3 the comparison between results obtained by the PQSCHA and 
experimental and numerical simulation data leads t.o a very good agreement, as shown 
in figure 11 and figure 12; reasons for such a success have to be recognized in the 
peculiar way the PQSCHA allows us to keep into account the nonlinear features of 
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the model, meanwhile providing an exact description of the linear behaviour. This 
application give us confidence to apply the method also in the two-dimensional case. 

Non linear excitations in fact, play a fundamental role also in two-dimensional 
magnets, and, in particular, in those systems whose planar character sustains the 
appearing of vortices. The adjective planar refers to the appearance of an exchange 
anisotropy term that defines an easy plane for the spins, making energetically 
unfavourable their alignment along the direction perpendicular to that plane, as m 
the typical X X Z Hamiltonian 

1 ~ (" ~ 0')'y'iJL.....L. SfSf+d + SfSi+d + )..Si Si+d (6.11)
I,d 

where symbols have the same meaning as in the previous section and the index 
i =(iI, i 2) runs over the sites of a two-dimensional Bravais lattice, d =(d1, d2 ) being 
the displacements of the z nearest-neighbors of each site. 

The class of models described by (6.11) with 0~)"<1 has been recently studied in 
relation to the Berezinskii-Kosterlitz-Thouless (BKT) transition. :r'his in fact has been 
characterized for the classical XY model, i.e. the one in which the spins do not have z 
components at all. Note that this is an intrinsically classical model as in the quantum 
case out-of-plane fluctuations have to be considered, no matter their explicit appearance 
in the Hamiltonian, being =0 a physically meaningless constraint, basically because 
of the uncertainty principle. 

The BKT transition is driven by the dissociation of vortex/anti vortex pairs in 
the xy plane, a process that can be heavily affected by the possibility for the z 
components to be different from zero, deIponstrated by the difficulties in deriving 
a clear picture of the quantum version of the subject. A good description of non 
linear excitations (vortices) and of quantum (out-of-plane) fluctuations are indeed the 
essential ingredients for such a picture.to be drawn, and this indicates the PQSCHA 
as an ideal tool to deepen the question. 

The derivation of the effective Hamiltonian corresponding to equation (6.11) 
proceeds as in the one-dimensional case, leading to the explicit form 

1leff = - ~ jeffLi,d (sfsf+d+sfsf+d + )..effsisi+d) + N€G(t). (6.12) 

We see again that quantum effects renormalize the interaction parameters through 
j -+ jeff and)" -+ )..eff, where . 

(6.13) 

(6.14) 

and the coefficients D.L and VII, as well as the additive term G(t), have a form analogous 
to the one shown in previous subsection. 

The quantum fluctuations are responsible for a weakening of the easy-plane 
anisotropy ()..eff < )..) and this could be a key-point to understand the possible quantum 
version of the BKT transition. Let us then look at spin correlations on the easy-plane: 
they turn out to be 

(6.15) 

Since DJ'P) is bounded, the asymptotic behaviour of the correlations in the transition 
region is just the same of the effective classical model, so that the critical behaviour of 

http:picture.to
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the latter is preserved. It follows that the BKT temperature te(S, -\) of the quantum 
system is connected with its classical counterpart t~cl)(-\) by the self-consistent relation 

te(S, -\) 
(6.16)

jeff(te,S,-\) 

1.0 

O.S 

0.0 O.S 1.0 
TIe 

Figure 13. The effective exchange coupling ieff(t,S,).=O) vs. temperature, for 

different values of S (solid lines). The energy unit is e JS2 == J(S + t)2. The 
slope of the dotted line is the inverse of the classical BKT critical temperature from 
Ref. [137]. The abscissa of the intersections points gives the expected quantum BKT 
transition temperatures. 

