DL/SCI/TMS6E

LENDING CoPy

PR

compP

technical memorandum Daresbury | aborator

DL/SCI/TMS86E
A NOVEL DATA ACQUISITION SYSTEM BASED ON A GENERAL PURPOSE CONTROL LANGUAGE
by
G. OSZLANYI and M.C. MILLER, SERC Daresbury Laboratory
APRIL, 1992 DARESEURY
LABORATORY
TS APR 9v2
G92/84 .
Science and Engineering Research Council LIBRARY
DARESBURY LABORATORY | CCLAC LIBRARY & INFO SERUICES
Doresbury, Wastington W4 44D LRI E
CcC1005799

© SCIENCE AND ENGINEERING RESEARCH COUNCIL 1992

Enquiries about copyright and reproduction should be addressed to:—
The ' Librarian, Daresbury Laboratory, Daresbury, Warrington,
WA4 4AD.

ISSN 0144-5677

IMPORTANT

The SERC does not accept any responsibility for loss or damage arising
from the use of information contained in any of its reports or in any
communication about its tests or investigations.

A Novel Data Acquisition System
based on a general purpose
Control Language

G.0Oszlanyi and M.C.Miller

31st March 1992

Contents
1 Introduction
2 Program Si{ructure
3 Command Langnage Interpreler
3.0 Command Line and Command Block Syntax
32 Data Types L. e
A3 Expresstons . . . e e e e
3.4 Inbuilt Functions L
3.5 Macro Calling Convention o Lo
3.6 Control Flow and Command Blocks
3.7 Inputand Output
3.8 Operaling System Inteclace oL o o 0
39 Error Handling
300 Help . o o o o e e
4 Macros
4.1 Parameler Naming Convention
4.2 Helpfor Macros e
5 Generic Hardware Control
5.1 Introduction
5.2 Structure and Operation L. Lo
53 Ercor Handling e
54 Daresbury Group Effort L oL
6 Specific Hardware Control
6.1 Struclure and Operation o
7 System Implementation
7.1 Hardware and Computer
T2 Macros L e e e e
8 Portability

11
11
12

12
12
12
13

14
14

15
15
16

16

9 Ackuowledgements

10 Appendix

10.1 Expressions . . .

10.2 Tobuilt Functions

i0.3 Control Flow Statements,

10.1 Macro Examples

11l References

1 Introduction

Flexible data acquisition systems are of primary importance for mosl experimental metlh-
ods. Unfortunately the logic ol experiment control in most cases is obscured by mixiang
it with hardware specilic and data analysis related code. This ends in large and unman-
ageable code and otherwise valuable data acquisition programs have to be abandoned just
hecause of changes in hardware or computer environment. Often very similar bul equally
specific data acquisition programs are written over and over again.

In this document we outline a different approach to data acquisition programs. We describe
a general purpose control language together with a layered hardware access which was
successtully used to control a four-circle, triple axis single crystal diffraction experiment at
Edinburgh University.

The main initiative for such a system was the new six-circle single crystal diffraction slation
cutrently being built at the 16.3 heamline of the Daresbury Synchrolron. A traditional
control program could not possibly cover the data acquisition needs of the wide range of
expecled experiments at this new stalion.

Although the data acquisition system was initiated by station 16.3, it will suil other stations
at the SRS equaliy well. In this document we will try to highlight the general principles of
the completed dala acquisition system. The large number of macros specifically needed lo
aperate a [our circle diffraction station have been fully tested and form an essential part
of that data acquisilion suite. For clarity however, only examples of general interest are
included in this document.

Both previous experience in wriling single crystal diffractometer control [1] and careful
planning of the program structure (2| helped to reatize the dala acquisition program long
belore station 16.3 is operational. '

2 Program Structure

Figure 1 shows Lhe overall structure of the control program. As the figure suggests the
three parts of the prograni, namely the Command Language Interpreter (CLI), Generic
Control Layer and Specific Control Layer are logically separate programs.

All the logic flow control, mathematical calculations and data formatting are managed by
the Command Language Interpreter {CLI). However the actual procedures are contained
in macro files which are small, easy to read and easy to modify ASCII program files.

In most cases the user of the program might wani to use only a few macros (eg. scan
macros), and forget about all the freedom offered by such a command language. On the
other hand, more experienced users can create their own specific procedures or calculations,
which is possible even during runtime. In fact the control program is an emply box without
variables or calculations, and it becomes a four circle control program only after executing
an initializing nmacro.

This can be achieved because the Command Language Interpreter is free of the burden

of divect hardware control. Ounly the true logical flow of the experintent is contained in
macros and their inferpretation is the task of the CILL

The Command Language Intevpreter does nol hold information on the actual hardware.
it communicates wilh the Generic Control Layer, sends comtmands and receives data. The
very general commands are translated 1o the specilic hardware calls depending on the the
type of hacdware and function te be performed. The Specific Control Layer guarantees
that dillerent types of hardware performing similar ITunctions can be transparently called.

Control programs are never truly purtable. Such a program might depend on the particular
hardware used. the particalar bus, programming language. operating system, graphics in-
terface ele, The only way 1o circumvent this problewm is to confine the hardware dependent
part of the program to separate hardware Specific Conlrol Layers and lo rely on system
specific solutions as little as possible.

