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ABSTRACT
The problem of finding good preconditioners for the numerical solution of a certain important

class of indefinite linear systems is considered. These systems are of a 2 by 2 block (KKT)

structure in which the (2,2) block (denoted by −C) is assumed to be nonzero.

Keller, Gould and Wathen (SIAM J. Matrix Anal. Appl., 21(4):1300-1307, 2000) introduced

the idea of using constraint preconditioners that have a specific 2 by 2 block structure for the case

of C being zero. We shall give results concerning the spectrum and form of the eigenvectors when

a preconditioner of the form considered by Keller, Gould and Wathen is used but the system we

wish to solve may have C 6= 0. In particular, the results presented here indicate clustering of

eigenvalues and, hence, faster convergence of Krylov subspace iterative methods when the entries

of C are small; such a situation arises naturally in interior point methods for optimization and

we present results for such problems which validate our conclusions.
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1 Introduction

The solution of systems of the form

[
A BT

B −C

]

︸ ︷︷ ︸
A

C

[
x

y

]
=

[
c

d

]

︸ ︷︷ ︸
b

, (1.1)

where A ∈ R
n×n, C ∈ R

m×m are symmetric and B ∈ R
m×n, is often required in optimiza-

tion and other various fields.

Example 1.1 (Nonlinear Programming). Consider the convex nonlinear optimization

problem

minimize f(x) such that c(x) ≥ 0, (1.2)

where x ∈ R
n, and f : R

n 7→ R and −c : R
n 7→ R

bm are convex and twice differentiable.

Primal-dual interior point methods [18] for this problem aim to track solutions to the

(perturbed) optimality conditions

∇f(x) = BT (x)y and Y c(x) = µe, (1.3)

where y are Lagrange multipliers (dual variables), e is the vector of ones,

B(x) = ∇c(x) and Y = diag{y1, y2, . . . , y bm},

as the positive scalar parameter µ is decreased to zero. The Newton correction (∆x, ∆y)

to the solution estimate (x, y) of (1.3) satisfy the equation [3]:

[
A(x, y) −BT (x)

Y B(x) C(x)

] [
∆x

∆y

]
=

[
−∇f(x) + BT (x)y

−Y c(x) + µe

]
,

where

A(x, y) = ∇xxf(x) −
bm∑

i=1

yi∇xxci(x) and C(x) = diag{c1(x), c2(x), . . . , c bm(x)}.

It is common to eliminate the variables ∆y from the Newton system. Since this may

introduce unwarranted ill conditioning, it is often better [8] to isolate the effects of poor

conditioning by partitioning the constraints so that the values of those indexed by I are

“large” while those indexed by A are “small”, and instead to solve

[
A + BT

I C−1
I YIBI BT

A

BA −CAY −1
A

] [
∆x

−∆yA

]
=

[
−∇f + BT

AyA + µBT
I C−1

I e

−cA + µY −1
A e

]

where, for brevity, we have dropped the dependence on x and y. The matrix CAY −1
A is sym-

metric and positive definite; as the iterates approach optimality, the entries of this matrix

become small. The entries of BT
I C−1

I YIBI also become small when close to optimality.



Using constraint preconditioners with regularized saddle-point problems 3

Example 1.2 (Stokes). Mixed finite element (and other) discretization of the Stokes

equations

−∇2~u + ∇p = ~f in Ω

∇ · ~u = 0 in Ω,

for the fluid velocity ~u and pressure p in the domain Ω ⊂ R
2 or R

3 yields linear systems in

the saddle-point form (1.1) (for derivation and the following properties of this example see

[6]). The symmetric block A arises from the diffusion terms −∇2~u and BT represents the

discrete gradient operator whilst B represents its adjoint, the (negative) divergence. When

(inf-sup) stable mixed finite element spaces are employed, C = 0, however for equal order

and other spaces which are not inherently stable, stabilized formulations yield symmetric

and positive semi-definite matrices C which typically have a large-dimensional kernel - for

example for the famous Q1–P0 element which has piecewise bilinear velocities and piecewise

constant pressures in 2-dimensions, C typically has a kernel of dimension m/4.

