
Technical Report 
RAL-TR-95-054 

CLRC 

The Quantum Easy-plane Ferro- and 
Antiferromagnet 

C Biagini A Cuccoli V TogneHi RVaia and PVerrucchi 

September 1995 

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS 



© Council for the Central Laboratory of the Research Councils 1995 

Enquiries about copyright, reproduction and requests for 
additional copies of this report should be addressed to: 

The Central Laboratory for the Research Councils 
Library and Information Services 
Rutherford Appleton Laboratory 
Chilton 
Didcot 
Oxfordshire 
OX110QX 
Tel: 01235445384 Fax: 01235 446403 
E-mail library@rl.ac.uk 

ISSN 1358-6254 

Neither the Council nor the Laboratory accept any responsibility for loss or 
damage arising from the use of information contained in any of their 
reports or in any communication about their tests or investigations. 

mailto:library@rl.ac.uk


1 

The quantum easy-plane ferro- and antiferromagnet 

Cristiano Biagini, Alessandro Cuccoli, Valerio Tognetti 

Dipartimento di Fisica dell'Universita di Firenze, 
largo E. Fermi 2, 1-50125 Firenze, Italy 

Ruggero Vaia 

Istituto di Elettronica Quantistica del Consiglio Nazionale delle Ricerche, 
via Panciatichi 56/30, 1-50127 Firenze, Italy 

Paola Verrucchi 

ISIS Science Theory Division, Rutherford Appleton Laboratory, 

Chilton, Didcot, Oxfordshire OXll OQX, U.I<. 


The Berezinskii-Kosterlitz-Thouless (BKT) phase transition is peculiar of two­
dimensional magnetic systems with easy-plane anisotropy. Their prototype is the 
classical planar (or XY) model, that neglects the role of the out-of-plane spin com­
ponent. The latter is accounted for in the (easy-plane) XXZ model, that has been 
studied on a square two-dimensional lattice. From Monte Carlo simulation for the 

classical X X Z model the classical transition temperature T~';2T turns out to be 
considerably lower than that of the planar model. The quantum X X Z model is 
approached by the pure-quantum self-consistent harmonic approximation, which 
leads to the investigation of an effective classical model. Quantum fluctuations 
reduce the effective exchange interaction, resulting in a lower BKT transition tem­
perature TBKT' 

The quantum X X Z model 

The two-dimensional ferromagnetic (FM) and antiferromagnetic (AFM) X X Z 
models are described by the general Hamiltonian 

(1) 

where the negative (positive) sign refers to the FM (AFM) case. The index 
i (il, i2) runs over the sites of a two-dimensional lattice, and d (d1, d2) 
represents the displacements of the z nearest-neighbors of each site. The sum 
describes an exchange interaction J > 0 between nearest-neighbor spins, with 
an easy-plane anisotropy A E [0,1). The quantum mechanical operators Si 
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satisfy the SU(2) commutation relations [Sf,S!] =oWa<,8,),Sr and belong to 

the spin-S representation, /Si/ 2 = S(S+I). 
In the AFM case the lattice is such that it can be considered as two 

interpenetrating identical sublattices (the 'positive' and the 'negative' one), 
in such a way that the nearest neighbors of any site in a sublattice belong to 
the other one; in other words, lattices with frustration are not considered here. 

If (_)i = ±1 denotes the sign of the sublattice containing the site i, the 
canonical transformation 

transforms the AFM X X Z model into the FM X X Z model, but with a nega­
tive >. E (-1,0]' so that it is apparent that the AFM and the FM cases can be 
treated simultaneously considering only the FM one with >. E (-1, 1), as done 
in the following. The order parameter (Si) describes both the FM magnetiza­
tion and the AFM staggered magnetization. For>. = 0 the above Hamiltonian 
describes the XXO model, often called 'quantum XY model'; of course, the 
AFM XXO model is equivalent to its FM counterpart. 

The classical X X Z model 

The Hamiltonian (1) has a classical counterpart, that can be obtained by 
replacing each spin operator Si with a classical vector Si of a suitable length 

S ~n terms of unit vectors si SilS the Hamiltonian of the classical XXZ 
model reads then 

(2) 

with the exchange energy c: = JS2 • It is convenient to make use of the dimen­
sionless temperature t = TIc:. 

At variance with the quantum system, in the classical one the FM and the 
AFM cases are fully equivalent as far as the static properties are concerned, 
since the classical expression ofthermal averages is invariant under independent 
reflections of the spin components (i.e. under the transformation>. -+ ->.). 

The minimum configuration of the classical Hamiltonian corresponds to the 
ordered state, where all the spins are aligned in an arbitrary direction in the xy­
plane. In the AFM picture this state is the Neel state: the two sublattices are 
ordered ferromagnetic ally in the xy plane, but in opposite directions. However, 

GThe choice of S is not trivial; e.g. the values S or are both reasonable. 
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Table 1; BKT transition temperatures of the classical XXZ model 11. 