Al this might sonnd rather complicated but the actnal fact is that the cesulting code
i$ much shorter and easier fo naintain than an equivalent hard coded control program.
More importantly the implementation of new experimental procedures does not require
hard coding at all. and instead only slight changes in macro files are needed. Even a
major upgrade in hardware will only allect the Hardware Specific Control Layer, leaving
everything else intacl.

Figure 2 shows how the control program relates to Lhe operating system and other pro-
grams. There is no point in duplicating lunctions supplied already by other programs. The
data acquisition coulrol program should not pretend that il is a windowing operating sys-
tem, an editor or a desktop publishing program. Although the graphical presentation of the
data, system editors and networking support are all indispensable {or Lhe data acquisition
program, {hese tools are widely available and should be used.

For security, a data acquisition programt should write the data on disk files as soon as
possible. Once the data is safely stored, the data acquisition program can give access lo
data analysis. This should be performed by other programs, which suit users individual
needs. This does not prevent dala analysis while data is being collected, as multitasking
operating systems can manage files shiared by different processes. In the course of a lime
consuming data colleclion the dala acquisition program can run in the foreground while
data analysis is done in the background.

The variely of graphics and data analysis programs is immense. [t is very probable that
simple graphics support included in the data acquisition program would soconer or later
become inappropriate lor certain applications. We would like to stress, that in principle
such a graphics interface can be easily included in the data acquisition program, but in
maost cases we do not find it a justifiable decision.

As far as the code is concerned we used strictly ANSI standard C language Lo ensure future
portability of our program.

3 Command Language Interpreter

The Command Language Interpreter uses an interpreted instrument control language. Its
synlax is very simple and the number of language elements is suall. The {few syntactival
rules and control stalements needed to nse the language are contained in the [ollowing
sections and in the corresponding appendix.

Although we did not aim to emulate any of the existing high level programming languages.
some similarities to ¢ can be found. This is pronounced in the case of relational operators.
input/oulput lormats and control flow statements. The similarity helps the user to [carn
the syntax much faster than if we had imposed a completely new syntax.

3.1 Command Line and Command Block Syntax

The natural unit of user input is a line of code, derived [rom the keyboard or a disk file.
One such line can consist of one or more commands which are separated by semicolons or
the end of the line.

More than one command can form a command block, which can extend te a munher of
lines. Control flow statemenis always involve Lhe use of command blocks, so their use is
described in Subsection 3.6. A single command is simply passed for execution after parsing.
In the case of command blocks, inpul is continned until a complele block can be passed
for execution. If the input comes from the keyboard this means wailing for subsequent
commands from the keyboard.

A single comnnand consists of a number of associated arguments which are separated by
white space characters. The interpretation of a single command depends only on its first
argument. It can be a control low statement or a non-control statement. If it is a non-
control statement, the CLI should he able to decide if it is an inbuilt [unction, a macro or
it is simply an assignment. The syntax is simiple but strict, any assignment should have
the following form:

<variable name>=<expression>

No spaces can be embedded in an assignment, and no inbuilt function or macro nanme can
contain the equal sign.

Inbuilt functions have a higher priority than macros. If an inbuilt function and a macro
file exist with identical names, only the inbuilt function will be found. Because of the
small rumber of inbuilt functions, this does not seriously limit the possible choice of macro
names.

The command syntax is identical for inbuilt functions and macros:
command <input_argl> <input.arg2> ... = <output.argl>

The only extra syntactical tule is that the equal sign should be surrounded by white space
characters. Input arguments can be expressions or variables, output arguments can be

variables only. The exact malching of input and output variables is mnore strict in the case
of inbuilt Minctions. Macros should he wrtilen to check that the nuwmber of parameters and
the dimensions of these parameters are appropriale.

The Command Language Interpreter is case insensitive. [t converts all input argnments
not in quotes to lower case, and its internal variable and function names are all in lower
case. Auything within qnotes is Ielt as is, which ts imporlani for the use of upper case

slrings.

3.2 Data Types

There are 1wo data types supported by the CLI: matrix-numeric and string. Malrix means
n by m double precision storage in general. As a special case scalars are represented as 1
by | matrices, vectors are represented either as n by 1 or as 1 by n matrices. Strings are
slored as a sequence of ASCII chatacters terminated by ASCII null.

All variables must be declared belore they can be used. Variables can be global Lo the
whole of the program or local to a particular macro. It is a good practice to use only
local variables, and confine the declaration of globals o an tnitializing macro. Such globals
are existent throughout the lifetime of the program, which is important for variables like
wavelength, unit cell paramcters or orientation malrix in the case of 2 singlé crystal diffrac-
tion experiment. Global or local variables are declared through the use of the two inbuilt
[unctlions, global and local. The syntax is described in Appendix 10.2. It is possible
to get information on the dimensions of the declared variable at a later time. The inbuilt
functlion size serves this purpose.

