Task Modelsfor Knowledge Elicitation

Michael Wilson
Rutherford Appleton Laboratory
Chilton, Oxon, U.K.

ABSTRACT

Knowledge €licitation cannot be lead solely by the expert. Elicited knowledge must be analysed and
represented by the knowledge engineer. When a knowledge engineering project is started some framework
must exist of what is likely to be encountered and the representation to be used for it. Given our present
knowledge of the psychology of expertise the top-down influence on knowledge dlicitation must be derived
from previous analyses of the tasks likely to be performed by the expert.

As knowledge engineers become more experienced they will build up there own library of previously
analysed tasks. Before then, they must rely on general task analyses and their model libraries. This chapter
reviews developments in task models which can be used to guide decisions during knowledge acquisition.

Introduction

When we start knowledge acquisition we have a series of techniques at our disposal. We are aware that we
should not alienate the expert, or appear as though we are going to replace him with a computer. A genera
methodology suggests that we gain background information and then approach an accessible, willing
expert. But what do we actually do when we are faced with the background information or expert; which
technique do we use; if we default to an interview, what do we ask about; when we analyse the tapes and
data, what do we select; which terms do we use in sorting tasks ?

The earlier chapters in this book have described the battery of techniques available to the knowledge
engineer when faced with an expert. But the discipline of knowledge engineering has very little to say
about which technique to use when, and what to look for. For example, if you are to develop a KBS for
choosing periodicals from a news-stand, you may look around the news-stand and interview the stall-
holder. Your first reaction may be to classify the periodicals. For this, various techniques have been
described in earlier chapters. But is this the best thing to do? If you choose to do this through an interview,
which questions do you ask after general ones designed to gain a rapport with the expert? To answer these
guestions you must have a pre-conception of what is required out of the knowledge acquisition process.

This chapter will describe attempts to develop models of what pre-conceptions of the output from
knowledge acquisition are useful and how they can be used to motivate the decisions made by the
knowledge engineer during knowledge acquisition. If knowledge engineering were a better developed dis-
cipline it might to be possible to provide a cookbook which listed problem types, the techniques that should
be used to €licit knowledge for them, and the order in which they should be used. Unfortunately, it is not
that well developed so this chapter will describe several research efforts to reach this state in order that
individual knowledge engineers can develop their own cookbooks as their experience increases, without
making the mistakes which others have made before them.

In a recent article Hoffman (1987) criticises many articles whose titles indicate that they concern
knowledge acquisition but actually contain discussions of abstract inference strategies and representations
rather than methods to extract knowledge from experts. This paper is consistent with that body of literature
he criticises. This is because a knowledge of abstract inference strategies and representations is necessary
in order to make the decisions about which technique to use and which questions to ask during knowledge
acquisition.

What should guide the knowledge engineer ?

The pre-conceptions a knowledge engineer brings to a knowledge aquisition task may have been stated, or
not. It is always good experimental practice to make all pre-conceptions overt and to structure them so that
it is clear where they are influencing decisions, otherwise decisions will be made which cannot be justified,
and may be contradictory. If the pre-conceptions of what a knowledge engineer is looking for are going to
be stated, what will they be?

One argument suggests that when knowledge is expected to be verbalisable, the expert should lead all
interviews and all the knowledge engineer should do is record it and repeat it to the expert to make sure it
is understood the same way by both parties. This will intimidate the expert least and will prevent the
knowledge engineer’s pre-conceptions from influencing the acquisition process. There are two problems
with this argument on its own. Firstly, the documentation used for background study during knowledge
acquisition and experts themselves can provide vast amounts of knowledge which is irrelevant to the
development of a knowledge based system. We want to access knowledge which is salient to the purpose
of the KBS. Therefore we do not want either too much or too little knowledge. The time and effort of both
the knowledge engineer and expert are valuable and this irrelevant material should not be brought into
knowledge acquisition, as it can be if the knowledge engineer does not provide some direction. Secondly, it
is obvious that material gained from the expert must be analysed and in this analysis, decisions will be
made on basis of the knowledge engineer’ s pre-conceptions. Consequently, the argument can only apply to
interview sessions and not to the whole knowledge acquisition process. Bottom up methods must be used
during an interview, but feedback or teachback are local techniques. Similarly, asking whether there are
any more items at the same level of a hierarchy as an item identified or requesting the name of the class
these items fall into are simple questions. There must be some model or set of pre-conceptions to provide

more complex questions.

A second argument states that knowledge acquisition and KBS development are processes of mapping one
system onto ancther. They try to map the parts of a system which includes a human who is expert at a task
onto a computer program that will perform atask. If one starts this process with a pre-conceived notion that
the computer program will be built around a simple shell, then techniques can be applied to extract
knowledge consistent with the inference mechanism and representations employed by that simple shell
(e.g. facts, and rules, driven by an inference procedure using backward chaining search and Bayesian
logic). Most texts that describe interviewing techniques for other purposes that knowledge acquisition
expect the interviewer to have a prepared list of questions. The required representation can be used to
motivate these questions. Unfortunately, although simple shells provide an introduction to expert system
development, they have proven inadequate for developing large systems, and systems which try to address
problem types for which they were not developed. Consequently, trying to bend the knowledge in inter-
view transcripts and documents to fit an implementation representation is unlikely to result in a record of
the expert’s knowledge.

A third argument states that in developing systems the knowledge engineer’s initia view of the target sys-
tem must be broader than the facilities offered by such shells, or tool-kits. The knowledge engineer should
aim at producing a representation of the knowledge intermediate between the expert’s and that of the target
system (e.g. a paper model) which is not confounded by the trade-offs necessary to implement it, but more
purely represents the knowledge of the expert. In this situation the choice of representation cannot be
guided by the target implementation, but other criteria must be used. Neither can the elicitation techniques
be chosen to produce a particular machine representation. Ultimately, the choice of representation and €li-
citation technique should be based on atheory of the psychology of expertise. To this end, much research
in knowledge acquisition is attempting to determine the appropriate techniques to be used to acquire
specified types of knowledge. Until thiswork has progressed further we require an intermediate method.