A 0 0.5 0.9 0.95 

t~~T 0.695 ± 0.005 0.683 ± 0.005 0.59 ± 0.01 0.55 ± 0.01 

this configuration is unstable against thermal fluctuations: as a consequence 
of the Mermin-Wagner theorem 1 the classical X X Z model in two dimensions 
cannot have finite magnetization at nonzero temperature. 

If one neglects the z-components of the spins, the so-called planar (or 
'XY') model is obtained. Since the spins are reduced to two-component vec­
tors in the xy plane, Si = (cos Ifli' sin Ifli), its Hamiltonian can be written 
in terms of the azimuthal angles, 1l -~6I:i,d cos(lfli-lfli+d) . This is the 
prototype system that undergoes the Berezinskii-Kosterlitz-Thouless (BKT) 
phase transition 2,3,4 which occurs at the temperature tBKT = TBKT/6:: 0.89 
(this value has been calculated by Monte Carlo simulations 5,6). The order 
parameter (Sj), is vanishing at any temperature, and the mechanism under­
lying the transition is the unbinding of vortex pairs 3,7. For t < tBKT the 
correlation function (cos(lflj-lflj)) '" Ii - jl-'1(t) displays a power-law decay, 
whereas for t > tBKT the decay is exponential; the correlation length eand 
the susceptibility X have an exponential divergence for t -+ tBKT+, 

(3) 

and stay infinite for all temperatures t ::; tBKT, so that an entire line of critical 
points appears in the phase diagram. The specific heat does not display any 
divergence, but only a maximum located slightly above the transition temper­
ature (at t :: 1.1 tBKT in the pure planar model 5,6). 

With the inclusion of the third components of the spins, i. e. for the generic 
XXZ model (2), the system symmetry remains unchanged and a BKT transi­
tion is still expected at a finite temperature tBKT(A), which vanishes logarith­
mically 8,9,10 as tBKT ,..., -1/ In(1 IAI) in the isotropic limit IAI-+ 1 . 

We have recently performed Monte Carlo simulations for the classical 
XXZ model that provide useful data 11 for the XXZ model on the square 
lattice, at anisotropy values A = 0, 0.5, 0.95, and 0.99, with lattice sizes from 
32 x 32 up to 256 x 256. These observations have lead to identify the transition 
as BKT, and to locate the corresponding critical temperatures as reported in 
Table 1. In order to investigate the divergence of eand X in approaching tBKT 

only outcomes of those simulations not affected by appreciable finite-size ef­
fects have been used, i.e. the data obtained for lattice sizes L 2: 6e. In order 
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to ascertain the BKT character of the transition the data were fitted by the 
chi-square minimization criterion using Eq. (3), which turns out to reproduce 
the data better than the power law 

(4) 

typical of second-order phase transitions. In Fig. 1 BKT and power-law fits 
to the data for" = 0 are reported. 

0.8 1.0 1.2t 

Figure 1: Monte Carlo data for the in-plane susceptibility X (triangles) and correlation length 
e(squares) at .:\ 0 plotted as function of temperature. The full line and dashed line are 

the best BKT [Eq. (3)J and power-law [Eq. (4)J fitting functions. respectively. 

Quantum correction to the BKT transition temperature 

The pure-quantum self-consistent harmonic approximation (PQSCHA) 12 re­
duces the thermodynamics of the quantum X X Z model to the study of an ef­
fective classical problem, that embodies the contribution of the pure-quantum 
part of the fluctuatIons (treated in a harmonic approximation) through its 
temperature-dependent renormalized interaction parameters. 

In Refs. 13.14 one finds an outline ofthe derivation ofthe effective Hamilto­
nian 1leff in terms ofclassical spins, a procedure that involves the Villain trans­
formation from quantum spin to bosonic variables 15, and the identification of 
the classical counterpart of the transformed Hamiltonian by the prescription of 
Weyl ordering 16. It is just the Weyl ordered form of the Villain-transformed 
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spin operators that leads 17 to the identification S = 5 +~. Eventually, the 
following effective Hamiltonian is found: 

Within the PQSCHA 12, quantum effects are embodied in 

1 
jeff(5, A, t) (1 - !DJY e--:(Du , (6) 

Aeff(5, A, t) A (1- ~Dl.)-l e2
1 v II , (7) 

while G(t) is an additive renormalization that does not enter the calculation 
of operator averages. The self-consistent renormalization parameters 

(8) 

(9) 

represent, within the PQSCHA, the pure-quantum part of the square fluctua­
tions 12,17 of sf and of (<Pi - <Pj) (i, j nearest-neighbors), respectively. They 
decrease with t and 5, and vanish both for t -+ 00 or 5 -+ 00. The other 
quantities are at = z e-v ll/2 (1 +Aeff I'k) , bt =z(l- ~D.d2 e-v lI/2 (1-1'k) , 

fk akbk/(2St) , I'k Z-l Ld cos(k-d) , and k is a wavevector varying in 
the first Brillouin zone. 