If numeric variables are simply referenced by their name then all elements of the variable
are referenced. All numeric variables can be referenced as if they were vector or matrix
arrays:

variable[index]
variable[first_index,second_index]

When referenced by one index, the row conlinuous data storage should be taken into
account,

A string must be declared to be of sufficient length to hold any data later assigned to
it. The main use of strings is to store filenames, and they cannot form string expressions.
Special attention must be laken not to use string variable names which might interfere with
numeric vatiable names. String constants must nol be enclosed within special characters
(e.5. quotes).

3.3 Expressions

Constants and variable numeric elements can form arithmetic expressions using arithmetic
operators and mathematical functions. It is important to note that only scalars and single

elements of vectors and matrices can be used in expressions, the use of complete arrays is
not allowed. Nole thal no white space characters are allowed anywhere within an expres-
sion,

Appendix 10.1 shows the anthmetic operalors and mathematical lunctions supported. For
convenience, trigonometrical funclions use degree wuits.

Mathematical functious have higher precedence than arithmetic operators hul there is uo
arithmetic operator precedence al present. The correct operator precedence can only be
achieved by the use of parentheses, which in any case is good practice.

By coumbining arithinetic expressions with relational aud logical operators, relational ex-
pressious can be lormed. These are used in conjunction with control flow statewents such
as if and while. Appendix 10.1 shows the list ol relationat and logical operators. The
syntax for the simplest relational expression is:

<arithmetic expression>-<relational operator>-<arithmetic_expression>

More complex relational expressions can be buill from simple ones and logical operators
in the following way:

<relational expression>-<logical operator>-<relational expression>

Mathematical functions and arithmetic operators have higher precedence than relational
ot logical operators. Correct refational and logical operator precedence ¢an be achieved by
the use of parentheses. No white space characlers are allowed within either arithmetic or
relational expressions.

3.4 Inbuilt Functions

Inbuilt functions are hard coded elements of the language, which provide the minimum
functionality to build up macros. Some language elements, like variable declatation or
hardware functions, must necessarily be implemented as inbuilt [uncitions. In the case of
others (eg. inv for matrix inversion) there is the possibility of using macros instead, but
the gain in speed lavours the inbuilt [unclion solution.

Although it is quite easy to extend the range of inbuilt functions, we have tried to minimize
their number. Appendix 10.2 shows the complete list of inbuilt functions available.

The implemented inbuilt functions fall into one of five categories:

Hardware function related

» Language synlax related

Input/QOutput related

¢ Calculation related

¢ Operaling system shell and use of other programs

Hardware relaled inbuilt functions are very stmple routines which do nothing clse thau
move requesls to and return data from the Generic Hardware Control Layer.

Setting up a new experiment means thal a few hardware related inbuilt functions will have
to be writlen, This will happen only if a complelely new hiardware class is included in (he
systeur. Adding a different type of equipwent with similar existing functionality will not
affect the Command Language lulerpreter.

3.5 Macro Calling Convention

For any command thal is nol an assignment or an inbuilt function, the Rrst argument is
taken to be a macro name., Automatically the extension .MAC is atlached to it and the
current directory is searched. If the macro file is not lound Llhen an error is generaled
and the CLI returns to its highest level with a thorough clean-up procedure. If the macre
file is successfully lound, then all following input arguments in the invoking conunand
are evaluated, and a local copy is created of them for use in the macro. Expressions
and variables can be passed to the macro as input parameters and variables as output
parameters. It is the macro’s responsibility Lo make sure that the correct paramelers with
the appropriate dimensions are passed to it. This macro calling convention allows vasiable
length input and output parameter lists. The use of these parameters is described in detail
in Section 4 of this document.

3.6 Control Flow and Command Blocks

To modify the linear flow of inbuilt functions and inacros, the use of control flow slatements
is needed. Appendix 10.3 shows the syntax for all control flow statemenls supported by
the Command Language Interpreter.

The control flow statements if, for and while invoke the use of command blocks. All
commands alter the control low statement up Lo an ending end statement form a command
block, and Lhe execution of the command block is affecled by the control flow slatement.
Control flow stalements can be nested, hut each level should end with a matching end
statement.

The control statement break allows escape from Lhe smallest enclosing for or while loop
simtlar to the C language syntax. The control statement continue can be used as a way
to speed up these loops.

Simple commands are execuled immediately after they are input from the keyboard or a
macro file. When input comes fromn the keyboard, il is sometimes advantageous to execute
commands together, without for more input, even if the execution of the commands is a
linear sequence.

For this purpose Lhere is a fourth special "control flow” statement: begin. Begin wails
for input of all commands up lo the finishing end and then executes the whole command

hlock without stepping for command input.

3.7 Input and Output

The implementation of input and oulput is a dangerous pitlall for data acquisition pro-
wrams. Wriling (and reading) fixed formal data anticipates thal we know before the actual
measurement which weasured quantities to save. This ts the case with simple measure-
ments, butl not for experiments cuvisaged at station 16.3. From simple single axis scans,
through temperature scans lo reviprocal space coorcdlinate vs. multichannel analyser spec-
trum elata, all kimds of data formats will be needed. A modestly complicated hardware
can allow even more diverse sorts of measurements and a vanety of data lormats,

Therefore it was absolulely necessary to make the data lormat changeable during run time
{or both output and input. This is accomplished by relying on the ANSLstandard C library
functions. The inbuilt funclions fscanf and fprintf make the input and oulput of scalar
numetic data transparent lo the program. The lormat specifiers of ¢ can be found in any
language reference. Note that all variables in this CLI are either double precision numeric
or string, so only the use of foating point or string lormat specifiers is sensible.