Knowledge Types, Representations and Elicitation Techniques

Attempts to specify knowledge types and the techniques suitable for extracting them are becoming increas-
ingly common in the knowledge acquisition literature (e.g. Gammack and Y oung, 1985; Bainbridge, 1986;
Slater, 1987; Welbank, 1987a, 1987b, 1987c). Matrixes of the suitability of techniques for knowledge types
can be derived from experimental study based on a thorough analysis of tasks and the knowledge they draw
upon. Such studies are in progress although the complete range of testing required is not complete (see
Schweickert, et al 1987). However, they can aso be derived by surveying the research literature for previ-
ous analysis and combining the different authors descriptions. This is a laborious task which provides a
starting point for more detailed analysis and | am not criticising it per se. However, it often yields a set of
terms derived from different sources which are hard to understand as a coherent whole. An example after
Welbank (1987c) is shown in Table 1 which lists a series of techniques, and the knowledge types for which
they have been shown to be suitable or inappropriate by various authors. A consistent model is required
onto which these terms may be mapped for their relationships to be comprehensible.

Table 1: Types of Knowledge with appropriate Acquisition Methods (after Welbank 1987c). Key: Y - suit-
able; N - not suitable; ? - difficult, should be used with care.

There are various ways of deriving knowledge types to look for, some of which have been used to derive
the terms used in thistable.

1) The implementation language - The outcome of the KBS development process will be a running sys-
tem coded in an implementation language. Therefore, since the information in the knowledge sources must
be recoded into this implementation language, the classes of knowledge available in it can be used to select
the appropriate technique. Unless the classes of knowledge used in the acquisition can be mapped onto the
implementation there is no point in using them, so they may as well be used at the outset to avoid un-
implementability. In Table 1, examples of terms from this source are facts, rules, weight of evidence, and
context of rules.

2) A formal grammar - There has been research in linguistics and human sciences for many years which
has produced a wide range of forma grammars for representing the information which may exist in a popu-
lation to support its culture and language. Since these are the product of many years work the classes they
utilise can be used to classes of knowledge. This approach would be better than using the implementation
language as a constraint since that describes computer scientists' views of the "correct” way to classify
information. At least formal grammars have been devel oped for the human sciences and will be more likely
to apply to the humans involved in the knowledge acquisition without being polluted by the arbitrary con-
straints of current computers.

3) Psychological Theory - Psychologists have complex human information processing models of human
reasoning which provide categories for knowledge. These should be used to categorise the information and
would be better than formal grammars since they will allow the information used by an individual during
performance to be captured rather than the "competence” of a population. In Table 1, an example of aterm
from this source is conceptual structure.

4) Tasks Previously Analysed -

Once a series of tasks have been analysed there is aready a description of them and it is not necessary to
resort to psychological theory every time. The analyses of previous tasks may require slight modification,
but they apply to the individual and are not constrained by the machine implementation. It would be good
to base the classification on psychological theory since the analysis of the expert’s task should be in terms
of the objects and actions that exist in the expert’s world, which includes the expert’s mental world. How-
ever, psychological theory is not yet advanced sufficiently to alow that, so analyses based on descriptions
of tasks using psychologica constraints where possible are the best that can be achieved. In Table 1, exam-
ples of terms from this source include expert’ s strategy and system’ s strategy .

Task Analysis

Task analysis is a technique where a task is divided into into pre-specified units. These often take the form
of sub-tasks where the actions taken and the classes of objects they affect are specified. The pre-specified
sub-tasks, actions and object classes are usually derived from previous analyses, using the available
theoretical base. Methods of task analysis have a long history of use in the social/behavioural sciences for
breaking tasks into behaviourally (e.g. Miller, 1962) or cognitively (e.g. Rasmussen, 1986; Barnard, 1987)
salient units.

The suggestion that task analysis should be used for knowledge acquisition requires the development of a
suitable taxonomy of tasks, and for each task, the unitsinto which it can be divided. In general, the analysis
method would enable known tasks to be identified in problems facing the knowledge engineer. These
would provide initial models of the knowledge types which should be found, and the inference structure in
which they would be used. Since the knowledge types would be known, the appropriate techniques could
be selected for knowledge €licitation, and appropriate questions asked to determine the problem solving
method and the completeness of the knowledge €elicited.

A variety of knowledge acquisition regimes have been presented in the literature (e.g. Frieling et al, 1985)
although most are still informal and unproven. In a generalised regime of knowledge acquisition, such a
task analysis technique would take place early in the method to direct later domain knowledge gathering:

1) Initial Problem assessment to determine if KBS offers a cost effective solution ?

2) Initial study of documents and first interviews.

3) Task Analysis

4) Full Interviews/Performance Protocol §/Indirect Measures/Simulation

5) Develop the Intermediate Representation.

6) Re-formulate conceptua structure of the intermediate representation for a particular tool.
After the third stage, further sub-tasks may be identified by task analysis.

To develop an appropriate task analysisit is necessary to specify what a task or problem type is for the pur-
pose of knowledge acquisition and to generate a taxonomy of them to allow them to be identified.
"Attempts to make knowledge engineering a systematic discipline often begin with a listing of problem
types' (Clancey, 1985:313). Indeed, as Clancey suggests, this kind of analysis is prone to category errors. |
will continue with his example of a naive list of "problems" or task types which includes "design”, "con-
straint satisfaction” and "model-based reasoning” which can also be classed as a type of task, an inference
method and a kind of knowledge. He neatly exemplifies the combination of these in a single task as a
VLSI chip design problem using constraint satisfaction to reason about models of circuit components. To
avoid this kind of confusion it is necessary to develop a systematic description of task types at the same
level of description, and then specify the classes of knowledge they incorporate before deciding which
techniques are suitable for eliciting particular knowledge types. In knowledge acquisition and KBS
research the appropriate task type is often termed the "Generic Task".

