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to its ferromagnetic counterpart. Indeed, the canonical 
We consider the quantum antiferromagnet with easy-plane transformation 

exchange anisotropy, namely the antiferromagnetic X X Z 
model, on the square lattice. Its classical counterpart, com­
pared to the planar model shows a reduction of the criti­
cal temperature TBKT of the Berezinskii-Kosterlitz-Thouless 
phase transition, that is a consequence of the thermal out-of­
plane fluctuations. For the quantum system we use the pure­
quantum self-consistent harmonic approximation to calculate 
how much the effective exchange interaction is weakened as 
an effect of the pure-quantum part of the fluctuations. One 
can then predict the further reduction of TBKT with respect 
to the corresponding classical system. The theory works well 
in a wide range of values of the easy-plane anisotropy. In 
the extreme case of the spin- ~ model, the result is compati­
ble with the estimate of TBKT obtained by previous quantum 
Monte Carlo simulations. When the anisotropy is weak the 
theory leads to an unphysical 'isotropization' due to the use 
of the Villain spin-boson transformation. 

The two-dimensional antiferromagnetic X X Z model is 
described by the general Hamiltonian 

(1) 


where the index i == (i1 , i2 ) runs over the sites of a two­
dimensional lattice, and d == (d1 , d2 ) represents the dis­
placements of the z nearest-neighbors of each site. 

The sum describes an exchange interaction J > 
o between nearest-neighbor spins, with an easy-plane 
anisotropy>. E [0,1). The quantum mechanical op­
erators Si satisfy the SU (2) commutation relations 
[Sf, Sfl ;:;:: OijCa /3'Y!!p and belong to the spin-S represen­

tation, ISil2 :::: S(S+l). 
The lattice is such that it can be considered as two 

interpenetrating identical sublattices (the 'positive' sub­
lattice and the 'negative' one), in such a way that the 
nearest neighbors of any site in a sublattice belong to 
the other one; in other words, we do not consider lattices 
with frustrated bonds. 

For>' :::: 0 the above Hamiltonian describes the X XO 
model, often (improperly) called 'quantum XY model'; 
it is to be noticed that the X XO model is equivalent 

where (_)i :::: ±1 is the sign of the sublattice containing 
the site i, transforms the antiferromagnetic XXO model 
into the ferromagnetic XXO model. More generally, for 
the XX Z model this canonical transformation is equiv­
alent to put J -t -J and>' -t -A. 

The classical counterpart of the Hamiltonian (1) is ob­
tained by associating to each spin operator Si a classical 
vector Si of given length 3. In terms of unit vectors 
Si Si/3, 

1£:::: 	 L::: (sf sf+d + sfSf+d + Asi Si+d) , (2) 
i,d 

with the exchange energy e :::: J 32 ; in the following we 
will only use the dimensionless temperature t ;:;:: T Ie. The 
choice of 3 is not trivial, since values as S or y'S(S + 1) 
are both reasonable: a different answer, 3 S + ~, arises 
by applying the pure-quantum self-consistent harmonic 
approximation (PQSCHA) to the quantum Hamiltonian 
(1), as we will show below. The minimum 'configura­
tion' of the classical Hamiltonian corresponds to the Neel 
state: the two sublattices are ordered ferromagnetically 
in the xy plane, but in opposite directions. 

At difference with the quantum case, in the classical 
case the ferromagnetic and the antiferromagnetic cases 
are fully equivalent (i.e., J -t -J), as far as the static 
properties are concerned. 

In the approximation of dominating easy-plane 
anisotropy the z-components of the spins are neglected 
and the so-called planar model (frequently 'classical XY 
model') is obtained. Since the spins are reduced to two­
component vectors in the xy plane, Si ;:;:: (cos ~i, sin ~i), 
its Hamiltonian can be written in terms of the azimuthal 
angles, 1£ ;:;:: ~e Li,d COS(~i-~i+d). This is the proto­
type system that undergoes the Berezinskii-Kosterlitz­
Thouless (BKT) phase transition [1-3] occurring at the 
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temperature tBKT = TBKT/e ::: 0.89, that has been cal­
culated by Monte Carlo simulations [4,5J. The antiferro­
magnetic order parameter ((_)i Si)' is vanishing at any 
temperature, and the mechanism underlying the transi­
tion is the unbinding of vortex pairs [2,6]. For t < tBKT 
the correlation function ((_)i-jcOS(ipi-ipj)) displays a 
power law decay, '" Ii jl-1/(t), whereas for t > tBKT the 
behavior is exponential; moreover, the susceptibility has 
an exponential divergence for t -7 tBKT+ . 