The fles on which these inbuilt funclions operate must be opened for input or outpui.
Files are opened and closed using the inbuilt functions open and close respectively.

There is a log file facility in the CLI. The inbuilt function print writes simultaneously to
the screen and to all files which are open for output. This means that a complete history
ol the measurement can he written to the log-file, or o the printer {which is just another
file for the operating system).

Two other inbuilt funclions: ? and input are used to print and input variables using a
predefined format.

3.8 Operating System Interface

There is one special inbuilt function, which executes other programs through an operating
system shell. The format of this system lunction is:

! <operating. system_command>

3.9 Error Handling

Error handling is crucial for safe dala acquisition. Ercrors can be divided into two categories:
those which are fatal, such as syntax errors, major hardware faults and those from which
thete is a way to recover. The latter can be more properly called status information. The
Command Language Interpreter can handle both types of errors.

In the case of fatal errors, there is an error message describing the error type and the
command which caused the error, causing the CLI to return to its highest level. In the case
of nested macros, a thorough clean-up procedure is executed removing all local variables,

10

closing macro files and at each macro level 2 message is given describing which command
[ailed. Therelore it is possible to Lrace back the canse of tlie error quile acenrately.

In the case of status information, it is {he users responsibility to handle the information.
Most often user macros generate such information and return it as an oulpul parameter.
This is either checked or ignored by the user.

3.10 Help

The inbuilt function help gives help information on inbuilt [unctions and macros. While
help for inbuilt functions is included in the hard coded roulines, macros must contain their
own help as described in section 4.

It is sometimes necessary to get information on the available variables. The inbuilt funclicn
who shows all global and local variables declared in the program.

4 Macros

Macros can be best understood by using and wodilying them. Therelore we provide a
number of working example macros in Appendix 104.

4.1 Parameter Naming Convention

Once a macto is invoked, two local variables are always created: nargin and nargout.
These are scalars and their value is set Lo the number of input arguments passed to the
macro and the number of output argumnents expecled from the macro. These lwo local
variables always exist, but their value is zero wlen there are no input or output parameters,

Once a macro is invoked, a local copy is made of all input parameters and a new descriptor
is created for each input and output parameter. This descriptor holds the name, address,
and dimensions of the parameter. The name of these paramelers is left blank however,
and it is the macros responsibility to give local names to them. The inbuilt functions: in
and out serve this purpose. The first thing any macro should do is to check the number of
input and oulput parameters and give Lhem sensible local names. Only after naming can
the macro use the parameters.

Then the macro executes exactly the same way as if the input camne from Lhe keyboard, so
that single commands and complete command blocks are executed. The only difference is
thal the execution of the macro is terminated either if an end of file is found in the input or
if the command return or error is encountered. These are inbuilt {unctions which simply
terminate the execution of the macro with a success or error return status.

1i

4.2 Help for Macros

It is generally a good idea to keep code and lelp for that code logether. because it is
then easier to keep both up to date. This however, usually infers a penally in fevms of
storage and performance, In the case of macros this problew does not arise, as all help flor
a particular macro is placed at the end of that macro file. [t does not slow down program
execution, as it is never read during tacro execution time. However, il help is required,
all executable lines ave skipped belore display of the help lext.

5 Generic Hardware Control

5.1 Introduction

The generic lardware controller layer of the software provides a general purpose, hardware
independent access to fusclions which may be provided by the various Lypes of hardware
present in the system.

Programmers know what real [unctions are supported by a particular type of chosen hard-
ware — for example in a motor driving system - and traditionally, these very specific
lunctions are accessed from many points in a monolithic application program. The very
specific motor hardware parameters are [reely mixed with user parameters such as inci-
dent beam wavelength or position offsets. The data acquisition program therefore becomes
very lightly coupled to the chosen instrument control hardware, and the situation becomes
even worse when operaling system specific fealures are liberally invoked throughout the
prograwm. When the inevitable lime cones to change the hardware or the operating system
{or both!), a huge amount of effort is required to modify the program at numerous places.

5.2 Structure and Operation

Our data acquisition philosophy involves first deciding on all the hardware funclions re-
quired by the application program without considering exactly how they would be imple-
mented by a particular hardware driving syslem, such as a molor control system. All these
functions are then made available by calling a generic motor controller software layer with
a single point of conlact with the application. At this interface, all transferred pazameters
such as positions are in user units e.g. degrees, rather than units specific to the motor
driving hardware itself. The motors are referenced as name strings and not parameters
required at the hardware level, such as axis numbers. Within the motor generic controller,
a dynamic table is kept of which motors are controlled by the varions hardware types
supported by the generic layer. This is used to call the appropriate specific hardware con-
troller to carry out the requested motor function. An example of this may be the driving
of 2 motor to an absolute position (user units) with a wait for the end of movement. The
generic motor layer invokes the specific hardware controller to carry out that function in
hardware units derived from the user ones provided. After completion, a final position in
user units is returned to the application layer, together with a status word for that motor

12

which defines Lhe success or otherwise of 1he drive. The format of the siatus looks the
sae for all motor types supported.