The Generic Tasksfor Knowledge Acquisition

Thefirst problem is one of describing the "appropriate” level of task. For example, in the task of finding the
number of a chemist in a yellow pages directory, one analysis might say that the task is "to find the
number" and that it has an input which is an ill defined description of the role of the agent whose number is
being searched for, and the output is the number itself; consequently, the search is a unitary operation: that
is, a single task. A second description might say that the task can be further sub-divided into taking the
description and performing an action of comparing it with the headings in a directory until one of them is
an acceptable match, then looking down the list of entries under this heading to find one which matches
secondary criteria (such as geographical procsimity to the searcher) and the result of this match is the out-
put. A third description may subdivide the search task even further and describe the processes which take
place during the match in great detail. Such an analysis would describe the perception of the characters on
the page and the formulation of words from them, then the matching of these words with memory. This
level of description is more detailed but aso has a has a superficial appearance of being more psychologi-
cally salient since it incorporates stores such as memory and operations such as human perception. How
can we determine in this hierarchy of possible descriptions of a task which is the one that is the most
appropriate for the building of KBS s? The answer must be influenced not only by a desire to capture the
psychological reality of the description, but aso by the computational and functional constraints imposed
by the purpose of the desired KBS itself.

The first confusion which arises at this point is in determining which task is being described. The expert
performs atask in his natural environment. The KBS when built will also interact with its user to perform a
task in a new environment. The expert may be a consultant neurologist working in a hospital diagnosing
patients who have been referred to him. In contrast the user may be a general practitioner diagnosing
patients who come to him with symptoms. Two very different tasks are being performed here, and the task
the KBS is performing is only a part of the second task. What is required is an analysis which will map the
task performed by the expert (e.g. the neurologist) into the task performed by the KBS (e.g. the practition-
ers tool). It is accepted that there are various different roles such a tool can play with respect to the user:
advisor, imperative guru, criticising colleauge or teacher. Each of these different roles will require different
knowledge to support them, and consequently different knowledge to be aquired by the knowledge
engineer. For example, a system in the role of an imperative guru does not require a deep model of the
problem to use as the basis for persuasive explanation whereas a critiquing system does. It would be prefer-
able if the task analysis technique would account for the final role of the system in its environment. How-
ever, before we analyse the task the system is to perform we must ook at the expert’s task, although it may

be different.

For task analyses in other areas of research the problem of selecting the appropriate "grain" of task has
been resolved by performing analyses at levels of description which appear to possess too little detail,
intuitively the right level of detail and too little detail. The results of these different levels of analysis of
exampl e tasks have then been instanciated in the available technology and the consequences of using that
technology on them have been compared with a view of what the desired output should be. This form of
sensitivity analysis has shown in previous cases what the appropriate practical level of description isfor the
available technology (e.g. Card, Moran and Newell, 1983). We can attempt to apply the same method to
the technology of KBS's. What we are looking for is the level of description of atask which is appropriate
for both the technology available to implement it and the human expert who has to describe it to the
knowledge engineer. Therefore we must look at the analyses of tasks previously performed to derive a tax-
onomy of generic tasks at the appropriate level for knowledge acquisition.

One source of previously analysed tasks that can be used are previously developed KBS. To illustrate the
grain of tasks such an analysis will provide (after Clancey, 1985), the structure of the task of configuring
the components of VAX computers performed by R1 (McDermott, 1982) with its order processing front
end XSEL could be described as:

SPECIFY + DESIGN { + ASSEMBLE }

while that for the task which the diagnostic medical expert system MYCIN (Shortliffe and Buchanan,
1975) performs could be characterised as.

MONITOR (patient state) + DIAGNOSE (disease category) + IDENTIFY (bacteria) + MODIFY
(body system or organism)

This appears a possible source of datato establish atask taxonomy, but before developing such an analysis,
aview of what description isrequired for each task to be useful for knowledge acquisition.

In order to assess the necessary components of an analysis of generic tasks for knowledge acquisition we
must look to the sensitivity of currently applicable psychological theory. A recent review of task analysis
techniques applicable to the knowledge relevant to user interface design (Wilson, Barnard, Green and
Maclean, 1988) assesses techniques under four headings:

Knowledge: The breadth of knowledge classes addressed by the technique and the depth of descrip-
tion offered of those classes.

Task dynamics: The goals of the task performer, the short term changes that take place during task
performance (in both processing and actions on external objects) and the long term changes that take
place across successive performances of atask (e.g. learning).

The Cognitive Limitations on Processing: The extent to which a functional cognitive model is embo-
died in the technique and any constraints on the size and speed of memory and processing which are
incorporated in the technique.

Use of the Technique: How well the technique is specified to be used unambiguously and how much
skill and knowledge must be brought to the technique to use it.

When these criteria are applied to task analyses for knowledge acquisition, the desirable technique would
include a taxonomy of generic task types, a set of models for each generic task and guidance as to how to
elicit the knowledge relevant to each task.

Each model for a generic task should address each of these points. It will need to describe the knowledge
required to perform the task. This will require an indexing of the generic task model into the taxonomy of
task models and some rules as to there combination. Otherwise, it will take the form of the type of
knowledge output by the task (the solution), the classes of objects expected, and the classes of attributes
that those objects should have. At a different level, the knowledge available from different knowledge
sources (e.g. guidelines, manuals, databases) should be indicated.

The task dynamics would include the goals of the task, and to map the model onto the system representa-
tion, a description of the inference strategy that is expected for the task to account for the short term

changes. The inference strategy will of course interact with and constrain the knowledge of the objects in
the task. The long term changes in the task performance should be described as requirements for explana-
tion of the task and requirements for maintaining a model of the task as information changes.

The technique which employs task models should be stated so that it is easy to use to analyse tasks without
the knowledge engineer having to bring alarge amount of psychological or other specialist knowledge to it.

Consequently, the model of a Generic Task should contain:
The type of problem the generic task addresses

The inference mechanism/strategy expected

The form of knowledge used in the solution

The (meta) classes of objects expected

The (meta)classes of attributes expected

The type of explanation mechanism which is possible

Requirements and methods for maintaining task knowledge

The generic task itself does not contain user goals since the task is for use in acquiring knowledge of the
expert’s or source task and not in designing the interface to the task the user of a KBS developed to per-
form it will himself perform. Similarly it isunlikely to contain real time changes in task performance since
these will vary at too low alevel of description for the task.

