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The oxidation of lubricant oil inside engines (figure 1(a)) is 2 major problem facing oil and lubri-
cant additive companies. Failure to control this oxidation leads to an increase in the viscosity of
the oil, resulting in a reduction in lebricant efficiency (figure 1(b)). This in turn may cause
sludge formation and an increase in wear of the engine parts, decreasing fuel efficiency and
increasing exhaust emissions. The ability to inhibit this oxidation is therefore a key requirement
for new Jubricants. This oxidation is known to be catalysed by iron dissolved in the oil as a result
of corrosion of engine parts. It is known that certain transition metal compounds, such as
ZDDP's and copper salts, act as oxidation inhibitors, as well as organic radical traps for hindered
phenols and aromatic amines. Although lubricant oxidation inhibitors have been known for many
years, the detailed mechanism by which they exhibit this action has not been studied.

The effects of additive action on the anti-oxidation performance of oil formulations is tradi-
tionally assessed with the aid of the technique of differential scanning calorimetry (DSC). DSC
traces are recorded as a function of temperature and reveal the difference, in terms of heat input,
between an inert reference compound and the sample under investigation that is needed if both
sample and reference are to be maintained at the same temperature. As such the technique re-
cords the enthlapy change associatcd with any phase transformations that take place within the
material. In lube oils it is used to reveal the temperatures associated with the thermal degradation
of the product. Figure 2 shows two DSC traces demonstrating how the presence of particulate Fe
within the formulation results in an acceleration in the breakdown of lube oil. However given the
variety of metal ion species likely to be present in the lube formulation the REDOX processes
associated with the oil degradation are not clear.

Using a combination of XAS and DSC provides a potential solution to this problem with the
former technique revealing changes to oxidation states of the various species associated with the
energetics of the process revealed by the latter technique. Benchmark tests carried out by Ed-
wards et al in 1990 [1) have demonstrated that high quality XAS spectra can be obtained in a
matter of seconds using the quick-scanning or QEXAFS technique. QEXAFS uses a continuous
scan of the monochromator axis and time integration of the data rather than the more conven-

tional step/count approach. QEXAFS specira were taken dynamically of a sample of nickel



formate dihydrate (NF) over the temperature range 25°-320°C. A DSC scan taken of the sample
(figure 3(a)} revcals three noticeable features at temperatures of 1707C, 210°C and 270°C which
can be ascribed to transitions from the hydrated to anhydrous formate (A), from anhydrous
formate to oxide (B} and from oxide to metal (C). The reduction of white line intensity in the
sample associated with transition C can be seen clearly (figure 3(b)) from the XANES data
which was recorded with an acquisition time of 4 5 as a function of temperature. The reaction to
the metallic state progresses by a nucleation and growth mechanism as evidenced from the iso-
thermal (T = 257°C) Fourier transformed EXAFS data (figure 3(c)), recorded at 40s/spectra scan,
taken in the meta-stable region close to transition C.

These benchmark experiments demonstrate the feasibility of the XDSC approach. Significant
improvements can be expected in data acquisition by using the greater photon flux available on
Wiggler beamline 9.3 as well as through improvement in data acquisition software. Thus the
collection of the near-edge XANES spectra in time periods less than 500 ms should be easily rea-
lisable.

Extension of the technique to examination of the kind of dilute analytes present in lube oils is
also feasible (figure 3(d)) as the fluorescence mode of XAS easily has the sensitivity (figure 4) to
detect the trace elemental concentrations presentin the additivgs mediated oil. For this the near
edpe K-edge spectra of the expected Zn, Fe and Cu atoms are all highly distinctive {figures 5-7)
and thus the monitoring of the oxidation states of all three elements during a DSC scan is quite

feasible. A schematic for a combined DSC/XAS cell is given in figure 8.
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Figure Captions
Figure 1. Schematic showing the effect of lube oil oxidation on product performance; (a) the role
of Fe particulates in the oxidation process; (b) the effect of Cu containing additives in reducing

the oxidation related increase in lube oil viscosity.

Figure 2. DSC scans as a function of heating time (heating rate 1*/minute from 100°C) for an eil

formulation without (a) and with (b) the presence of catalysing Fe particulates.

Figure 3. Quick scanning XAS investigation of the decomposition of NF, after [1]; (a) DSC scan
of NF showing the principle regions of thermally-induced structural change; (b) quick-scanned
XANES data, recorded in-situ , of NF at the Ni K-edge recorded between 250°C and 300°C with
a data acquisition time = 4 s, showing the thermally-induced reduction of NiQ to metallic Ni at
around 265°C; (c) Fourier ransformed QEXAFS data (100 ms integration time and monochro-
mator scan speed 20 mdeg s') and isothermally in the meta-stable region close to C (figure 3(a))

showing the slow thermal reduction of NiO to metallic Ni.

Figure 4. X-ray fluorescence etmission from an Fe/1.5%Cu/1.5%Ni alloy excited at three X-ray
energices; (a) 8.16KeV (just above the Fe K Edge}; (b) 8.4 KeV (just above the Ni K edge); (c)
9.09 KeV (just above the Cu K edge) showing the clear resolution of the fluorescence spectra of

these three analytes, after [5].

Figure 5. XAS near-edge spectra at the Zn K edge: (a) neutral ZDDP; (b) Zn?*S; (c) Zn° metal;

showing the clear resolution of edge structure as function of oxidation state.

Figure 6. XAS near-edge spectra at the Fe K edge: (a) Fe® metal; (b) Fe**Fel*0,; (¢) Fe™0, (d)
Fe;*0,.

Figure 7. XAS near-edge spectra at the Cu K edge: (a) Cu**Q; (b) Cu;O and (c) Cu® metal.

Figure 8. Schematic representation for an instrument for the simultaneous acquisition of XAS

and DSC data: the set-up is shown in the 45° fluorescence geometry.
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