With the inclusion of the out-of-plane components sf 
of the spins still a BKT transition is expected at a fi­
nite temperature TBKT(A), which vanishes logarithmi­
cally [7,8] in the isotropic limit A -7 1 . Monte Carlo 
simulations for the classical X X Z model that provide 
useful data have been published in Ref. [9]; the simula­
tions are performed on the square lattice for A 0, 0.5, 
0.95, and 0.99. These observations have lead to identify 
the transition in the classical XXZ model as BKT, and 
the corresponding transition temperatures were located 
at the temperatures reported in Fig. 3. 

The quantum system (1) preserves the rotational sym­
metry around the z-axis; therefore, from universality ar­
guments, it displays the qualitative features of a BKT 
system as its classical analogue, with quantitative modi­
fications of the critical parameters arising from quantum 
fl uctuations. 

The aim of this work is to apply a recent theoreti­
cal approach, the pure-quantum self-consistent harmonic 
approximation (PQSCHA) [10], in the treatment of the 
quantum antiferromagnetic X X Z model (1). By means 
of the PQSCHA, the thermodynamics of the quantum 
model is indeed reduced to the study of an effective clas­
sical problem, that embodies the contribution of quan­
tum fluctuations (which are treated exactly up to the 
harmonic level) in its temperature-dependent renormal­
ized interaction parameters. The ferromagnetic system 
has been already treated by PQSCHA [11]. In Ref. [12] 
one also finds - for the ferromagnetic case an outline of 
the derivation of the effective Hamiltonian 'Heff in terms 
of classical spins, a procedure that involves the Villain 
transformation from quantum spin to bosonic variables 
[13], and the identification of the classical counterpart 
of the transformed Hamiltonian by the prescription of 
Weyl ordering [14]. It is just the Weyl ordered form of 
the Villain traEsformed spin operators that leads to the 
identification 5 S + ~ [15J. 

Eventually, the PQSCHA recipe gives the following 
effective Hamiltonian for the antiferromagnetic X X Z 
model [16J: 

+Ne G(t) . (3) 

As in Eq. (2), {sd are classical normalized spin variables. 
Within the PQSCHA [10], quantum effects are embodied 

in the following dimensionless interaction parameters 

(4)jeff(5, A, t) = (1 

(5)Aeff(5,A,t) = A (1 

while G(t) is an additive renormalization that does not 
enter the calculation of operator averages. The self­
consistent renormalization parameters 

Dl. = 1_ :r E b
k 

( cothA - fkl) , (6)
25 H k ak 

k
VII = 1_ ~ E(1-lk)a (cothA - fkl) , (7)

b25 k k 

represent, within the PQSCHA, the pure-quantum part 
of the square fluctuations [10,15] of the z-components of 
the spins and of the relative azimuthal angle of nearest­
neighbor spins, respectively, and are decreasing functions 
of t and 5, vanishing both for t -700 or 5 -700. They 
depend on t, 5, and A through the quantities 

1ai = ze-2"'Vu (1 + Aefflk) , (8) 
1 

bi z(1 - ~Dl.)2 e-2"'Vu (1 - lk) , (9) 

A = akbk/(2St) , lk = z-l Ld cos(k-d) , and k is a 
wavevector varying in the first Brillouin zone. Therefore, 
the exchange-energy is renormalized by the factor jeff , 
and the easy-plane anisotropy is weakened (Aeff 2 A), 
due to the cooperative effect of in-plane and out-of-plane 
pure-quantum fluctuations. Their typical temperature 
behavior in the case of the square lattice is reported in 
Figs. 1, and 2, respectively. For 5 -7 00 ,i.e. in the 
classical limit, jeff -7 1 and Aeff -7 A . We notice that 
the integrals of the pure-quantum fluctuation parame­
ters, Eqs. (6) and (7), get the main contribution from 
the high-frequ~ncy part of the effective magnon spec­
trum Wk = (J5/fi)ak bk , just because the pure-quantum 
part of the square fluctuations is obtained by subtract­
ing from the full (harmonically approximated) expression 
the corresponding classical part (i.e. the leading behav­
ior for A -7 0); on the other hand those effects due to the 
presence of nonlinear excitations (vortices) would mainly 
affect the low-frequency part, i.e. they are essentially 
'classical' and therefore they cannot sensitively change 
Dl. and VII' 

Using the PQSCHA formalism [10] one can calculate 
averages and correlations by means of classical expres­
sions involving the Boltzmann factor corresponding to 
the effective Hamiltonian. In the present case the classi­
cal average with the effective Hamiltonian is defined as 