A vilal element is the hiding of the hardware from Lhe application layer and the user, so
ke can drive any motor Lhe same way without haviag to know details of the motor type in
question.

The internal motor parameters are hidden from the application layer and only those layors
which aclually need to use the parameters have them stored there. The generic controller
layer itherefore stores all parimeters which are independent of motor Llype and so are
applicable to all molors. These paramelers are slored in disk files which are read when the
generic controller receives an inilialise function request from the application. Some motor
funclions. such as setling a wotor gearing ratio, would aot result in any hardware access
amd can be entirely executed hy the generic layer alone. This is completely transparent
to the application layer. Other [unctions may require sonve handling by the generic layer
together with lurther execution by the relevant hardware specific layer.

Not every specific hardware Lype will he able 1o support the funclions requested to the
same level. [t may be the case for example thal a function is not available as a single
hardware instruction but it can be made available by a software wapping wlhich is entirely
transparent to the application. An example of this conld be the emulation of a wmotor
move to abzolute position by a combination of the two [unctions. gel current posilion and
move relative Lo current position. For certain very specialised [unctions, Lhey may not be
available in some specific hardware controllers al all and in that case an appropriate error
status would be returned for that function request.

5.3 Error Handling

After a call to the generic hardware controller, a single overall stalus is returned to the
Command Language Interpreter. There may be a number of instruments involved in
each function call and so a returned success stalus indicates that all have succeeded and
no further error checking is required. In the case of error, a nuinber of status codes
are returned which do not conflict with those used by the application layer for ils own
error handling. The most comunon overall status simply indicates that not all instrument
functions succeeded. Further information is avatlable in the hardware status word which
is returned for each instrument involved in the function call.

This hardware status word contains two ranges of status values reflecting messages from the
generic layer and the hardware specific layer. [L conlains values indicating both failures in
internal soltware parameter checking and a representation of the real hardware status, e.g.
a motor limit set. It is important thal the slatus codes are compatible between different
specific hardware controllers within a single generic hardware type, to allow transparent
etror detection and recovery by the application layer.

13

5.4 Daresbury Group Effort

These ideas have been included in the Data Acquisition Group Wiggler Motor Working
Party efforts Lo standardise and improve the sollware for driving all types of wotor at
Dareshury from application programs |3].

"Fhis modular approach 1o motor driving allows group members to independently progeam
a nmmber of specific motor coutrollers separately, once the parameter passing mechanism
and details have become lixel.

Details of data structures have wot yet heen finally agreed but this has not prevented a
(ully operational generic and specific molor controller being written for and implemented
on the Edinburgh University instrument. This currently uses provisional data structures
for the generic layer inlernals and interface, but will be modified lo use generally agreed
struclures when they are available, together with the full list of motor functions.

6 Specific Hardware Control

6.1 Structure and Operation

The hardware dependent software layer consists of A number of discrete modules, one per
hardware type, wilh exactly the same interface lo the generic hardware layer. This allows
conditional calling of the relevant specific controller which is transparent to the application
and ensures that adding a new hardware type is as trivial a programming task as possible.

As with the generic controller, the internal parameters are entitely hidden {rom the layers
above and also {rom other hardware specific controllers which will each contain a different
set of parametlers reflecting the different undeclying hardwate architectures. They are
loaded from disk parameter files with an initialise function and held in dynamic storage.
In the files there is any inlormation required for general access Lo the hatdware e.g. R5232
port numbers, together with a list of hardware specific parameters for each motor included.
A crucial element 1s the indexing of parameters by the molor name string in the file which
allows matching ol motors in the two layers ol Lhe motor controller without having to
remember obscure molor numbers and match their order in the files, record for record.

The hardware name or number is derived from the user motor name which is contained in
a field of the specific hardware parameter file. A bonus of this very flexible scheme is that
automalic aliasing of motor names can be provided by simply mapping two different motor
names onto the same hardware name freeing the application layer from the complexity of
input string manipulation.

This layer performs operations in hardware units which are obtained from the user unit
values by means of generic layer conversion parameters. For motor driving, these are
usually the gearing ratio and the user offset.

14

7 System Implementation

The Comwand Language Interpreter and hardware conirol in their current state of de-
velopment have been successfully implemented on a 4-circle diffractometer in the Physics
Deparlment of the University of Edinburgh for single crystal data acyuisition,

7.1 Hardware and Computer
The system has the overall leatures :

e Computer - 12MHz 286 (DECPC 220) cunning MS DOS 3.3

¢ Hardware control system - Harwell G000 for both motor driving and counler timing
via an R5232 interlace

s C compiler - Microsoft C 6.0 in ANSI standard mode

Although the computer used is much slower than the 33MHz 336 PC {Viglen) on which
the Command Line Inlerpreter was developed, the CLI overhead per instruction is still a
negligible part of the execution time. Depending on the complexity of Lhe instruction it is
(.3-2 milliseconds per instruction on the 386 and a factor ol 8 slower on the DEC 286. In
a data acquisition system where stepper motors are accessed via serial ports, motors start
moving tens of milliseconds after receiving the move command and counting time is often
much longer then a second, then the speed of the computer is not a limiting factor.