We shall assume that 0 < m ≤ n and B is of full rank. Various preconditioners which

take the general form

P
C

=

[
G BT

B −C

]
, (1.4)

where G ∈ R
n×n is some symmetric matrix, have been considered (for example, see [4, 13,

17].) When C = 0, (1.4) is commonly known as a constraint preconditioner [2, 12]. In

practice C is often positive semi-definite (and frequently diagonal).

In interior-point methods a sequence of such problems are solved with the entries in C

generally becoming small as the optimization iteration progresses. That is, the regulariza-

tion is successively reduced as the optimizer gets closer to the minimum. For the Stokes

problem, the entries of C are generally small since they scale with the underlying mesh

size and so reduce for finer grids. This motivates us to look at the spectral properties of

P−1A
C
, where

P =

[
G BT

B 0

]
, (1.5)

but C 6= 0, Section 2.

The obvious advantage in being able to use such a constraint preconditioner is as

follows: if B remains constant in each system of the form (1.1), and we choose G in

our preconditioner to remain constant, then the preconditioner P will be unchanged. Any

factorizations required to carry out the preconditioning steps in a Krylov subspace iteration

will only need to be done once and then used during each execution of the chosen Krylov

subspace iteration, instead of carrying out the factorizations at the beginning of each

execution.

For symmetric (and in general normal) matrix systems, the convergence of an applicable

iterative method is determined by the distribution of the eigenvalues of the coefficient

matrix. It is often desirable for the number of distinct eigenvalues to be small so that the
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rate of convergence is rapid. For non-normal systems the convergence is not so readily

described, see [11, page 6].

2 Preconditioning A
C

by P
Suppose that we precondition A

C
by P, where P is defined in (1.5). The decision to

investigate this form of preconditioner is motivated in Section 1. We shall use the following

assumptions in our theorems:

A1 B ∈ R
m×n (m < n) has full rank,

A2 Z ∈ R
n×(n−m) is a basis for the nullspace of B,

A3 C has rank p > 0 and is factored as EDET , where E ∈ R
m×p and has orthonormal

columns, and D ∈ R
p×p is non-singular,

A4 F ∈ R
m×(m−p) is such that its columns form a basis for the nullspace of C.

Theorem 2.1. Assume that A1–A4 hold, then the matrix P−1A
C

has:

• at least 2(m − p) eigenvalues at 1,

• its non-unit eigenvalues defined by the finite (and non-unit) eigenvalues of

quadratic eigenvalue problem problem

0 = λ2BT ED−1ET Bu − λ(G + 2BT ED−1ET B)u + (A + BT ED−1ET B)u,

subject to u = Zw1 + BT (BBT )−1Ew2 for some w2 6= 0.

Proof. We shall consider the cases of p = m and 0 < p < m separately.

Case p = m: The generalized eigenvalue problem takes the form

[
A BT

B −C

] [
x

y

]
= λ

[
G BT

B 0

] [
x

y

]
. (2.6)

Expanding this out we obtain

Ax + BT y = λGx + λBT y, (2.7)

Bx − Cy = λBx. (2.8)

From (2.8) we deduce that either λ = 1 and y = 0, or λ 6= 1. If the former holds, then

(2.7) implies that x must satisfy

Ax = Gx.
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Thus, the associated eigenvectors will take the form

[ xT 0T ]T ,

where x 6= 0 satisfies Ax = Gx. There is no guarantee that such an eigenvector will

exist, and therefore no guarantee that there are any unit eigenvalues.

If λ 6= 1, then Equation (2.8) and the non-singularity of C gives

y = (1 − λ)C−1Bx, x 6= 0.

By substituting this into (2.7) and rearranging we obtain the quadratic eigenvalue

problem (
λ2BT C−1B − λ

(
G + 2BT C−1B

)
+ A + BT C−1B

)
x = 0. (2.9)

The non-unit eigenvalues of (2.6) are therefore defined by the finite (non-unit) eigenval-

ues of (2.9). Note that since BT C−1B has rank m, (2.9) has 2n−(n−m) = n+m finite

eigenvalues, but at most n linearly independent eigenvectors [16, Section 3.1]. Hence,

P−1A
C

has at most n linearly independent eigenvectors associated with the non-unit

eigenvalues when p = m.