Although the self-consistency of equation (6.16) is quite involute, due to the slight 
dependence of the classical critical temperature on -\ (t~cl) (-\) ::::: t~cl) (0)) we can easily 
determine the renormalized critical temperature; a graphical solution is shown in 
figure 13 where we have plotted, as functions of the reduced temperature t, the curve 
jeff(t, S, 0), for different values ofthe spin, and the line t/t~el), obtaining te(S, 0) as the 
abscissa of the intersection points. The qualitative conclusion is that quantum effects 
lower the critical temperature and that this effect is stronger for smaller spins. From 
the quantitative point of view, since the transfer matrix method only applies to the 
one-dimensional case, the classical thermodynamic averages are to be calculated by 
numerical simulation [137], typically a Monte Carlo one. Nevertheless, the PQSCHA 
permits to avoid much more complicated and computer-time consuming quantum MC 
simulations; these become practically unaffordable for S > ~, and in this case the 
approach by PQSCHA appears as the only available one, making it an extremely 
interesting topic where much work can still be developed. 

The classical transition temperature is found to be [137] t~cl) ;::: 0.70±0.01, and in 
the extreme case of S ;::: ~ our solution for its quantum counterpart is tc(~, 0) ::::: 0.36, 
in fair agreement with the quantum Monte Carlo result [138] (0.353 ± 0.003). 

http:0.70�0.01
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7. Dynamics with the PQSCHA 

7.1. Approaches to dynamics 

Dynamic correlations play an important role in condensed matter physics. In general, 
we are interested in time dependent correlation functions like 

(7.1) 

Without loss of generality we assume (61) = (62 ) = O. The time Fourier transform 
of this correlation function is related with the spectral line-shape as probed by many 
experimental techniques like NMR, EPR, neutron scattering, etc.. There are many 
methods to approach these functions. For the classical case Molecular Dynamics 
(MD) represents one of the most powerful numerical methods. In the quantum 
case the problem is still open when one likes to go beyond perturbative many-body 
approaches; only recently very important exact results have been obtained for some 
one-dimensional systems [139]. The numerical results are confined to the analytic 
continuation of quantum Monte Carlo data, which is rather cumbersome and presents 
accuracy problems. The effective potential can give new ideas to approach the problem. 
We will treat in detail the method based on the frequency moment expansion, while 
we will give here only an outline of the so called centroid molecular dynamics, recently 
introduced [86, 88, 89]. 

Let us consider here for simplicity the autocorrelation function· (6(t) 6) of a 

hermitian observable 6 = 6t. In this case, it turns out to be more useful to deal 
with the "symmetrized" correlation: 

C(t) = H(6(t) 6) + (6(-t) 6)] " (7.2) 

which is a real and even function of time. Its Fourier transform C(w) is real and even 
as well, in the frequency domain. 

In order to take into account the quantum effects related with the non~ 

commutativity of the operators and the detailed balance factor, Kubo [140] introduced 
the relaxation function: 

f3 

R(t) = ~ Jd>.(6(0) 6(t + in>.)) . (7.3) 

o 

whose Fourier transform R(w) is related to C(w) through the spectral theorem: 

nw j3nw
C(w) = Tcoth-2-R(w) . (7.4) 

Mathematically, correct moment-expansions have been proposed both for 
correlation and relaxation functions [84, 85]. In the following we refer to C(t) and 
C(w), even though the Mori [83, 84, 141] approach based on the relaxation function 
gives a more precise physical insight when approximations are requested [142, 143, 144]. 
However, all moments are in principle accessible for C(w), while the zeroth moment 
of R(w) cannot be exactly obtained. Taking into account that the odd moments are 
vanishing, let us define 

00 

2n 
f1.2n =1: dw w C(w) , (7.5) 
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so that the short time behaviour of C(t) is: 

C(t) 2; (flO + ~fL2 t 2+ 214fL4 t4+ ... ) 	 (7.6) 

The moments turn out to be expressed by equilibrium averages containing an 
increasing number of operators, deriving from multiple commutators with the 
Hamiltonian. 

fL2n 21l'i2n( [it, [it, ... , [it, 0] ...]] 0) , (2n commutators) (7.7) 

These quantities can indeed be evaluated by means of effective Hamiltonian or effective 
potential. However the naive moment expansion is very poorly convergent. It was 
proved that only the small time behaviour can be described by means of a reasonable 
number of moments. 