The following motor control functions were implemented :

« read parameter files

e inttialise

get current position

get status
+ move absolute synchronous {waits for end of drive)

move relative synchronous

¢ move absolute asynchronous (returns without waiting for end}

move relative asynchronous

® check position valid

For counter timing, a separate generic controller would normally be provided but with
the Harwell, the scaler and timer appear as pseudo-motors and could therefore be easily
supported by the motor controller. For scaling the exira function “count synchronous”
was needed to complete the list.

15

7.2 Macros

A large number of wacros can be developed withoutl actually using the hardware. These
were written belore implementing the data acquisition system in Edinburgh and were tesled
on site and only slightly modified, The few macros which had Lo be written from scratch
were sile specific ones, as swilching between detectors used in double crystal and triple
crystal mode.

Al four cirele macros have heen successlully Lested.

s One axis scans

Coupled Lwo axis scans

e Search for reflections

¢ Reflection centring

e Orientation matrix determination from two rellections with known unit cell

¢ Orientation malrix determinalion from three reflections with unknown unit cell
o Leasl squaces refinement of orientation matrix

¢ Bisecting (w = 28/2) angle calculation

o Top rellection (y = 90} angle calculation

e Simullancous move of all four motors to calculated position

* Reciprocal space scans

8 Portability

The portability of the program is based on four factors:

e Layered program structure, well localized hardware specific code
¢ The use of macro files instead of hard coded procedures
s [eeping data acquisition and data analysis separate

¢ The use of ANSI standard C programming language

The working Edinburgh program, written on a PC was implemented on the Daresbury
Convex mainflrame computer without any change in the source code. This does not only
demonstrate portability, bul such a program version makes the future use of station 16.3
more efficient. Users can get acquainted with the control prograin much before actually
using the station.

16

9 Acknowledgements

Thanks are due (o Bob Cernik for his support and proof-reading of this document and to
lirsula Cox, Peter flattou and Hugh Voss of Edinburgh University Physics Department for
provision of their instrument and assistance.

17

10

10.1

In the following we list the arithmelic. relational, lngical operatars and mathemalical
funclions wlhich can be used to form arithmetic or relational expressions.

Appendix

Expressions

Arithmetic Operalors

+ Addition

- Subtraction

* Multiplication

/ Division

A Power of operator

Mathematical Functions

reund({x) Round x to nearest integer

abs(x) Absolute value of x

sqri{x) Square root of x

sin(x} Sine of x — x in degree units

asin(x) sin~'(r) - in degree units

cos{x} Cosine of x - x in degree units

acos(x) ces™!(z) - in degree units

tan(x} Tangent of x - x in degree units

atan2{y,x)} tan~'(y/z) - in degree units

n180{x} Translorm x in the angle range [~ 180, +180]|

Relational and Logical Operators

== Equal
!= Not equal
< Less than

<= Less than or equal

> Greater than

»>= Grealer than or equal
&8& Logical AND operator
|| Logical OR operator

18

10.2 Inbuilt Functions

In the following we list the available inbuilt functions by category.

¢ Hardware function related inbuilt Munctions
initmot [uitialize motor controtler. Return status in variable,
Syntax: initmot <motor_name> = <variable>
gelpos Get the posilion of the molor in user units and store il in the variahle.
Syntax: getpes <motor_name> = <variable>
getstat Get the status of the wmolor and store it in the variable.
Syntax: getstat <motor_name> = <variable>

movabs Moves motor to absolute position wailing for the move Lo finish. The
target posilion in user vnits is given by the expression.

Syntax: movabs <motor_name> <expression>

movrel Moves motor relative to currenl position waiting for the move to finish.
The relative move in user units is given by the expression.

Syntax: movral <motor_name> <expression>

movahsa Moves motor to absoluie position asynchronously, ie. not wailing for the
move to finish. The target position in user units is given hy the expression.

Syntax: movabsa <motor_name> <expression>

movrela Moves motor relative to current position asynchronously, ie. not waiting
for the move to finish. The relative move in user units is given by the expression.

Syntax: movrela <motor_name> <expression>

waitmot Wait for motor to finish. Used in conjunction with asynchronous wove
commands. Return status in vaniable.

Syntax: waitmot <motor_name> = <variable>

count Count with the counter for the time specified by the expression. Return the
counts in the variable.

Syntax: count <counter_name> <expression> = <variable>
s Language syntax related inbuilt functions
global Declare numeric variables global to the whole of the program.

Syntax: global <scalar_name>
Syntax: global <vector_name> <n>
Syntax: global <matrix_name> <n> <m>

19

local Declare numeric variables local 1o a particular macro.