In order to obtain the PQSCHA thermal average of a 
quantum observable, the dots are to be replaced by a 
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phase-space function that is obtained by Gaussian smear­
ing, on the scale of the pure-quantum fluctuations, of the 
Weyl symbol associated with the same observable [10,15]. 
In this way we find expressions for the in-plane correla­
tions 

where the renormalization parameters D~ [16] for the 
relative azimuthal fluctuations between sites i and j are 
such that D~ -+ 0 for li-jl-+ 00. Therefore, the asymp­
totic behavior and the correlation length are just those 
obtained for the effective classical model. It follows that 
the divergence of the in-plane correlation length related 
to the classical correlation function (sf Sj)eff signals the 
occurrence of the BKT transition in the quantum sys­
tem. The quantum transition temperature tBKT(S,.A) 
can then be estimated from the knowledge of the corre­
sponding classical one t~~T(.A), with a self-consistency 
arising from the dependence on t and .A of the renormal­
ized interaction parameters, Eqs. (4) and (5): 

tBKT(S, .A) (d) ( ) 
. 	 (S.A t ) = tBKT .Aeff(S,.A, tBKT) . (10)

Jeff , , BKT 

It is rather easy to solve this equation for the XXO model 
[11], since .Aeff = 0 for .A O. In order to solve it for 

.A f. 0 we have made a rough fit of t~~T(.A) using the 
available values [9] reported as squares in Fig. 3. The 
fit, as shown in the figure, is considered only for .A < 0.8, 
in such a way that we do not run into the zone where 
t~~T [-In(I-.A)]-l vanishes logarithmically [7]. Thenrv 

Eq. (10), rewritten as jeff = tBKT/t~~T' can be solved 
graphically in Fig. 1 in a recursive way: one estimates 
the transition temperature using t~~T(.A) and then the 
value of .Aeff at this temperature is taken for redoing the 
procedure, and so on. The results obtained in this way 
are also reported for different values of S in Fig. 3. 

For the X XO model there is a possible comparison with 
other data in the extreme case of S =:: t. Our result 
is tBKT = 0.36 and compares very well with the val­
ues found by high temperature expansions [17] (0.39), by 
real-space renormalization group techniques [18] (0040), 
and by recent quantum Monte Carlo simulations [19,20] 
(0.35). 

When .A is risen enough, we see from Fig. 2 that it 
may happen that .Aeff(S,.A, t) ~ 1. When .Aeff = 1 is 
reached the effective Hamiltonian becomes isotropic, and 
the theory therefore predicts the disappearance of the 
BKT transition at sufficiently high values of .A ~ .Ac(S) 
(Some values are .Ac 0.58, 0.75, 0.85, 0.90, 0.92, for 
S = !, 1, ~, 2, !, respectively). However, this situa­
tion has to be considered with care, because the deriva­
tion of the effective Hamiltonian relies on the validity 
of the Villain transformation [13], which is meaningful 

only for easy-plane systems. Indeed, the possible break­
down of the quantum BKT scenario for sufficiently small 
anisotropy occurs together with the break-down of our 
renormalization scheme, since the out-of-plane fluctua­
tions become so strong that the assumed dominant easy­
plane character becomes meaningless. The break-down 
does not occur for .A « .Ac, of course, and therefore does 
not affect teh results reported in Fig. 3. 

The suppression of the BKT transition by 'effective 
isotropization' is therefore unlikely to be physical, as con­
firmed also by quantum Monte Carlo simulations of the 
S-! XXZ antiferromagnet [21]: at.A 0.90 and 0.98 
the BKT behavior is still observed, with substantially 
high transition temperatures, tBKT 0.285 and 0.25, re­
spectively. In order to reach this regime by means of 
the PQSCHA, we should resort to a different spin-boson 
transformation, as the Holstein-Primakoff one [22], which 
is useful also in the isotropic case since it treats the spin 
fluctuations in a symmetrical way, so that we expect to 
obtain .Aeff < 1 for any .A < 1. On the other hand, the cal­
culation of 1leff becomes much more complicated: work 
is in progress along this line. 
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FIG. 1. The effective exchange coupling jeff(S, >. = 0.5, t) 
for the XXO antiferromagnetic model vs. temperature 
t = Tic and for different values of the spin S (solid lines). 
The energy scale is c = f§2 = J(S + t? The dotted lines 

are the curves tltkC~T(>') for>. = 0.5 and 0.95. See the text 
for the discussion about the use of such curves for graphically 
solving Eq. (10). 
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FIG. 2. The effective anisotropy parameter >'eff for the 

XXO antiferromagnetic model vs. temperature and for spin 
S = 1 and S = 5/2, at different values of >.. For high values 
of >. the curves reach the isotropic value >'eff = 1. 
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FIG. 3. The critical temperature tBKT of the X X Z anti­
ferromagnetic model vs. the value of the anisotropy>. and for 
different values of the spin S. The classical values (squares) 
from Ref. [9] are 0.695 ± 0.005, 0.683 ± 0.005, 0.59 ± 0.01, 
0.55 ± 0.01, for>. = 0, 0.5, 0.9, and 0.95, respectively. Note 
that tBKT(S, >.) decreases when>. is increased, and the the­
ory would lead to the disappearance of the transition by a 
mechanism of'isotropization'. See comments in text. 
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