Starting from the knowledge of the frequency moments, a reconstruction of the 
function C(k,w) has been devised by Mori and Dupuis [83,84, 85] by means of the 
continued fraction expansion. It can be proven that the correlation function can be 
written as C(w) =(fLo/1l') 3?['l,bo(iw)), where the function 'l,bo of the complex variable z 
admits the following continued fraction representation: 

1
'l,bn (z) =	--::--------0-,; ­ (7.8) 

Z + O'n+! 'l,bn+dz) 

In the time domain, 'l,bn(t) is called the n-th memory function, and the coefficients O'n 
are related to the frequency moments [84]. The explicit expressions for the first three 
ones are 

(7.9) 

For a harmonic system O'n vanishes for n > 1 . In general, the continued fraction 
must be truncated at certain level, because, when the order of moments increases, 
their numerical calculation becomes more and more cumbersome and, at the same 
time, a higher precision is required to maintain the relative error on the parameter O"s 
reasonably small. Nevertheless, the knowledge of the first O"s allows to reproduce a 
correlation function which, in contrast with the simple moment expansion (7.6), joins 
the exact short time behaviour with a well behaved long-time tail. 

In order to calculate the spectral shape for anharmonic systems, we must thus 
resort to a reasonable approximation of the n-th memory function [145] for n larger 
than some no, a procedure called termination of the continued fraction. However, the 
choice of the termination is a source of arbitrariness, being it generally related to the 
unknown long-time behaviour of the correlations, which cannot be guessed from the 
knowledge of the first moments. Unless some insight into the behaviour of the dynamic 
variables of the system may be obtained, the reconstruction of the spectral shapes of 
strongly anharmonic systems may thus suffer of poor control on the validity of the 
approximations employed [146, 147]. 

We suggested to get such an insight from the MD data for the classical counterpart 
of the system. Namely, one constructs the classical spectra with the available classical 
moments and the termination of the continued fraction is chosen in such a way to 
reproduce as well as possible the MD reference data. Then one replaces the classical 
moments with the quantum ones keeping the same (classical) termination. This 
approximation is based on the assumption that long times, which are associated with 
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low frequencies, are less affected by quantum fluctuations. This is also in the spirit of 
the recurrence method [148], with the classical MD spectra as reference. 

Very recently, a different approach to quantum dynamical correlations was 
proposed [86, 88, 89] starting from equation (2.28). Here we simply describe the 
general idea; the method is largely discussed by the authors, also in their review paper 
[12]. Firstly, a generalization of the equation (2.28) was presented for two operators at 
different imaginary times, within a first order cumulant approximation. Successively, 
an analytic continuation has been done; in this way the quantum detailed balance factor 
is recovered. Secondly, the observation that equation (2.28) represents an ergodic 
system whose potential is Veff leads the authors to construct a "centroid molecular 
dynamics" of quantities containing the quantum gaussian fluctuations. In this way 
the "centroid" qc(t) (its definition coincides with that of average point) evolves by 
means of a classical-like dynamics, under a force obtained averaging with the gaussian 
fluctuations, while the quantity of interest is itself fluctuating around qc(t) with the 
gaussian pure-quantum recipe. The comparison with the evolution equation for the 
Kubo relaxation function [140] of position operators shows that the method reproduces 
the correct expansion up to t 2 (i.e. the second moment) while the long-time behavior 
is practically the classical one. Preliminary results have been recently published, all 
referring to systems where either the anharmonicity or the quantum effects are very 
smalL It would be interesting to test this approach for many-body systems in the 
region of temperatures where quantum effects are relevant. 

7.2. Dynamical response by frequency moments 

The effective potential method has been employed to calculate the first even quantum 
moments for the Lennard-Jones chain [78], the Toda lattice [81], and recently also for 
a model of solid argon [79]; from the knowledge of moments, by using the continued 
fraction representation and applying suitable termination schemes, the spectral shape 
has been reconstructed. For the Lennard-Jones chain and the Toda lattice the 
correlation function 

C(k,w) ~L,: e~ikd(i j) Jdt eiwt ((Ui(t) - Uj(0))2) (7.10) 
'3 

has been considered, where u;(t) is the displacement of the the i-th atom from its 
equilibrium position. 