Now, assumption A2 implies that

C−1 = ED−1ET ,

and, hence, letting u = x we complete our proof for the case p = m.

Case 0 < p < m: Any y ∈ R
m can be written as y = Eye + Fyf . Substituting this into

(2.6) and premultiplying the resulting generalized eigenvalue problem by




I 0

0 ET

0 F T



 ,

we obtain



A BT E BT F

ET B −D 0

F T B 0 0







x

ye

yf


 = λ




G BT E BT F

ET B 0 0

F T B 0 0







x

ye

yf


 . (2.10)

Noting that the (3,3) block has dimension (m − p) × (m − p) and is a zero matrix in

both coefficient matrices, we can apply Theorems 2.1 and 2.3 from [12] to obtain:

• P−1A
C

has an eigenvalue at 1 with multiplicity 2(m − p),

– there are m−p linearly independent eigenvectors of the form
[

0T yT
e yT

f

]T

that correspond to the case λ = 1,

– there are at most n eigenvectors of the form
[

xT 0T yT
f

]T
arising from

Ax = ωGx with x linearly independent, ω = 1, and λ = 1,
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• the remaining n − m + 2p eigenvalues are defined by the generalized eigenvalue

problem

NT

[
A BT E

ET B −D

]
Nw = λNT

[
G BT E

ET B 0

]
Nw, (2.11)

where N is an (n + p) × (n − m + 2p) basis for the nullspace of
[

F TB 0
]
.

One choice for N is

N =

[
Z BT

(
BBT

)−1
E 0

0 0 I

]
.

Substituting this into (2.11) we obtain the generalized eigenvalue problem




ZT AZ ZT AW 0

W T AZ W T AW I

0 I −D







w1

w2

w3


 = λ




ZT GZ ZT GW 0

W T GZ W TGW I

0 I 0







w1

w2

w3


 , (2.12)

where W = BT
(
BBT

)−1
E. This generalized eigenvalue problem resembles that of (2.6)

in the first case considered in this proof. Therefore, the non-unit eigenvalues of P−1A
C

are equal to the finite (and non-unit) eigenvalues of the quadratic eigenvalue problem

(
λ2

[
0 0

0 D−1

]
− λ

[
ZT GZ ZT GW

W T GZ W T GW + 2D−1

]
+

[
ZT AZ ZT AW

W T AZ W T AW + D−1

]) [
w1

w2

]
= 0,

(2.13)

subject to w2 6= 0.

Let S ∈ R
m×m be the non-singular matrix

[
Z W

]
, then

STBT ED−1BS =

[
0 0

0 D−1

]
.

Hence, the quadratic eigenvalue problem (2.13) can be written as

ST
(
λ2BT ED−1ET B − λ(G + 2BT ED−1ET B) + A + BT ED−1ET B

)
S

[
w1

w2

]
= 0,

subject to w2 = 0. The non-unit eigenvalues of P−1A
C

will, therefore, also be defined

by the finite (and non-unit) eigenvalues of the equivalent quadratic eigenvalue problem

(
λ2BT ED−1ET B − λ(G + 2BT ED−1ET B) + A + BT ED−1ET B

)
u = 0, (2.14)

where u can be expressed as u = Zw1 + BT (BBT )−1w2 for some w2 6= 0. There are at

most n−m+ p linearly independent eigenvectors associated with the finite eigenvalues

of this quadratic eigenvalue problem, implying that P−1A
C

has at most n − m + p

linearly independent eigenvectors of the form
[

xT yT
e yT

f

]T
. �
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The definition of some of the eigenvalues through a quadratic eigenvalue problem is

interesting and shall be examined in more detail later on. If the matrix C has full rank (as

is generally the case when using interior point methods to solve optimization problems),

the requirement that u = Zw1 + BT (BBT )−1Ew2 for some w2 6= 0 is equivalent to the

trivial u 6= 0.