The task analysis technique will therefore consist of a taxonomy of task models each of which contain the
information in the above form and a technique for using them to analyse tasks. Such a technique does not
yet exist. We do not yet have a standard set of task models which can be fitted to al the tasks which the
knowledge engineer is likely to encounter. The goa of severa research groups is to develop these, but at
present the partial analyses which they have put forward are the best available. These analyses vary as to
the task types addressed and the content of the generic task models proposed. The types of task to which
KBS's have been applied for the longest are classification and diagnostic tasks, so that group of tasks has
been most thoroughly described. The types of design task have been studied less and the analysis of these
islesswell developed. As more task types are identified, the structure of the set of generic tasks changes.

The sets of generic tasks proposed by different groups of researchers will be described here to illustrate the
methods used for developing task taxonomies and generic task models, as well as the direction of develop-
ment that current research in this area is taking. Any knowledge engineer can expand the set of task
models themselves with their own experience of developing systems in new task areas. Those presented
here are to be used as examples on which to base such development, they do not constitute the only or the
best models possible. However, they do show some of the flaws in taxonomies which have been developed
so that knowledge engineers should not incorporate them into their own structures.

The progression illustrated by these examples starts by looking at expert systems which have already been
developed and attempts to categorise these objects into systematic lists. Then, the tasks which are per-
formed by these various systems are extracted from the whole system and described. This list of tasks is
then structured with respect to a theory of systems, and what tasks can be performed on them. Further ana-
lyses of tasks performed outside the KBS domain are then introduced to add to this categorisation. Finally,
an attempt is made to map the taxonomy that exists onto a cognitive rather than system, oriented view of
tasks.

Classification and diagnostic tasks will be described in less detail than design tasks since the knowledge
engineer who has to tackle design tasks will find less information on design in the literature and much of
that isless accessible than information on other task types.

Generic Categories of Knowledge Engineering Applications.

The first major attempt to structure a set of task models for KBS development was that of Hayes-Roth,
Waterman and Lenet (1983) when they presented a list of generic categories of knowledge engineering
applications (see Table 2). These were put forward as distinct types of knowledge-engineering applications
rather than as generic task models to aid the analysis of knowledge or knowledge acquisition. However, the
objective of the list was to aid the extraction, articulation and computerisation of experts knowledge so
they serve as a starting point to show the direction in which research is progressing.

center tab (%) albox ; c ¢l I. Category%Problem Addressed Interpretation%inferring situations from sen-
sor data Prediction%inferring likely consequences from a given situation Diagnosis%inferring system mal-
functions from observables Design%configuring objects under constraints Planning%designing actions
M onitoring%comparing observations to plan vulnerabilities Debugging%prescribing remedies for malfunc-
tions Repair%Executing a plan to administer a prescribed remedy Instruction%Diagnosis, Debugging and
repairing student behaviour Control %l nterpreting, predicting, repairing, and monitoring system behaviour

Table 2: Generic Categories of Knowledge Engineering Applications (after Hayes-Roth et al, 1983).

In their analysis, interpretation systems infer situation descriptions from observable data about the situa-
tion. They are used to explain observed data by assigning symbols to them which describe a situation that
accounts for the data in systems such as those used for surveillance or speech understanding. Prediction
systems infer the likely consequences of described situations in systems such as those used for whether
forecasting. Diagnosis systems infer system malfunctions from described data for the purpose of medica
diagnosis or electronic fault finding. Design systems develop configurations of objects that satisfy the con-
straints of a design problem for the purposes of circuit layout or building design. Planning systems design
actions which take place over time. Monitoring systems compare observations of system behaviour to
features that are important to the successful outcome of plans and normally correspond to potential flawsin
plans. Debugging systems prescribe remedies for failures while repair systems develop and execute plans
to administer remedies to diagnosed problems. Instruction systems diagnose student behaviour and attempt
to debug it. Control systems adaptively govern the overall behaviour of a system.

Since thisis one of the earliest classifications of KBS task and system types, it is one of the most discussed
and criticised. It has been criticised (e.g. Reichgelt and Van Harmalen, 1986) since some of the classes
used are more general types of other classes. The criticism is clearly appropriate for several cases. debug-
ging systems may monitor a system, diagnose a malfunction, then plan a remedy, and may execute the
plan; repair systems always both plan and execute the plan; instruction systems monitor, diagnose, plan a
remedy and execute the plan; Control systems contain most of the above primative acts. It is therefore clear
that thisisnot alist of either primative KBS types or of primative tasks which should be combined together
to produce the task performed by KBS's or experts. Thisis alist of system types that have been devel oped
and classified by the way the developers or users see their role.

A set of primative tasks has been produced from this list by Reichgelt and Van Harmalen. They argue that
the difference between diagnosis and interpretation tasks is that while both infer a situation description
from data, the situation description in a diagnosis system must be a malfunction while interpretation sys-
tems have no constraint on the type of state they infer. Consequently they view diagnosis systems as a sub-
class of interpretation system. Similarly, they argue that planning systems are a sub-class of design systems
where the design is a temporally executable plan, and that debugging systems are a sub-class of planning
system where the plan is always directed at correcting a malfunction. This argument results in four prima-
tive types of task: interpretation (or classification), monitoring, prediction (or simulation), design.

As with Hayes-Roth et al, Reichgelt and Van Harmalen were looking for a set of tasks which can be used
as the building blocks for expert system control structures rather than tasks which could be identified dur-
ing a knowledge acquisition task analysis. Although their list is therefore guided by constraints from logic
and efficiency rather than psychological saliency, it offers a further step on route to a psychologically
salient set of task models.

Reichgelt and Van Harmalen draw a distinction between tasks which recursively monitor a system’s out-
puts over time and compare them with a plan, and tasks which take a system’s outputs (possibly over time)
and classify them onto a high level description. The distinctions between severa tasks are confounded

here. The first task takes input data into internal form. A second task classifies sets of internal data (which
may be directly re-coded external data or inferred information) against a set of higher level descriptions.
There is athird task which outputs higher level descriptions to the user, and a fourth which outputs higher
level descriptions into internal form (stored inferences). There is also a distinction as to whether the high
level description is a temporal plan, or an atemporal object description. The first three tasks performed
once each in succession using atemporal object descriptions make up the classification task. The monitor-
ing task consists of a cycle of taking input data, classifying it against a temporal plan and storing infer-
ences, with the task of outputting inferences only being introduced when a particular classification (usually
an error) is reached. This confusion has serious consequences for Reichgelt and Van Harmalen's purpose
of developing machine representations, but may not appear to for knowledge acquisition since this descrip-
tion appears too detailed to be cognitively salient. However, it is a confounding which will effect later
arguments in this chapter.