As it is shown in Refs. [78, 81.], explicit expression for the even frequency moments 
of C(k,w) can be obtained in terms of integrals like: 1:dr v(n)(r) v(m)(r) e-8or-{3Veff(r) , (7.11) 

where v(n) (r) denotes the n-th derivative of the nearest-neighbour interaction potential 
v(r) with respect to its argument, and veff(r) is its renormalized form as defined in 
section 4.2. 

In Ref. [78] the moments for the Lennard-Jones chain, up to the fourth one, where 
computed also by PIMC simulation. An example of the comparison between the 
effective potential method and PIMC data is shown in figure 14 for the zone-boundary 
wave-vector k = rr/d, d being the lattice spacing; the agreement is very good, but when 
dealing with dynamics we must remember that even small errors on the moments may 
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Figure 14. Moments J.LO, J.L2 and J.L4 for kd = 1r versus the reduced temperature 

t = kBT/c; w= Jc/mI72 • The solid line is the classical result, the dashed line the 
quantum effective potential result, while the symbols are the classical and quantum 
Monte Carlo data. The quantum results refer to 9 = 0.23, the quantum coupling 
typical of argon. The classical MC data (filled circles) are those obtained for a chain 
of 40 atoms, while the QMC data are the results for a chain of 20 atoms (open circles) 
and 40 atoms (open squares). J.Lo is measured in units".2, J.L2 in units 17

2 tJ2 and J.L4 
in units ".2tJ4 . 

give large errors in the expansion parameter <5n of the continued fraction, so that the 
statistical errors of PIMC data may produce drastic modifications of the line-shapes. 

Sample spectral shapes at half of the zone boundary for the quantum Lennard­
Jones chain are shown in figure 15; they were obtained by a 4-pole termination [149] of 
the continued fraction, using for the termination parameter T4'"1 == <54'¢4(Z) ~const the 
value obtained from the fitting of Molecular Dynamics data for the classical system; it 
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is worth to observe that at zone boundary the fitting procedure gives essentially the 
same results which may be got by a 2-nd order gaussian termination [150, 142] using 
only the calculated moments. 

Following the same scheme, work is in progress for approaching the spectral shape 
of Lennard-Jones three-dimensional rare-gas solids [79]. 
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Figure 15. Classical and quantum relaxation function F(k,w) at kd = 0.511" and 

three different reduced temperature t == kBTIE. W = Je/ma 2 is the characteristic 
frequency scale of the Lennard-Jones chain. The continuous and dashed lines are 
the classical and quantum results, respectively, as given by a 2-nd order gaussian 
termination; the long dashed and dotted lines are the classical and quantum 4-pole 
relaxation function, respectively, obtained by using the value of 1"4 deduced from the 
fitting of the classical MD data [80]. 

When the Toda lattice is considered, we have again the big advantage that the 
integrals 7.11 can be computed analytically; this allowed [81] to easily evaluate classical 
moments up to the eighth one, and to check the reliability of termination schemes for 
such system by looking at the stability of the line shape when the truncation is shifted 
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to higher order. 
The soft mode behaviour in a one-dimensional model ferroelectric has also been 

recently investigated by the effective potential method [55]. 

8. Conclusions and perspectives 

According to a more general point of view) we have presented a tutorial derivation 
of the effective potential and effective Hamiltonian approach to quantum effects in 
condensed matter physics. Several applications in different fields show the power of 
the method whenever the quantum character of the system is substantially related to 
the quadratic part of the Hamiltonian so that quantum fluctuations can be treated 
separately, in the one loop (Gaussian) approximation. The classical non-linearity is 
fully considered since Feynman's path integral allows the separation of the fluctuations 
in their classical and pure-quantum parts, and the latter only can be independently 
approximated in the spirit of the self-consistent harmonic approximation (SCHA), a 
procedure that we have called the pure-quantum SCHA (PQSCHA). 