Syntax: local <scalar_name>
Syntax: local <vector_name> <n>
Syntax: local <matrix_name> <n> <m>

global$ Declare strings global to the whole of Lhe program. The tength is the wax-
imum length of the string the variable can hold.

Syntax: global$ <string name> <length>

local$ Declare strings local to a particular macro. The length is the maximum
tength of the string Lhe variable can hold.

Syntax: local$ <string_name> <length>

size Cet the size of a variable as row and column numbers and return them in a
vector variable. Size will relurn two numbers even if the variable in question is
a scalar. but then both numbers are sel to one. [f the variable is not defined
then both nuinbers returned are set lo zero.

Syntax: size <variable> = <vector_variable>

in Gives local names to the input parameters passed to the macro. These names
are local to the macro and the parameters can be used only aflter npaming them.

Syntax: in <local_name_1> <local_name_2>

out Cives local names to the output parameters expected from the macro. These
nantes are local to the macro and the parameters can be used only aller naming
them.

Syntax: out <local_name_1> <1o}:a1,name_2>

return Causes the CLI lo return from the current macro one level back with a
"success” stalus.

Syntax: return

error (enerates user error and causes the CLI to return from any depth of nested
macros Lo its highest level.

Syntax: error
exit Exit from the data acquisition program.
Syntax: exit

help Help without arguments shows the list of inbuilt functions available. Help
with one argument shows help information on the particular inbuilt function or
macro requested.

Syntax: help
Syntax: help <inbuilt_function_name>
Syntax: help <macro_name>

20

who Shows all variables declared together with their type (numeric or string) and
dimensions.

Syntax: who

o laput/Output related

open Open a particular file for input or output depending on the mode. Alade can
be: a - append, w - write or 1 - read. [f mode is omitted, the default append
mode i3 used. Open withoul any arguments will show the list of all files open.

Syntax: open <file_name> <mode>
Syntax: open <file_name>
Syntax: open

close Close a particular file that was open for input or output. Close without argu-
ments will close all files open.

Syntax: close <file_name>
Syntax: close

? (Question mark) Show variables using internal {ormalt.
Syntax: ? <variable_t> <variable_2> ...

input Show the current value of the variable and prompt for a new input value.
In the case of numeric variables the new inpul value can be a constant or an
arithmetic expression. [n the case of strings it can only be a string constant. If
no new value is entered, the old value is preserved. If the variable is not a scalar
or an element ol an array, then input will prompt for all elements of the array.
A non printable input character (eg. CTRL+4) will generate an error and stop
the query.

Syntax: input <variable>

priut Show variables with the formal specified by the format string. Qutput simul-
taneously Lo all files open for output. Print with only a format_string argu-
ment can be used to print messages. Print without arguments prints a new line

{ASCIL 13).

Syntax: print <format_string> <variable_1> <variable_2>
Syntax: print <format_string>

Format: %f,%e,%g.%s with modifiers

Example: print "TTH=Y-B.3f COUNTS=Yg" twotheta counts

fprintf Similar to print, but output only to one file specified by the first argunent.
This file must be previously opened for output.

Syntax: fprintf <file_name> <format_string> <variable_1> <variable_2> ...

fscanf [nput the values of the variables from the file using the [ormat given by the
formal_string. The file must be previously opened for input.

21

Syntax: fscanf <file_name> <format_string> <variable_1> <variable_2>

o Calculation related inbuilt funclions
zeto Sel all elements of variable to zero.
Syntax: zero <variable>
copy Copy all elements of variable.| to variable 2,
Syntax: copy <variable_1> = <variable_ 2>

row Copy a particular row given by row expression from a matrix to a veclor or vice
Versa,

Syntax: row <rov_expression> <matrix_from> = <vector_to>
Syntax: roW <row_expression> <vector_from>» = <matrix_to>

col Copy a particular column given by colunin_expression {rom a matrix to a veclor
Of VICe Versa.

Syntax: col <column_expression> <matrix_from> = <vector_to>
Syntax: col <column_expression> <vector_from> = <matrix_to>

del Calculate the delerminant of the matrix and store it in the variable,
Syntax: det <matrix> = <variable>

inv Invert Lhe matrix and store in inverse_malrix.
Syntax: inv <matrix> = <{inverse_matrix>

prod Multiply variable_1 by variable 2 and store the result in variable 3. Prod works
cqually well for malrix-matrix, matrix-vector and vector-vector multiplications
if the dimensions of the variables match.

Syntax: prod <variable_1> <variable_2> = <variable_3>
transp Transpose the matrix and store it in transposed_matrix.
Syntax: transp <matrii> = <transposed_matrix>
vlen Calculate the length of the vector and store it in the variable.
Syntax: vlen <vector> = <variable>

veross Calculate the vector cross product of vector_l and vector 2 and store it in
vector_3.

Syntax: vcross <vector_1> <vector_2> = <vector_3>

¢ Operating system shell and use of other programs

! Exclamation mark Execulesoperating system commands or other programs through

an operaling system shell.

Syntax: ! <operating_system_command>

22

10.3 Control Flow Statements

end End oune of the for, vhile. if and begin control fllow statements. I control flow
statetnents are nested. each of them must he ended by a matching end slalement.