The simulation task starts with a system and a requirement for change, and the dependent changes must be
inferred. It is usually impossible to enumerate all the possible solutions to such problems in advance. The
structure of the task involves a bottom up control regime whereby changes in the state of the system are
interpreted as changes in the behaviour of sub-systems. This information can then be used to predict the
changes in the behaviour of the overall system. Consequently, the entities which will exist in this task will
include a system, its component sub-systems, features of these which will change, and the mechanisms by
which the sub-systems interact.

Since the planning and design tasks of Hayes-Roth et al appeared to differ only in as far as the product was
temporally constrained or not, the fourth task Reichgelt and VVan Harmalen propose is a general design task
which involves the construction of a complex entity to meet certain constraints. These constraints will
specify both the target or end state and the present state. The present state may be a set of simple com-
ponent entities which will be specified with constraints as to their combination that will have to be met
when constructing the complex entity. In this analysis, the entity under construction may be a spatial sys-
tem such as a building, or a temporal configuration of actions such as a plan. The major difference
between this and the previous tasks is that they were analytical whereas design is synthetic and the solution
cannot be found in a pre-determined set of possible solutions. There may be conditions under which the
solution space is enumerable, although usualy it is too large. Reichgelt and Van Harmalen do not further
analyse the sub types of design task or describe the cases where the solution space may be enumerable.

A second criticism of Hayes-Roth et al has been provided by Clancey (1985). He notes the progressive
subsumption in the list that Reichgelt and Van Harmalen did, but attempts to overcome it by addressing the
concept of a system in greater detail and trying to avoid the confusions that arise from viewing the types of
system as objects where it is unclear whether programs or procedures are objects or processes. This dis-
tinction should not be dismissed as only being relevant to machine representational issues since it will bear
on the way the tasks involved in knowledge acquisition are viewed and analysed.

Hayes-Roth et al describe knowledge as consisting of descriptions, relations, relationships and procedures
in some domain of interest (after Bernstien, 1977), although they accept that in practice that knowledge
does not appear in some precipitated form that neatly fits such abstract categories. Although they differen-
tiate between knowledge and skill, they do not describe a method for analysing a particular problem into
generic units during knowledge acquisition. Although Reichgelt and Van Harmalen do not describe the
content of their generic tasks in the detail requested above, Clancey takes both the generic task description
and the taxonomy itself much further.

System Based Generic Operations

Clancey (1985) argues that a system can be characterised simply in terms of inputs and outputs. He
assumes that tasks will either interpret what exists in a system or construct a new system. Thisresultsin the
tasks of interpretation which issimilar Reichgelt and Van Harmalen's classification (or interpretation) and
construction which is similar to their design. At thislevel he does not appear to account for their other two
tasks. However, Clancey describes both monitoring and simulation (or prediction) as sub-types of
interpretation since he provides a hierarchy of task types under each of histwo major headings rather than
limiting himself to asingle dimensional list. His complete hierarchies are shown in Table 3.

Interpret working system

| identify take input and map it onto system knowledge

| | monitor detect discrepancy

| | diagnose explain monitored discrepancy

| predict describe outputs for given inputs

| control describe inputs to produce given outputs
Construct Non-working system

| specify construct a system description

| design conceptual construction

| | configure organise objects as a structure

| | plan organise objects within a process

| assemble physical construction of a system

| | modify change the structure of an existing system

Table 3: Generic Operations (after Clancey, 1985).

The interpret tasks al operate on an existing system. Consequently, that existing system can give outputs
which can be taken in and identified by comparing them with a knowledge base of a design and either sim-
ply categorise the current state in the system by monitoring, or explain that state in terms of discrepancies
between the actual system and a standard system. The existing system could be given inputs and the
predict task would be used to determine what the outputs of that system would be. Alternatively, a known
system may be required to produce known outputs, in which case the control task can be used to generate
the inputs that would be required.

All tasks which operate on a system may be classified by the binary choice of analysis (interpretation) or
synthesis (construction) at the top level. The analysis tasks can be broken down into the three categories of
recognition (identification), prediction and control on the basis of whether the single unknown is the input,
output or system itself.

There isa conflict between the monitoring and classifying tasks proposed by Reichgelt and Van Harmalen
and the monitoring and diagnosing tasks suggested by Clancey which requires further elucidation. A con-
founding was shown above in the distinction between Reichgelt and Van Harmalen's two tasks. This was
due to the way in which they accounted for time in both the performance of the task and the type of
descriptions being used for the classification. The monitoring may occur at one time or recursively, and the
data structure could be temporal or not. Clancey’s tasks both take place on a’running’ system and detect a
deviation from a standard. He does not distinguish between whether the description is temporal or not, but
between whether the task involves the ' detection’ of discrepancies or ’explains' the monitored behaviour in
terms of discrepancies. That is, the output from monitoring is a less rich description than that from diag-
nosis. Aswith Reichgelt and Van Harmalen's distinction, both tasks include the same initial input of data,
and the distinction between them arises with the process which produces a different output from each task.

For Clancey, the simulation task is subsummed as a specia type of prediction where a computational
model which is complete at some level of detail is used to predict the outputs resulting from known inputs.
This is not the same as Reichgelt and Van Harmalen's simulation where a system itself is modified in a
simulation and then both its outputs can be tested for known inputs and its inputs tested for known outputs.
These two tests correspond to Clancey’s simulation and control tasks, athough the modification prior to
the testing is a construction task.

Whereas Reichgelt and Van Harmalen only described one task which covered al forms of design,
modification, construction or planning, Clancey provides a richer analysis of these tasks. The first task of
the construct type is specify which refers to the operation of constraining a system specification in respect
of both other defined systems and the real world. Assemble is a genera task referring to the physical con-
struction of a system. This task would could require robot assembly in a computer system performing the
task. The one sub-task modify is included to cover the transformation of a system to effect a redesign by
"re-assembly’ given arequired design modification.