The main advantages of the PQSCHA are (a) in the unified description of quantum 
thermodynamics. in the whole temperature range, since the almost-harmonic low­
T behaviour and the correct quasi-classical high-T behaviour are simultaneously 
accounted for, and (b) in the simplicity of its implementation in terms of classical-like 
thermal averages with an effective potential or Hamiltonian. Therefore, the PQSCHA is 
particularly powerful in the study of quantum properties at intermediate temperatures, 
especially when the nonlinearity yields a peculiar behaviour also in the classical limit, 
as for those systems supporting nonlinear excitations like solitons or vortices. In the 
zero dimensional case (one degree of freedom), the method permits to take into account 
the change of symmetry of the effective potential due to the quantum effects in order to 
determine a ground state different from the classical one, being at T = 0 the PQSCHA 
equivalent to the SCHA. 

Recently, the approach has been improved [151] for taking into account higher order 
pure-quantum contributions, extending Feynman's variational principle to higher order 
terms of the cumulant expansion. Non-perturbative effects like quantum tunneling need 
to be inserted "ad hoc". However, we notice that these effects are not relevant for the 
statistical mechanics except at lowest temperatures. 

In the multidimensional case, the full self-consistent approach looks formidable 
and a further approximation (LCA) is in general necessary for realistic calculations, 
even though some progress has been recently done [56]. In one space dimension the 
method shows all of its power: reducing quantum calculations to classical transfer 
matrix is very gratifying. The comparisons with available exact results have assured 
its reliability. 

For three dimensional systems, numerical simulations are always necessary, and 
some authors [127, 152] discussed the convenience of the method with respect the 
usual path integral Monte Carlo (PIMC). The first objection refers to the presence 
of quantum anharmonic effects on the ground state [153, 152]. Indeed, such effects 
were successfully accounted for in a recent paper [56]. The other (more pertinent) 
objection concerns the approximate nature of the effective potential with respect to 
the (in principle) exact PIMC approach. However, we point out that the exact PIMC 
results are found in the limit of infinite Trotter number: increasing it leads to an 
increase of the computer time needed and of the final numerical uncertainty. Even 
for small quantum coupling, one often needs a high Trotter number just to recover 
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the quantum harmonic oscillator behaviour [67]. This shortcoming has stimulated the 
search for improved high-T approximations of the density matrix [154, 155, 156, 66] 
in order to embody the harmonic behavior in the high-temperature approximation of 
the density matrix that enters the fundamental PIMC formula. 

A complementary point of view involves the possibility to consider the Matsubara 
decomposition of the path integral, accounting for a finite number of Matsubara 
frequencies [157, 64]; however, the theoretical interest of such approaches is higher than 
their usefulness in numerical simulations, given the need of time-consuming Fourier 
transformation routines at any MC step. 

However, also the PQSCHA method can be used to construct a better PIMC 
action, improving the afore-mentioned attempts. A first simple but effective step in 
this direction was the proposal of correcting the raw PIMC outcomes in the spirit of 
the SCHA [67]: in figure 16 the resulting improved extrapolation in the Trotter number 
is apparent and represents an interesting perspective for the numerical simulation of 
quantum solid state systems. Further work is in progress along this line. 

K 
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Figure 16. Extrapolation in the Trotter number P of the PIMC values for 
kinetic energy K and potential energy V for the one-dimensional lattice with Morse 
interaction, v{x} 1)2. The 'coupling is 9 = 3.1 (obtained as in (2.37) 
from characteristic interaction parameters for helium atoms) and the temperature 
T = e: '" 10 K. Closed circles: raw PIMC outcomes; open circles: HA corrected data; 
squares: SCHA correction as proposed in Ref. [67]. 
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Appendix A. Thermodynamics of the harmoni~ oscillator 

The main tools used in this paper are the well-known results for the harmonic oscillator 
with frequency w, i.e. V(q) rnw 2q2/2, that we report here for convenience. Its 
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quantum density matrix at the equilibrium temperature T = 13- 1 reads 

p(h) (qll, q'; w) = 211"1i:h2f exp { - ;;: [(qll+q') 2 tanhf + (q"_q')2 coth fn, (A.1) 

where f = few) = f3hw/2. The configuration density turns out to be a Gaussian, 

1 1 _L 
P(h)(qiW) == p(h)(q, q;w) = 2sinhf ~ e 2aq

, (A.2) 

with variance Qq = Qq(w) (h/2mw) coth few) , and the partition function is 
Z~h) (w) (2 sinh 1)-1, so that the free energy is FJh)(w) =f3- 1In(2 sinh I). 