Theorem 2.2. Assume that A1–A4 hold. Then the matrix P−1A
C

has n+m eigen-

values as defined in Theorem 2.1 and m− p + i + j linearly independent eigenvectors.

There are

1. m−p eigenvectors of the form [ 0T 0T yT
f ]T that correspond to the case λ = 1;

2. i (0 ≤ i ≤ n) eigenvectors of the form [ xT 0T yT
f ]T arising from Ax = σGx

with x linearly independent, σ = 1, and λ = 1;

3. j (0 ≤ j ≤ n−m + p) eigenvectors of the form [ xT yT
e yT

f ]T that correspond

to the case λ 6= 1 and Cy 6= 0 with y = Fyf + Eye.

Proof. We need only prove that the m− p + i + j eigenvectors of P−1A
C

defined in

the proof of Theorem 2.1 are linearly independent.

We need to show that



0
...

0


 =




0 · · · 0

0 · · · 0

y
(1)
f1 · · · y

(1)
f(m−p)







a
(1)
1
...

a
(1)
m−p


 +




x
(2)
1 · · · x

(2)
i

0 · · · 0

y
(2)
f1 · · · y

(2)
fi







a
(2)
1
...

a
(2)
i




+




x
(3)
1 · · · x

(3)
j

y
(3)
e1 · · · y

(3)
ej

y
(3)
f1 · · · y

(3)
fj







a
(3)
1
...

a
(3)
j


 (2.15)

implies that the vectors a(l) (l = 1, 2, 3) are zero vectors. Multiplying (2.15) by A
C

and P−1, and recalling that in the previous equation the first matrix arises from λl = 1

(l = 1, . . . , m), the second matrix from the case that λl = 1 and ωl = 1 (l = 1, . . . , i),

and the third matrix from λl 6= 1 (l = 1, . . . , j), gives




0
...

0


 =




0 · · · 0

0 · · · 0

y
(1)
f1 · · · y

(1)
f(m−p)







a
(1)
1
...

a
(1)
m−p


 +




x
(2)
1 · · · x

(2)
i

0 · · · 0

y
(2)
f1 · · · y

(2)
fi







a
(2)
1
...

a
(2)
i




+




x
(3)
1 · · · x

(3)
j

y
(3)
e1 · · · y

(3)
ej

y
(3)
f1 · · · y

(3)
fj







λ
(3)
1 a

(3)
1

...

λ
(3)
j a

(3)
j


 . (2.16)
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Subtracting (2.15) from (2.16) gives



x
(3)
1 · · · x

(3)
j

y
(3)
e1 · · · y

(3)
ej

y
(3)
f1 · · · y

(3)
fj







(λ
(3)
1 − 1)a

(3)
1

...

(λ
(3)
j − 1)a

(3)
j


 =




0
...

0


 . (2.17)

The linear independence of
[

x
(3)T
l y

(3)T
el

]T

(l = 1, . . . , j) in (2.14) gives rise to (λ
(3)
l −

1)a
(3)
l = 0 (l = 1, . . . , j). The eigenvalues λ

(3)
l (l = 1, . . . , j) are non-unit which implies

that a
(3)
l = 0 (l = 1, . . . , j).

We also have linear independence of x
(2)
l (l = 1, . . . , i), implies that a

(2)
l = 0 (l =

1, . . . , i). Equation 2.15 simplifies to



0 · · · 0

0 · · · 0

y
(1)
f1 · · · y

(1)
f(m−p)







a
(1)
1
...

a
(1)
(m−p)


 =




0
...

0


 .

However, y
(1)
fl (l = 1, . . . , m − p) are linearly independent giving a

(1)
l = 0.

�

Remark; P−1A
C

has at least 2(m−p) unit eigenvalues, but there is no guarantee that the

associated eigenvectors are all linearly independent. However, we can divide these eigen-

vectors into two groups such that all the eigenvectors in a group are linearly independent

and each group has at least m − p members.

2.1 Analysis of the quadratic eigenvalue problem

We note that the quadratic eigenvalue problem (2.14) can have negative and complex

eigenvalues, see [16]. The following theorem gives sufficient conditions for general quadratic

eigenvalue problems to have real and positive eigenvalues.