Design is characterised as a general conceptual operation describing the spatial and temporal interactions
of components including a characterisation of both of structure and process. Having united them under the

same task of design Clancey then draws a distinction between the two tasks of configuration and planning
which had existed in Hayes-Roth et al’s analysis. Reichgelt and Van Harmalen's arguments for the com-
putational equivalence of the two tasks are not being denied here. However, the use of a hierarchical struc-
ture of tasks permits both the computational generality and the instinctive distinction to be expressed which
their list would not. However, Clancey does not use the temporal nature of a plan the basis of his distinc-
tion. The configure task pieces together components into a whole so that the function whole will show
desired properties. A typical example of this would be VLS| design where physical objects are pieced
together so that the behaviour of the parts interact to produce the desired system behaviour. In contrast the
planning task does not operate on well structured systems but on a general system (e.g. the world) which
surrounds and transforms an entity (e.g. aperson).

A potential generic task structure for the configure task is provided in the work of Chandrasekaran and his
co-workers (Brown and Chandrasekaran, 1986; Bylander and Chandrasekaran, 1987:236,237):

Problem Type: object synthesis by plan selection and refinement.

Problem: Design an object satisfying specifications. An object can be an abstract device, e.g. a plan
or program.

Representation: The object is represented in a component hierarchy in which the children of a node
represent components of the parent. For each node, there are plans that can be used to set parameters
of the component and to specify additional constraints to be satisfied. There is additional knowledge
for selecting the most appropriate plan and to recover from failed constraints.

Important Concepts: The object and its components.

Inference strategy: To design an object, plan selection and refinement selects an appropriate plan,
which, in turn requires the design of sub-objects in a specified order. When failure occurs, failure
handling knowledge is applied to make appropriate changes.

Examples: Routine design of devices and the synthesis of everyday plans can be performed using
the generic task; e.g. MOLGEN (Friedland, 1979), R1 (McDermott, 1982).

This generic task does not provide information on the explanation mechanism required for the task, nor any
guidance in maintaining the system. Also, the description of the representation is very implementation
oriented, and would be of little use in guiding questions during knowledge acquisition, but it illustrates a
step closer to the generic task description required above than those offered by earlier analyses.

However, these general descriptions do still not offer a specification of the structure of knowledge required
which is detailed enough to motivate knowledge acquisition.

Generic Task Modelsin KADS

The most complete set of generic task models proposed both in breadth and in detail are presented in the
KADS knowledge acquisition methodology. This is currently under development (see Breuker and Wie-
linga, 1987; Haywood, 1987) and a complete task taxonomy and library of task models will be available in
the "KADS Handbook" with supporting software tools (see Anjewierden, 1987). Table 4 shows an initial
taxonomy of problem types from this methodology which is a development of that presented by Clancey.
These tasks are intended to be accepted by knowledge engineers as the appropriate categories. However |
will continue to assume that knowledge engineers will modify any taxonomy of tasks on the basis of their
own experience and will therefore describe the reasons why the distinctions have been made to provide a
basis for such personalisation.

Analysis

| prediction of behaviour
| prediction of values
odification

| identify

| | classify

| | | simple classify

| | | diagnosis

| | | | single fault diagnosis

| | | | | heuristic classification
| | | | | systematic classification
I I | | causatracing

| | | | | | localisation

| | | | multiple fault diagnosis

| | | assessment

| | monitor

| predict

I

I

M

| repair

| remedy

| control

| | maintain

Synthesis

| transformation

| design

| | transformational design

| | incremental design

| | | single stream incremental design
| | | multiple stream incremental design
| | configuration

| | decomposition

| planning

| modelling

Table 4: Taxonomy of Problem Types (after Breuker et al, 1987)

The top level categories of analysis and synthesis are similar to Clancey’s interpret and construct tasks.
In Clancey’s analysis there was some confusion about whether systems should exist or merely that designs
for systems be known. Similarly, it was not clear that modify was a valid form of assembly since a system
had to exist for the modification to take place, whereas it could not for assembly. To overcome these
doubts a third category of modification has been introduced to illustrate that a continuum and not a discrete
cut off exists between analysis tasks, where a solution has to be identified, and synthesis tasks, where a
solution has to be constructed.

The analysis tasks here are an expansion of Clancey’s interpretation tasks. The use of a hierarchy has per-
mitted the further differentiation of these on the basis of principles already mentioned.

The synthesis tasks however are somewhat different to Clancey’s. The top level classification is made on
the type of input and output that the task has. Design tasks take functional requirements as their input and
produce descriptions of an artifact as output. The distinction from Hayes-Roth et al between design operat-
ing on artifacts and planning operating on temporal events has been revived here despite the criticisms
made of it earlier. Otherwise these two tasks are the same. The modelling task takes the same inputs as
design, but in addition it requires a set of "data’ of which the solution must be an abstraction. In many
cases descriptions of component elements must be abstracted from the data. The output of the task is a
description of an artifact as for design. The transformation task takes as input a description of an artifact
and a known transformation to apply to it. The output is a description of a new artifact after the transforma-
tion has been applied. This is a task which could be classified as either design or modification, illustrating

the continuum that exists between them.

The set of task models proposed for design tasksin KADS isricher than any of the previous sets. The task
model for the general design task itself can be used to illustrate the greater depth of description of generic
tasks that KADS aims at than the earlier attempts.

It is assumed that design is a process whereby an entity must be synthesised to conform to a collection of
specified requirements or constraints. The requirements are usualy ill-specified, therefore the first stage of
the design task is to analyse the informal requirements and to produce a formal specification. The second
stage of the task will be to synthesise a detailed design from the formal specification. There are therefore
five concepts involved at this level of description: two processes - analysis and synthesis - and three
objects - informal requirements, formal specification and detailed design. The process of analysis can be
performed on the informal specification by either its expansion or its transformation.