The classical limit is obtained for few) -+ 0, and we have again a Gaussian 
configuration density, but with Qc = Qc(w) h/(2mwf(w))::::: 1/(mf3w2) , and 

the partition function and the free energy become Z~h)(w) ::::: (21)-1 and Fdh)(w) = 
13- 1 In(21) , respectively. 

Appendix B. Standard PQSCHA: one degree of freedom 

In equation (2.21) consider the action 

1 (/3 1i 

So[q(u)] = -r;, 10 du [tmq2(u) + Vo(q(u); q)] , (B.1) 

with Vo given by (2.23). Let us consider here the whole density matrix p(qll,q') = 
(qlll e-/31llq') and the associated reduced density matrix Po (qll, q'; q). We obtain 

l
qll 

PO(q",q';q) = q' V[q] <5(q- pI,. It" duq(u)) eSo[q(u)] 

q" 

= ~Jdy 1, V[q] exp (So [q(u)] + kIt" du[iy(q-q(u))J) 

== ~Jdy Pl(q",q';q;y) . (B.2) 

The integral over the variable y comes from the Fourier representation of Dirac's <5 

function. Now, Pl(qll,ql;q;y) is nothing but the density matrix corresponding to the 
harmonic Hamiltonian 

A2 2 
A P mw (A -)2 . (A _)ll 1 ::::: 2m + w + -2- q-q + ry q-q 

y2 f mw2 ( iy ) 2 =W + 2mw2 + 2m + ij-ij+ mw2 (B.3) 

Therefore we can immediately use the (analytic continuation of) equation (A.1) and, 
transforming for convenience the dummy variable y -+ mw 2 y , we obtain 

2f3mw 13 113 2 2JPO(qll,q';q) ~e- w dye :2 mw y p(h)(q"-q+iy,q'-ij+iy;w) 

= mwf e -f3w mw 

7rli 27rh sinh 2f 
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x Jdy exp mw [fy2 + (e+iy)2tanhf + !(qll_ql)2cothf]) 

_{i!!ip -(./w I (e mw coth f (" 1)2) (B 4) _ --e fJ -- exp - - - q -q , . 
21r1i2/3 sinh f ..j21rCi 2Ci 41i 

where e = (qll+ql)j2-ij, f /31iwj2, and Ci =Ci(ij) is the parameter given by (2.25). 
The corresponding reduced configuration density po(q; ij) == p(q, q; ij) takes then the 
form (2.24). 

Appendix C. Standard PQSCHA: many degrees of freedom 

In the definition (3A) consider the trial action (1i = I) 

So [q(u)] 1(3 du[~(l(u)A-2q(u) + Vo(q;q)] , (C.I) 

where Vo is given by equation (3.6), and introduce the Fourier representation of the 
delta function. The trial reduced density then reads 

M q" 
'-)Poq,q;q- (" = (;:) Jdy hi V[q] exp (So [q(u)] +ftdu[iyt(q-q(u))]) 

_ /3 M 
/I 1.-_= 21r Jdy PI (q ,q, q, y) . (C.2)

( ) 

Here, PI (q", q'; q; y) is the density matrix corresponding to the harmonic Hamiltonian 

1fl ~ pt A2p + W + ~ (q _ q)t B2(q - q) + iyt(q q), (C.3) 

with parametric dependence on q, also through w(q) and B(q), and on y. This 
Hamiltonian is put in normal form by the linear canonical transformation 

(• .) (A -1 U t • AUt.)p,q --t p, q, (CA) 

where the orthogonal matrix U (q) == {Uk!, (q)} diagonalizes the real symmetric matrix 
AB2 A as in equation (3.7). Let us also transform y --t A-1Uty and q --t AUtq , 
so that f dy --t (det A)-l f dy and 

(C.5) 