Theorem 2.3. Consider the quadratic eigenvalue problem

(
λ2K − λL + M

)
x = 0, (2.18)

where M, L,∈ R
n×n are symmetric positive definite, and K ∈ R

n×n is symmetric

positive semidefinite. Define γ(M, L, K) to be

γ(M, L, K) = min
{
(xT Lx)2 − 4(xT Mx)(xT Kx) : ‖x‖2 = 1

}
.

If γ(M, L, K) > 0, then the eigenvalues λ are real and positive.



Using constraint preconditioners with regularized saddle-point problems 9

Proof. From [16, Section 1] we know that under our assumptions the quadratic

eigenvalue problem (
µ2M + µL + K

)
x = 0

has real and negative eigenvalues. Suppose we divide this equation by µ2 and set

λ = −1/µ. The quadratic eigenvalue problem (2.18) is obtained, and since µ is real and

negative, λ is real and positive. �

We would like to be able to use the above theorem to show that, under suitable as-

sumptions, all the eigenvalues of P−1H are real and positive. Let

D̃ = BT ED−1ET B, (2.19)

where D and E are as defined in Theorem 2.1. If we assume that A+D̃ is positive definite,

then we may write A+D̃ = RT R for some nonsingular matrix R. The quadratic eigenvalue

(2.14) is similar to

(
λ2R−T D̃R−1 − λR−T (G + 2D̃)R−1 + I

)
z = 0,

where z = Rw. Thus, if we assume that A + D̃ and G + 2D̃ are positive definite, and can

show that

γ(I, R−T (G + 2D̃)R−1, R−T D̃R−1) > 0,

where γ(·, ·, ·) is as defined in Theorem 2.3, then we can apply the above theorem to show

that (2.14) has real and positive eigenvalues.

Let us assume that ‖z‖2 = 1, then

(
zT R−T

(
G + 2D̃

)
R−1z

)2

− 4zT zzT R−T D̃R−1z

=
(
zT R−T GR−1z + 2zT R−T D̃R−1z

)2

− 4zT R−T D̃R−1z

=
(
zT R−T GR−1z

)2
+ 4zT R−T D̃R−1z

(
zT R−T GR−1z + zT R−T D̃R−1z − 1

)

=
(
wTGw

)2
+ 4wT D̃w

(
wT Gw + wT D̃w − 1

)
, (2.20)

where 1 = ‖z‖2 = ‖Rw‖2 = ‖w‖A+ eD . Clearly, we can guarantee that (2.20) is positive if

wT Gw + wT D̃w > 1 for all w such that ‖w‖
A+ eD

= 1,

that is

wTGw + wT D̃w

wT

(
A + D̃

)
w

>
wT

(
A + D̃

)
w

wT

(
A + D̃

)
w

for all w 6= 0.

Rearranging we find that we require

wTGw > wTAw
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for all w 6= 0. Thus we need only scale any positive definite G such that wT Gw
wT w

> ‖A‖2
2 for

all w 6= 0 to guarantee that (2.20) is positive for all w such that ‖w‖A+ eD = 1. For example,

we could choose G = αI, where α > ‖A‖2
2 .

Using the above in conjunction with Theorem 2.1 we obtain the following technical

result:

Theorem 2.4. Suppose that A1–A4 hold and D̃ is as defined in (2.19). Further,

assume that A + D̃ and G + 2D̃ are symmetric positive definite, D̃ is symmetric

positive semidefinite and

min
{

(zT Gz)2 + 4(zT D̃z)(zT Gz + zT D̃z − 1) : ‖z‖A+ eD = 1
}

> 0,

then all the eigenvalues of P−1A
C

are real and positive.

Observing that the coefficient matrices in (2.10) are of the form of those considered

by Gould, Hribar and Nocedal [9], we could apply a projected preconditioned conjugate

gradient method to solve (1.1) if all the eigenvalues of P−1A
C

are real and positive and we

have a decomposition of C as in A3. Theorem 2.4 therefore gives conditions which allow

us to use such a method. Dollar gives a variant of this method in which no decomposition

of C is required, see [5, Section 5.5].