This model is further elaborated in KADS to take into account the conceptual model of the final product
which specifies the structure of the product entity. The conceptual model is required for design tasks that
involve configuration since the global structure of the product object is not specified in these. This concep-
tual model will be developed prior to the detailed design from the formal specification. Therefore the single
process of synthesis must be decomposed since a process is required to select or aggregate elements of
the formal specification into the conceptual model. A second process is required to transform, expand or
refine this conceptual model into the final detailed design. The resulting structure for the design processis
shown in Figure 1

informal

specification

expand

formal
specification

select/
aggregate

conceptual
model

transform/

expand/

refine

detailed

design

Figure 1: Global Structure of the design process (after Breuker et al, 1987).

Earlier in this chapter it was suggested that a generic task description should contain not only the type of
problem the task would address and the inference mechanism, but also the form of knowledge used in the

solution. The KADS system has presented a taxonomy of problem types, including sub-types of design. It
has included in the description of design various objects and processes. For the first time in this series of
task descriptions these are further expanded to describe the type of knowledge expected in each. For exam-
ple, the abject informal problem statement is described as (after Breuker et al 1987):

meta-class informal problem statement This is the input of the design process, an informally for-
mulated specification of the structure to be designed. Examples: input/output specification,
specification by analogy, description, component/function specification.

consists-of: informal_system_specification constraints, requirements.

Similarly, the other object types are described as meta-classes of objects, and have types within the meta-
class further defined and exemplified. In the same way, the processes are described, although in the termi-
nology of KADS, these are termed knowledge sources. For example, the process which builds a formal
specification from an informal specification of a problem is described as (after Breuker et al 1987):

knowledge source: transformation and expansion These knowledge sources build a complete for-
mal specification of the system to be built.

input: informal problem statement This is a description of the problem that does not necessarily
include all parameters, function and constraints, but just the major ones.

output: formal specification The formal specification is a description of the system to be designed
which holds all constraints, functions and parameters. This statement is given in the language of the
domain.

methods. Currently the methods are not specified by KADS although they are assumed to be domain
dependent.

domain knowledge: This probably includes knowledge about the functions required in systems the
expert knows about, knowledge about what is achievable etc..

Currently these illustrate that although the KADS project attempts to develop knowledge type descriptions
acknowledging that they are a desired feature of a generic task model, it has not yet been completed for
design tasks. Much further research is required in analysing design situations for these to be completed but
they illustrate for the first time the depth of description required.

There are severa options as to how the sub-types of the design task can be structured. Those shown above
are only tentative within the KADS method, but they can be used to illustrate the aternatives and the
grounds for assessing them. It is generally agreed that design involves objects in states and that those
objects have attributes which can be set to values. It is aso agreed that constraints can be applied to deter-
mine acceptable values. There are three major distinctions possible.

The first distinction to be drawn is whether al the constraints can be stated initially as requirements or
whether some can only be generated in response to a design. The first option provides the general KADS
design model. The second requires a loop to exist which allows the analysis (or diagnosis) of a design to
produce new constraints which can be fed into the requirements phase. This process would combine the
KADS design and analysis tasks together into a more complex design task.

The second distinction relates to this and determines when the loop should terminate, by setting the stan-
dards of acceptable diagnosis in design. The first option is to accept a design which meets the set of con-
straints provided. The second option is to determine all the designs that meet the provided constraints and
then look for constraints which will select amoung these, until only one optimal design remains. When a
non-reducable set of designs remains a random selection will be required. The first option is usually asso-
ciated with engineering design (e.g. the generic design model suggested by Chandrasekaran above) and the
second with more creative artistic design.

The third distinction relates to how the constraints are applied to the whole design and sub-parts of it. It
may appear that design components would have to be altered, but even in engineering design the range of
options can be broad (after Chekayeb, Niedzweeki, Connor; 1987):

1) Routine Design - Select a known entity and transform it by modifying attribute values, eg. a
bigger bottle. When the entity and the attribute values are known this task becomes the transforma-
tion type of synthesis task in KADS. The process of determining the transformation and applying it
congtitute the transformational design task.

2) Re-design - Select an old design for an entity, then modify values of attributes of its components.
Modifying one component may effect other relationships to other components and further constraints
will be brought to bear. This will require the decomposition of an old design followed by transfor-
mational design. in an overall process often called hierarchical design.

3) Innovative Design - Synthesise a new configuration from old primative objects. This becomes the
configuration task in KADS.

4) Creative Design - Create New Primatives - then apply innovative design to these primatives. New
primatives can be created by converting the primatives that already exist in one relation lattice to
another lattice where they are not primative.

The fourth distinction is whether al the optionsin the design space are generated before the constraints are
applied or whether the constraints are applied to each step in the generation of the design solution space in
order to restrict the solution search. Gero and his colleuges (e.g. Rosenman, Coyne, and Gero, 1987;
Oxman and Gero, 1987) have developed design synthesis systems which generate all possible design solu-
tions that can result from a present state before applying constraints to them. This may be computationally
effective, but psychological evidence (Johnson-Laird, 1987) suggests that it is not a method used in human
creative reasoning and therefore should not provide a generic task model for knowledge acquisition.

Within this set of options a large number of design tasks can exist. The correct set of "Generic Tasks' for
knowledge aquisition can only be derived through further research and analysis. This statement of the
options however, should allow the selection of possible interpretations for any design task facing a
knowledge engineer.

The State of Research into Task M odéls.

The current state of task taxonomies has been reviewed here at length, although it will be necessary to refer
to the KADS Handbook to use the full range of the detailed models put forward their. It is clear from this
description that current models do not meet the criterialaid out for them in the introduction. The taxonomy
of models has been reasonably developed for analytic tasks, although it is still incomplete for synthesis and
modification tasks. Consequently the identification of generic tasks in any real task is not supported by an
easy to use method. However, the examples given show that it is possible to describe some real tasks in
terms of generic tasks. When the generic tasks have been identified in a real task they should provide the
knowledge engineer with sufficient information to know what types of knowledge to acquire, and motivate
the acquisition strategy. The present set of models do describe the inference strategy expected and begin to
describe the classes of knowledge expected, although these are not linked to elicitation strategies. Perhaps
the biggest problem with the present models is that they do not address the issues of explanation in the task
the KBS user will perform or maintenance by the user of the KBS. These two aspects of task models are
till very much research issues.