Syntax: end

for First assign to the control variable the slart expression value and then execute the
conunands enclosed hy the for-end statements. Increase the control variable's value
by step_expression and execute the commands again. At the beginning of each cycle
check if the controlvariable's value exceeds the end expression. Il it <oes, then
quil cycling and continue execulion at the command flollowing Lhe end statement.
Omitling the step.expression the default step ol L is used.

Syntax: for <control_variable=start_expr> <end_expr> <step_expr>
commands . ..
end
Example: for x=0 18¢ 10
Tx
y=sin{x); 7 y
end

while Execute commands while relational .expressien is true. Evaluate relational expression
at the beginning of the block.

Syntax: while <relational_expression>
commands ...
end
Example: i=0
vhile i<100
7i
i=1+1
end

if Execute commands_l if relational expression_l is true and continue execution at the
command following the end statement. If it is false and there is an elseif state-
ment in the if block then evaluate relational_expression.2. If this is true execute
commands_2 and continue execution at the command following the end slalement.
If none of Lthe elseif statement relational expressions is true and there is an else
statement specified in the if-end block then execute the commands enclosed by the
else and end statements. If none of these conditions hold, then skip the whole
if-end block and continue execution at the command following the end stalement.

Syntax: if <relational_expression_1>
commands_1 ...

23

elseif <relational_expression_2>
commands_2 ...

else

commands_n ...

end

Example: if x>100

print "}Yg greater than 100"; print

elseif x>10

print "%g greater than 10 but not greater than 100"; print
else

print "Jg is not even greater than 10™; priat
end

begin Execule commands unconditionally. Begin is not a true control flow statement, it
affects only the way how commands are derived from e keyboard or macro files. Its
main use is for executing commands lrom the keyboard without stopping between
them for further input.
Syntax: begin
commands ...
end
break Escape [rom the smallest enclosing for or while loop, as defined in the C language.
Syntax: break

continue Speed up the smallest enclosing for or vhile loop, as defined in the C language.

Syntax: continue

24

10.4 Macro Examples

We have chosen tle [ollowing macro files to illustrate the potenlial of using macros. The
shorl help text at the end of the macro files should be sell explanatory. This is the message
thal appears on the screen when help macre.name is typed doring runtime, The four-cicele
valeulations are based on the Busiug-Levy [4] angle convention, :

o ABSTTILMAC - MOVE EXAMPLE

if nargin==1

in pos
else

help abstth; error
end

local status; getstat tth = status
if status==

movabsa tth pos
alse

print “TTH MOTOR BUSY"; print
end
return

% abstth <position> - MOVES TTH AXIS TO ABSOLUTE POSITION ASYNCHRONOUSLY

s CT.MAC - COUNTER EXAMPLE

if (nargin==1)%& (nargout==1)

in tau

out counts
else

help ct; error
end

count channeli tau = counts
return

% ct <taw> = <counts> - COUNT FOR tau SECONDS AND RETURN RESULTS
Y IN VARIABLE COUNTS

SCANTTH.MAC - SCAN EXAMPLE

if (nargin==4)&&{nargout==0)
in start end delta tan
else

25

: _ Figure Captions
col i hkl = hkl_list

row i hkl = transp_list
col i cart = cart_list
end

prod hkl_list transp_list = auxil Figure 1. The overall structure of the Control Program.

invy auxl = auxi

prod cart_list transp_list = aux2

prod aux? auxl = ub

print "THE NEW UB MATRIX CALCULATED BY LEAST SQUARES"; print

? ub Figure 2. The Control program in the contexi of the Operating System and
calclat other progrars.
return

% leastsq <nl> <n2> - CALCULATE UB ORIENTATION MATRIX USING 3 OR MORE

3 REFLECTIONS WITH KNOWN INDICES AND CENTERED ANGLES.
4 THE REFLECTIONS ARE STORED IN

A GLOBAL MATRICES HKLLIST[] AND ANGLIST[].

% USE ONLY REFLECTIONS FROM ni TO n2 ON THE LIST

% leastsq - DEFAULT: USE ALL REFLECTIONS ON THE LIST

11 References

References

|1} G.Oszlanyi
Ph.D. thesis {1990)
Eotvos Lorand University Budapest, Hungary

[2] M.C.Miller and S.Ahern
Specification for SRS Wiggler-2 Station 16.3 Data Acquisition System
DL/SCI/TMB0E (1991)

[3] Minutes of Wiggler-2 Motor Software Meetings (1992}
Data Acquisition Group internal publications
available from G.Mant (Chairman)

[4] W.R.Busing and H.A Levy
Acla Cryst. 22, 457-464 (1967)

30

OPERATING SYSTEM / WINDOWING SYSTEM

Command
Language
Interpreter

Generic
Hardware
Controller

Layer

Macro
Files

OPERATING SYSTEM / WINDOWING SYSTEM

4

Specific
Hardware
Controller

Layer

Generic
Parameter
Files

- v vl am — — a a r — de | — — m o Em = o e o e e o e E

Hardware
Specific
Parameter
Files

CLI

Graphical
Display
Program

System
Editor
and
utilities

Network
Control
Programs

HARDWARE