3 Convergence

In the context of this paper, the convergence of an iterative method under preconditioning

is not only influenced by the spectral properties of the coefficient matrix, but also by

the relationship between m, n and p. We can determine an upper bound on the number of

iterations of an appropriate Krylov subspace method by considering minimum polynomials

of the coefficient matrix.

Definition 3.1. Let A ∈ R
(n+m)×(n+m). The monic polynomial f of minimum degree such

that f(A) = 0 is called the minimum polynomial of A.

Krylov subspace theory states that iteration with any method with an optimality prop-

erty, e.g. GMRES, will terminate when the degree of the minimum polynomial is attained,

[15]. In particular, the degree of the minimum polynomial is equal to the dimension of the

corresponding Krylov subspace (for general b), [14, Proposition 6.1].

Theorem 3.1. Suppose that the assumptions of Theorem 2.4 hold. The dimension

of the Krylov subspace K(P−1A
C
, b) is at most min{n − m + 2p + 2, n + m}.
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Proof. Suppose that 0 < p < m. As in the proof to Theorem 2.1, the generalized

eigenvalue problem can be written as




A BT E BT F

ET B −D 0

F T B 0 0







x

ye

yf


 = λ




G BT E BT F

ET B 0 0

F T B 0 0







x

ye

yf


 . (3.21)

Thus, applying Theorem 3.5 from [12], the dimension of the Krylov subspace K(P−1A
C
, b)

is at most min{n + p − (m − p) + 2, n + m} = min{n − m + 2p + 2, n + m}.

If p = m, then trivially K(P−1A
C
, b) has dimension at most min{n−m+2p+2, n+m}.

�

3.1 Clustering of eigenvalues when ‖C‖ is small

When using interior-point methods to solve optimization problems, the matrix C is gen-

erally diagonal and of full rank. In this case, Theorem 3.1 would suggest that there is

little advantage of using a constraint preconditioner of the form P over any other precon-

ditioner. However, in interior-point methods the entries of C also become small as we get

close to optimality and, hence, ‖C‖ is small. In the following we shall assume that the

norm considered is the `2 norm, but the results can be generalized to other norms.

Theorem 3.2. Let ζ > 0, δ ≥ 0, ε ≥ 0 and δ2 + 4ζ(δ − ε) ≥ 0 then the roots of the

quadratic function

λ2ζ − λ(δ + 2ζ) + ε + ζ = 0

satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2max

{
δ

2ζ
,

√
|δ − ε|

ζ

}

Proof. The roots of the quadratic equation satisfies

λ =
δ + 2ζ ±

√
(δ + 2ε)2 − 4(ε + ζ)

2ζ
= 1 +

δ

2ζ
±

√
δ2 + 4ζ(δ − ε)

2ζ

= 1 +
δ

2ζ
±

√(
δ

2ζ

)2

+
δ − ε

ζ
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If
δ − ε

ζ
≥ 0, then

√(
δ

2ζ

)2

+
δ − ε

ζ
≤

√√√√2 max

{(
δ

2ζ

)2

,
δ − ε

ζ

}

=
√

2max

{
δ

2ζ
,

√
δ − ε

ζ

}
.

If
δ − ε

ζ
≤ 0, then the assumption δ2 + 4ζ(δ − ε) ≥ 0 implies that

(
δ

2ζ

)2

≥ ε − δ

ζ
≥ 0.

Hence,
√(

δ

2ζ

)2

+
δ − ε

ζ
≤ δ

2ζ
<

√
2max

{
δ

2ζ
,

√
ε − δ

ζ

}
.

�

Remark: the important point to notice is that if ζ � δ and ζ � ε, then λ ≈ 1 in Theorem

3.2.

Theorem 3.3. Assume that A1–A4 hold, A+ D̃ and G+2D̃ are symmetric positive

definite, D̃ is symmetric positive semidefinite and

min
{

(zT Gz)2 + 4(zT D̃z)(zT Gz + zT D̃z − 1) : ‖z‖
A+ eD

= 1
}

> 0,

then all the eigenvalues of P̃−1A
C

are real and positive. In addition, the eigenvalues

λ of (2.14) subject to ET Bu 6= 0, will also satisfy

|λ − 1| ≤ O(‖C‖).