Although task models are still under development knowledge engineers should see the advantages offered
by their use during the analysis of aguired information from this review. They should also be in a better
position to develop their own models as their experience progresses. It should of course be remembered
that the task models described here are to be used by the knowledge engineer in analysis and to structure
elicitation sessions and not presented to the experts during knowledge €elicitation.

References
Anjewierden, A. (1987) Knowledge Acquisition Tools. AICOM 0(1).

Bainbridge, L. (1986) Asking Questions and Accessing Knowledge Future Computing Systems, 1 (2),
143-149.

Barnard, P.J. (1987) Cognitive Resources and the Learning of Human-Computer Dialogues. In J.M. Carroll
(ed.) Interfacing Thought: Cognitive Aspects of Human-Computer Interaction Cambridge, Mass.:
MIT Press.

Breuker, J. and Wielinga, B. 1987 Use of Models in the Interpretation of Verbal Data. In A. Kidd (ed.)
Knowledge Acquisition for Expert Systems. New York, NY: Plenum.

Breuker, J, Wielinga, B, van Someren, M., de Hoog, R., Schreiber, G, de Greef, P., Bredeweg, B.,
Wielemaker, J., Billeaut, J.-P., Davoodi, M., and Hayward, S. (1987) Model-Driven Knowledge Acquisi-
tion Interpretation Models. Deliverable Task A1, Esprit Project 1098, Commission of the European
Community.

Brown, D.C. and Chandrasekaran, B. (1986) Knowledge and Control for a mechanical design expert sys-
tem. Computer, 19 92-100.

Bylander, T. and Chandrasekaran, B. (1987) Generic tasks for knowledge-based reasoning: the "right"level
of abstraction for knowledge acquisition. Int. J. Man-Machine Studies, 26, 231-243.

Card, S., Moran, T. and Newell, A. (1984) The Psychology of Human-Computer Interaction Hillside,
N.J.: Lawrence Erlbaum Associates

Chekayeb, Niedzweeki, Conner (1987) Paper presented at Second International Conference on Engineering
Applications of Al.

Clancey, (1985) Heuristic Classification Artificial I ntelligence, 27, 289-350.

Friedland, P. (1979) Knowledge based experiment design in molecular genetics. Ph.D. thesis Computer
Science Dept. Stanford University.

Friding, M., Alexander, J., Messick, S., Rehfuss, S. and Shulman, S. (1985) Starting a Knowledge
Engineering Project: A Step-by-step Approach. Al Magazine 6 (3), 150-165.

Gammack, J.G. and Young, R.M. (1985) Psychologica techniques for eliciting expert knowledge. In M.A.
Bramer (ed.) Resear ch and Development in Expert Systems, Cambridge: Cambridge University Press.
Hayward (1987) How to build knowledge based systems: techniques, tools, and case studies. In ESPRIT
'87. proceedings of the Esprit Conference, pp 665-687. Commission of the European Community:
Brussels.

Hoffman, R.R. (1987) The problem of extracting the knowledge of experts from the perspective of experi-
mental psychology. Al Magazine, Summer 1987, 53-67.

Hayes-Roth, F., Waterman, D.A., and Lenet, D.B. (1983) An overview of expert systems. In F. Hayes-
Roth, D.A. Waterman, and D.B. Lenet Building Expert Systems, Addison-Wesley: Reading, Mass..

Johnson-Laird, P.N. (1987) Reasoning, Imagining and Creating. Bulletin of the British Psychological
Society, 40, 121-129.

McDermott, J. (1982) R1: arule based configurer for computer systems, Artificial I ntelligence, 19, 39-88.

Miller, R.B. (1962) Task Description and Analysis. In R.M. Gagne (ed.) Psychological principlesin sys
tem development. New York, NY: Holt, Rinehart & Winston.

Oxman, R and Gero, J.S. (1987) Using an expert system for design diagnosis and design synthesis. Expert
Systems, 4 (1), 4-15.

Rasmussen, J. (1986) | nformation Processing and Human-Machine Interaction: an approach to cog-
nitive engineering. Amsterdam: North Holland.

Reichgelt, H. and van Harmelen, F. (1986) Criteria for choosing representational languages and control
regimes for expert systems. The Knowledge Engineering Review, 2-17.

Rosenman, M.A., Coyne, R.D. and Gero, J.S. (1987) Expert systems for design applications In Applica-
tions of KBS's: based on the proceedings of the second Australian conference. Turing Institute in asso-
ciation with Addison-Wedley, 66-84.

Schweickert, R., Burton, A.M., Taylor, N.K., Corlett, E.N., Shadbolt, N.R. and Hedgecock, A.P. (1987)
Comparing knowledge elicitation techniques. a case study Artificial I ntelligence Review, 1, 245-253.

Shortliffe, E.H. and Buchanan, B.G. (1975) A model of inexact reasoning in medicine. Mathematical
Biosciences, 23, 351-379.

Slater, P.E. (1987). Building Expert Systems: cognitive emulation. Chichester, U.K.: Ellis Horwood.

Welbank, M. (1987a) A Survey of Knowledge acquisition techniques. SD Insight Report, System
Designers: Camberley U.K.

Welbank, M. (1987b) Perspectives on Knowledge Acquisition. In C.J. Pavelin and M.D. Wilson (eds.)
Proceedings of the SERC Workshop on Knowledge Acquisition for Engineering Applications. Rutherford
Appleton Laboratory Report, RAL-87-055, 14-20.

Welbank, M. (1987c) Knowledge Acquisition: A survey and British telecom experience. In T. Addis, J.
Boose and B. Gaines (eds.) Proceedings of the first European Workshop on Knowledge Acquisition
for Knowledge-Based Systems. Reading University: Reading, U.K.

Wilson, M.D., Barnard, P.J., Green, T.R.G., and Maclean, A. (1988) Knowledge-Based Task Analysis for
Human-Computer Systems, in G.C. van deer Veer, T.R.G. Green, J-M. Hoc and D. Murray (eds.) Work-
ing with Computers: theory versus outcome. London, U.K.: Academic Press