Therefore, the exchange energy is reduced by the factor jeff , and the 
easy-plane anisotropy is weakened (Aeff 2:: A), due to the cooperative effect of 
in-plane and out-of-plane pure-quantum fluctuations. Their typical tempera­
ture behavior in the case of the square lattice is reported in Figs. 2, and 3, 
respectively. For 5 -+ 00 , i.e. in the classical limit, jeff -+ 1 and Aeff -+ A . We 
notice that the integrals of the pure-quantum fluctuation parameters, Eqs. (8) 
and (9), get the main contribution from the high-frequency part of the effective 
magnon spectrum wk = (JS/n)akbk. just because the pure-quantum part of 
the square fluctuations is obtained by subtracting from the full (harmonically 
approximated) expression the corresponding classical part (i. e. the leading 
behavior for fk -+ 0); on the other hand those effects due to the presence of 
nonlinear excitations (vortices) would mainly affect the low-frequency part, i.e. 
they are essentially 'classical' and therefore they cannot sensitively change Dl. 
and VII_ 
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Figure 2: The effective exchange coupling Figure 3: The effective anisotropy param­
jeif(S, A -0.5, t) for the (AFM) X X Z eter Aeif for the S = 1 AFM X X Z model 
model us. temperature and for differ­ us. temperature, at different values of A. 
ent spin S. The dotted lines represent For high values of A the curves reach the 

t/t~~T(A) for A 0 and 0.95. isotropic value Aeif = -1. 

Using the PQSCHA formalism 12 the quantum average of any observable 
6 is reduced to a classical expression as 

where 8 is obtained by Gaussian smearing, on the scale of the pure-quantum 
fluctuations, of the Weyl symbol 0 associated to 6 12,17. In this way one can 
easily realize that the in-plane correlations (S'!' S'f) have the same asymptotic 

1 J 
behaviour as (s'f sf )eff , so that the correlation length ~ is just that obtained for 

1 J 
the effective classical model, and its divergence signals the occurrence of the 
BKT transition in the quantum system. The transition temperature tBKT(S,.\) 
can then be estimated from the knowledge of the corresponding classical one 
t~~T(.\)' with a self-consistency arising from the dependence on t and .\ of the 
renormalized interaction parameters, Eqs. (6) and (7): 

tBKT(S, .\) 
(10)

ieff(S,.\, tBKT) 

It is easy to solve graphically this equation for the X XO model 14 , since .\eff 
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for>. = O. However, it can be solved also for>. :j:. 0, using a rough fit oft~~T(>') 
from the available values of Table 1, reported as squares in Fig. 4. Then Eq. 
(10), rewritten as jeff = tBKT/t~~T' can be solved by recursion. The results 
are reported for different values of S in Fig. 4, where also the recent quantum 
Monte Carlo results 18,19 for S = ~ are reported, showing fair agreement with 
ours for>. = 0 and 0.5. For>. = 0 and S = ~ other independent results are 
available, namely those found by high temperature expansions 20 (0.39) and 
by real-space renormalization group techniques 21 (0040). 

-1 0 1 
A 

Figure 4: The critical temperature tBKT of the X X Z model liS. the anisotropy parameter 
A, for different spin S. The circles report quantum Monte Carlo simulation results 19. 

When 1>'1 is risen enough, one sees from Fig. 3 that it may happen that 
l>'eff(S, >., t)1 ?: 1. When I>'effl =1 is reached the effective Hamiltonian becomes 
isotropic, and the theory therefore predicts the disappearance of the BKT 
transition when >'/>'c(S) ?: 1 (For the AFM one finds ->'c = 0.58, 0.75, 0.85, 
0.90,0.92, for S ~,1,~, 2, !, respectively; those for the FM are slightly 
lower). However, this situation has to be considered with care, because the 
derivation of the effective Hamiltonian relies on the validity of the Villain 
transformation 15, which is meaningful only for easy-plane systems. Indeed, 
the possible break-down of the quantum BKT scenario for sufficiently small 
anisotropy occurs together with the break-down of the renormalization scheme, 
since out-of-plane fluctuations become so strong that the assumed easy-plane 
character becomes meaningless. The break-down does not occur for >'/>'c « 1, 
of course, and therefore it does not affect the results reported in Fig. 4. 

The suppression of the BKT transition by 'effective isotropization' is there­
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fore unlikely to be a physical phenomenon. This is suggested also by the cited 
quantum Monte Carlo simulations of the S- ~ X X Z antiferromagnet 19: at 
A =0.90 and 0.98 the BKT behavior is still observed, with substantially high 
transition temperatures, tBKT = 0.285 and 0.25, respectively. In order to 
reach this regime by means of the PQSCHA, one could resort to a different 
spin-boson transformation, as the Holstein-Primakoff one 22, which is useful 
also in the isotropic case since it treats the spin fluctuations symmetrically 
way, so that one expects to obtain Aeff < 1 for any A < 1. On the other hand, 
the calculation of 1leff becomes much more complicated: work is in progress 
along this line. 
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