Now we rescale the variables Yk --+ W~Yk and replace the known result (A.1) for the 
harmonic oscillator path integral, so that 

where 6: (q~+q~)j2 - ijk , !k = /3wkj2, and Cik is given by equation (3.9)_ In this 
equation the coordinate transformation (CA) is to be understood also for the arguments 
of Po, otherwise two further factors det A would appear, due to the transformation 
property of the path integral under (CA) and to the definition (3.4) of p under the 
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analogous transformation for q. For q' q" = q, Po(q, q; q) defines a Gaussian 
distribution in configUl:ation space, centered at q. The normalization constant is 

e -/3w(q) IT Ik (q) 
-;-C--:-:-;-~d-:-e-tA- , ( C. 7) 

e -/3Veff( q) 
Peff(q) Jdq po(q, q; q) = 

detA k sinhIk(q) 

and the second equality defines the effective potential Veff as in the first equality 
of equation (3.13). The multidimensional Gaussian average «...»defined by Po is 
such that «(qk-ijk)(qkl-ijkl))) == «ekek /»= OkkIUk(q) ,which is indeed equivalent to 
equations (3.8) and (3.9). 

Replacing the result for Po in equation (3.5) the average of an observable O(ij) 
becomes 

(C.8) 

which coincides with equation (3.12). 
Let us now derive expression (3.17) for the effective potential. Using 

equations (3.14) and (3.15) we have 

L w~(q) Uk (q) = L(UAB2 AUt)kk u,.(q) L B~v(q)Dl'v(q) 
k k I'v 

= LDl'v(q)OqI'Oq.,{V(q+e» = 2D.(q)eD.(q) V(q). (C.9) 

Then it is sufficient to use equations (3.10) and (3.16), and eventually to replace into 
the expression (3.13) of the effective potential. 

The Weyl symbol for the PQSCHA density operator Po follows from 
definition (3.24) in terms of its matrix elements PO(q",q') = JdqpO(q",q';q) as 
obtained from (C.6): 

_ (21r)M/2_1_ J - -/3Veff(q) IT e -(qk-ijk)2 / 2Uk e -PV2>"k 
po(p,q)- /3 detA dqe ~ (C.10) 

k 

where >"k (ij) = Wk (ij) coth Ik (ij) /2 are the quantum square fluctuations of the momenta 
in k-space. Replacing in equation (3.28), the PQSCHA expression (3.29) for the 
average of a general observable is obtained. 

Appendix D. Standard PQSCHA: low-coupling approximation 

In the LCA the renormalization parameters are expanded around the self-consistent 
minimum qo of Veff(q). The Gaussian average defined by (3.8) and (3.9) can be 
correspondingly split, after equations (3.18), as « ... » « ... »0 + 0« ... », where 
« ... »0 is calculated with the parameters Uk Uk(qo) (i.e. Wk=Wk(qo) and, of course, 
U =U(qo)). In order to keep control over the expansion of the effedi ve potential we 
devise two dimensionless formal expansion labels 

(D.1) 
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Note that a '" li and s '" liT at low temperature, whereas at high temperature 
a '" li 2 IT and s '" li 2

. Then, the "quantity" 

where ~ == ~(qo). The expansion of the logarithmic term of Veff(q) gives 

.!. '"'I sinhfk(q) = .!. '""'. sinhfk A [ ~(q)V( ) _ ~V( )] O( 2) (D 3)n{3L: fk(q) {3~_,ln fk +il e q e qo + as .. 

With this substitution, the effective potential (3.17)) becomes 

o~ ~ ~ 1,", sinhfk 2
Veff(q) = (1 - O~) e e V(q) - ~ e V(qO) + jjL...tk In ---:r;;- + O(as ) , 

~ ~ 1 '"' sinh !k 2 = e V(q) - ~e V(qo) + jjL...tk In ---:r;;- + O(as ) , (D.4) 

2s2which is equation (3.19). Indeed, the neglected terms in (O~)2 are of order a . 