Proof. That the eigenvalues of P̃−1A
C

are real and positive follows directly from

Theorem 2.4.

Suppose that C = EDET is a reduced singular value decomposition of C, where the

columns of E ∈ R
m×p are orthogonal and D ∈ R

p×p is diagonal with entries dj that are

non-negative and in non-increasing order.

In the following, ‖.‖ = ‖.‖2 , so that

‖C‖ = ‖D‖ = d1.
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Premultiplying the quadratic eigenvalue problem (2.14) by uT gives

0 = λ2uT D̃u − λ(uTGu + 2uT D̃u)

+(uTAu + uT D̃u). (3.22)

Assume that v = ET Bu and ‖v‖ = 1, where u is an eigenvector of the above quadratic

eigenvalue problem, then

uT D̃u = vT D−1v =
v2
1

d1
+

v2
2

d2
+ . . . +

v2
m

dm

≥ vTv

d1
=

1

‖C‖ .

Hence,
1

uT D̃u
≤ ‖C‖ .

Let ζ = uT D̃u, δ = uT Gu and ε = uTAu, then (3.22) becomes

λ2ζ − λ(δ + 2ζ) + ε + ζ = 0.

From Lemma 3.2, λ must satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2max

{
δ

2ζ
,

√
|δ − ε|

ζ

}
.

Now δ ≤ c ‖G‖ , ε ≤ c ‖G‖ , where c is an upper bound on ‖u‖ and u are eigenvectors of

(2.14) subject to
∥∥ET Bu

∥∥ = 1. Hence, the eigenvalues of (2.14) subject to ET Bu 6= 0

satisfy

|λ − 1| = O(‖C‖).
�

This clustering of part of the spectrum of P−1A
C

will often translate into a speeding

up of the convergence of a selected Krylov subspace method, [1, Section 1.3].

3.2 Numerical Examples

We shall verify our theoretical results by considering some simple saddle point systems.

Example 3.4 (C nonsingular). Consider the matrices

A
C

=




1 0 1

0 1 0

1 0 −1



 , P =




2 0 1

0 2 0

1 0 0



 ,

so that m = p = 1 and n = 2. The preconditioned matrix P−1A
C

has eigenvalues at 1
2
,

2−
√

2 and 2+
√

2. The corresponding eigenvectors are
[

0 1 0
]T

,
[

1 0 (
√

2 − 1)
]T
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and
[

1 0 −(
√

2 + 1)
]T

respectively. The preconditioned system P̃−1A
C

has all non-

unit eigenvalues, but this does not go against Theorem 2.1 because m − p = 0. With our

choices of A
C

and P̃ , and setting D = I and E = I (C = EDET ), the quadratic eigenvalue

problem (2.14) is

(
λ2

[
1 0

0 0

]
− λ

[
4 0

0 2

]
+

[
2 0

0 1

]) [
u1

u2

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues which are λ = 1
2
, λ = 2−

√
2

and λ = 2 +
√

2.

Example 3.5 (C semidefinite). Consider the matrices

A
C

=




1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 −1


 , P =




2 0 1 0

0 2 0 1

1 0 0 0

0 1 0 0


 ,

so that m = 2, n = 2 and p = 1. The preconditioned matrix P−1A
C

has two unit

eigenvalues and a further two at λ = 2 −
√

2 and λ = 2 +
√

2. There is just one lin-

early independent eigenvector associated with the unit eigenvector; specifically this is[
0 0 1 0

]T
. For the non-unit eigenvalues, the eigenvectors are

[
0 1 0 (

√
2 − 1)

]T

and
[

0 1 0 −(
√

2 + 1)
]T

respectively.

Since 2(m−p) = 2, we correctly expected there to be at least two unit eigenvalues, The-

orem 2.1. The remaining eigenvalues will be defined by the quadratic eigenvalue problem

(2.14): (
λ2

[
0 0

0 1

]
− λ

[
2 0

0 4

]
+

[
1 0

0 2

]) [
u1

u2

]
= 0, u2 6= 0,

where D = [1] and E =
[

0 1
]T

are used as factors of C. This quadratic eigenvalue

problem has three finite eigenvalues of which two correspond to the case u = ZT w1 +

BT (BBT )−1Ew2 for some w2 6= 0, i.e. u2 6= 0. These are λ = 2 −
√

2 and λ = 2 +
√

2; the

corresponding eigenvectors have u1 = 0.

Example 3.6 (C with small entries). Suppose that A
C

and P are as in Example 3.4,

but C = [10−a] for some positive real number a. Setting D = 10−aI and E = I (C =

EDET ), the quadratic eigenvalue problem (2.14) is

(
λ2

[
10a 0

0 0

]
− λ

[
2 + 2 × 10a 0

0 2

]
+

[
1 + 10a 0

0 1

]) [
xy

xz

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues: λ = 1
2
,

λ = 1 + 10−a ± 10−a
√

1 + 10a.

For large values of a, λ ≈ 1 + 10−a ± 10−
a

2 ; the eigenvalues will be close to 1.
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The CUTEr test set [10] provides a set of quadratic programming problems. We shall

use the problem CVXQP2 S in the following examples. This problem is very small with

n = 100 and m = 25. “Barrier” penalty terms (in this case 1.1) are added to the diagonal

of A to simulate systems that might arise during and iteration of an interior-point method

for such problems. We shall set G = diag(A), and C = α × diag(0, . . . , 0, 1, . . . , 1), where

α is a positive, real parameter that we will change.

All tests were performed on a dual Intel Xeon 3.20GHz machine with hyperthreading

and 2GiB of RAM. It was running Fedora Core 2 (Linux kernel 2.6.8) with Matlab
R© 7.0.

The linear systems were solved using the Simplified Quasi-Minimal Residual Algorithm

(SQMR) [7] – Matlab
R© code for SQMR can be obtained from the Matlab

R© Central File

Exchange at http://www.mathworks.fr/matlabcentral/. We terminate the iteration

when the value of residual is reduced by at least a factor of 10−8.

In Figure 3.1 we compare the performance (in terms of iteration count) between using

a preconditioner of the form P and one of the form P
C
, equations (1.5) and (1.4) respec-

tively. The matrix C used in this set of results takes the form αI. Although the SQMR

method doesn’t have an optimality property as was assumed in Section 3, as α becomes

smaller, we hope that the difference between the number of iterations required by the two

preconditioners decreases. We observe that, in this example, once α ≤ 10−3 there is little

benefit in reproducing C in the preconditioner.

In Figure 3.2 we also compare the performance (in terms of iteration count) between

using a preconditioner of the form P and one of the form P
C
, Equations (1.5) and (1.4)

respectively. However, we have now set C = α × diag(0, . . . , 0, 1, . . . , 1), where rankC =

bm/2c . We observe that the convergence is faster in the second figure - this is as we

would expect because of there now being a guarantee of at least 24 unit eigenvalues in the

preconditioned system compared to the possibility of none. Similar results can be found

in [5] where a projected preconditioned conjugate gradient method has been used to solve

the linear systems instead of SQMR.

4 Conclusion

In this paper, we have investigated a new class of preconditioner for indefinite linear sys-

tems that incorporate the (1,2) and (2,1) blocks of the original matrix. These blocks are

often associated with constraints. We have shown that if C has rank p > 0, then the

preconditioned system has at least 2(m − p) unit eigenvalues, regardless of the structure

of G. In addition, we have shown that if the entries of C are very small, then we will

expect an additional 2p eigenvalues to be clustered around 1 and, hence, for the number

of iterations required by our chosen Krylov subspace method to be dramatically reduced.

These later results are of particular relevance to interior point methods for optimization.
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Figure 3.1: Number of SQMR iterations when either (a) P or (b) P
C

are used as precon-

ditioners for C = αI.
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Figure 3.2: Number of SQMR iterations when either (a) P or (b) P
C

are used as precon-

ditioners for C = α × diag(0, . . . , 0, 1, . . . , 1), where rankC = bm/2c .
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