Appendix E. Nonstandard system: path integral 

In this appendix we show how to get the path integral (5~1) for the density matrix in 
the coordinate representation, p(q", q'), starting from the result given in equation (1.9) 
of Ref. [105]. Replacing tl = 0 and it2 = {3, we have for its Weyl symbol 

p(p,q) = J1J[p] J1J[q]exp {l(3 du[~(pt(u)q(u)-pt(u)q(u)) -ll(p(u),q(u))] 

- i [p - p({3);p(O)r[q({3)-q(O)] + i [q - q({3);q(O)r[p({3)-p(O)] }. (E.1) 

In this expression, we can perform the integration by parts 

getting 

p(p, q) = J1J[p] J1J[q] exp {1(3 du [ipt(u)q(u) -1£ (p(u), q(u))] 

- ipt [q({3)-q(O)] + i [q - q({3);q(O)r[p({3)-p(O) J} . (E.3) 

Note that the integral over p({3) can be extracted from the path integral and performed, 
resulting in the boundary condition Hq(O)+q({3)] = q. Using equation (3.26) we 
eventually get the path integral (5.1) with the action (5.2). 

Appendix F. Nonstandard PQSCHA 

In this appendix we evaluate the expression for Po(q", q';p, q), namely equation (5.5) 
with the action So given by (5.2) with 1£ replaced by 1£0, equation (5.6). We rewrite 
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Po as 
2M q" 

PO(q",q';p,q) = (!) j dzdy j VW] k, V[q] 

xexp (SOW, q] + i lf3 du [zt (p-p(u)) + yt(q_q(u)) J) 
== (!)2M j dzdYP1(q",q';p,q;y,z) (F.1) 

The auxiliary phase-space integration variables (y, z) arise from the Fourier 
representation of the delta functions. In this way (p, q) appear in the path integral 
only as parameters, and PI (q", q'; p, q; y, z) is the density matrix corresponding to the 
quadratic Hamiltonian function 

'Ill = W+ ~6pt A2 6p + 6pt X 6q + ~6qt B2 6q + z t6p + y t 6q, (F.2) 

where (6p,6q) = (p-p, q-q) . Now, using equations (5.7) and (5.9), and the canonical 
transformation (5.8) for all phase-space variables, we find the normal form of 'Ill : 

'Ill W+ 2:k [ ~ 6Pk 2 + O'k 6Pk 6qk + ~(W~+O'~) 6qk 2 + Zk 6Pk + Yk 6qk 2] 

=W + t2:Jp% + W~ + zl + Yl] ,~ (F.3) 

where (Pk, qk) = (Pk-Pk+O'kijk+izk, qk - ijk + iYk) and Yk = (Yk-O'kZk)/W~ . For the 
first term in the action we have 

lf3 dupt q =~ {(Pk+O'kijk-iZk) [qk (j3)-qk (0)] 0'; [q~(t3)-q~(0)] + lf3dUPk gk}, 

so we are reduced to the harmonic oscillator path integral and 

PI (q", q'; p, q; y, z) = e -(3w II p(h) (q~ -ijk+Yk, q~-ijk+Yk; Wk) 
k 

[- (3 (2 ~) + 1
. ( -Pk+O'kqk-Zk - )("qk -qk, ) , 2)] ,x IIk exp 2 zk +Yk -IT.O'k (,,2qk -qk (F.4) 

in terms of the harmonic density matrix (A.1) Now we can replace PI in equation (F.1) 
and do the Gaussian quadratures, eventually getting 

- (" '. - -) _ e-(3w II fk i(Pk-O'kek)(k{fffk (Wk c2 WkLk(2)Po q ,q ,p,q ~e C exp - C ...k 4 k'k sm Jk Tr k k 

where Lk = cothfk 1, fk = (3wk/2, ek (q~+qU/2 - ijk, and (k = q~-qk . Using 
equation (3.24) the corresponding Weyl symbol is obtained, 

Po(p,q;p,q) e-(3WII~-1-exp[-Wk(t--1-('T/k+O'kek)2], (F.5)
k smhfk TrLk Lk WkLk 

with, now, ('T/k,ek) (Pk - Pk,qk - ijk) . This is a Gaussian distribution in phase 
space, centered in (p, q), with normalization constant 

j dPdq Po(p,q;p,q) = e-(3w(p,q) II .'k(P,q) == e-(3'1leff(P,q) , (F.6) 
k smh fk(P, q) 
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giving the identification (5.17) of the effective Hamiltonian 1leff' and the Po averages 
«...)) are such that 

(F.7) 

these equations are equivalent to (5.11). 
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