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INTRODUCTION

The analysis of tasks is a fundamental and important process in many areas of applied behavioural
science. Task analysis offers methods for exploring relationships between the properties of systems
and user performance. Traditionally (eg. see Miller, 1962), the analyst takes descriptions of the cues
that should be perceived and the actions that should be performed, and maps these onto behavioural
units; but working with computers presents novel problems. It isthe user’s conceptual skills, not the
perceptual motor skills of a previous generation of technology, that must now be automated. Suc-
cessful task execution now depends critically on the user’s knowledge of the system, its properties,
capabilities, and requirements. Units of behaviour can no longer usefully be viewed in isolation.

We shall review recent progress towards incorporating knowledge requirements into task analysis,
comparing eleven forms of task analysis. All have been developed with the aim of describing
knowledge intensive tasks in HCI; but naturally enough, different techniques address different
aspects in differing degrees of detail, and some techniques have been more fully developed than oth-
ers. Themajor characteristics we shall stress are the following.

As Morton et a. (1979) point out in their Block Interaction Model, many different types (' blocks')
of knowledge influence the user’s representation of a current problem or task. One major division
separates the knowledge held by the ideal user from non-ideal knowledge, such as distorted or inac-
curate versions of the ideal knowledge, or input from other sources such as analogy with other sys-
tems or inferences from natural language.

User Centered Task Dynamics

We shall distinguish between analysis methods that explicitly describe the user’s goals - and possibly
the higher level intentions as well - and more global methods which evaluate the knowledge required
to account for the user’s actions without specifying any particular steps, or which concentrate on
comparing the overall structure of differing methods to accomplish tasks without descending to
detail.

We shall also note attempts to describe short term transitions in user’s mental representations, such
as which machine mode the user believes is currently in force; and long term transitions, including
learning and associated changes in representations.

Cognitive Limitations on Processing

Analyses can either present functional descriptions of processing and knowledge representation, or
can go further and specify limitations of the human information processing mechanism, such as con-
straints on memory capacities or limitations on perception, or parameters for process times.

Use of the Technique

Each section will describe how easy it is to employ an analysis technique; what knowledge the

analyst would have acquire to use the technique, and what limits and cautions the analyst should be
aware of when using a technique.

The eleven techniques that we shall review can be grouped under four headings, as follows.



Group 1: analyses of knowledge content in real world tasks:
i)  Task Strategies approach (Miller, 1974);
ii) Task Analysisfor Knowledge Descriptions (Johnson et al.,
1984);
iii)  Command Language Grammar (Moran, 1981);.

Group 2: analyses designed to predict difficulties from interface specifications:

iv) Externa-Internal Task Mapping Analysis (Moran, 1983);
v) Task Action Grammar (Payne and Green, 1986);

vi) The GOMS family of models (Card et a., 1983);

vii) The User-Device model (Kieras and Polson, 1985).

Group 3: analyses of users conceptual structures:
viii) Task Analysisfor Information Structure Description (Wilson
etal., 1985);
iX) Anaysisof Menu Systems (Y oung and Hull, 1983).

Group 4: analyses of cognitive activities
X) Decomposition of mental activity (Norman, 1986);
xi) Cognitive Task Analysis (Barnard, 1987).

In order to focus upon their broader properties, the descriptions of individual approaches will neces-
sarily be brief. Likewise, several prominent analyses have not been included for lack of space (eg.
Reisner, 1981; Duncan, 1974; Bullen and Bennett, 1983; Sasso, 1985; Rasmussen, 1986). To avoid
overlap, we have aso abbreviated the descriptions of Task-Action Grammar, the GOMS family, and
the User-Device model, since these are described at length in the chapter by Green, Schiele and
Payne in this volume, and have confined ourselves to discussing the four characteristics listed above.

GROUP 1
In this group of methods, the focus is on analyses of the knowledge content in real world tasks.
i) The Task Strategies Approach

Miller (1974) created a descriptive and analytic terminology to represent the generalised information
processing functions of a highly skilled operator. The technique was developed prior to many recent
developments in HCI, but it is a useful point of departure because it was an early attempt to bring
cognitive factors into task analysis. In this approach, there is no specific representation of
knowledge or of cognitive resources.

For the purpose of analysis "atask consists of a series of goal-directed transactions controlled by one
or more 'programs’ that guide the operations by a human operator of a prescribed set of tools
through a set of completely or partially predicted environmental states® (Miller, 1973, p 11). The
spirit of the analysisis captured in an example: "even a piano mover should scan and detect a marble
on the stairs, interpret its potential significance, and devise a foot-moving strategy that will avoid its
untoward possibilities’ (Miller, 1973, p 3). A task is described in terms of 25 task functions which
refer to possible cognitive actions (eg. detect, transmit plan) or entities (eg. a "message”, a "goal
image" or "short term memory buffer"). A complete list is given in Fleishman & Quaintance (1984).
The analysis requires four stages:



identifying key aspects of the environment (eg. goals
and stressors)

identifying what needs to be learned

naming the task functions

Methods are specified for both identifying and teaching work strategies, which can be either
behavioural strategies to maximise the efficiency of the operator as a resource, or task strategies to
cope more effectively with the uncertainties of the environment.

Miller's approach has been used in a variety of military contexts, from rifle maintenance to the
operation of office equipment. Tasks can readily be decomposed into identifiable stages, and it is
possible to compare the complexity of different methods for performing a task by counting the task
functions required. However, the analysisis not appropriate for describing general models.

Knowledge

The elemental unit of knowledge within this technique is 'a message’. The knowledge of a person
performing atask is not the focus of the task analysis, and consequently it offers little to aid either
the segregation of knowledge into any domains or any formalism for the specification of knowledge
elements. The first of the four stages of the analysis requires a specification of the task or domain
content, but no structure is imposed on this nor is a mechanism offered for deriving it. There isaso
no distinction in the analysis between an ideal set of knowledge and other knowledge.

User Centered Task Dynamics

The analysis captures most aspects of the user centered dynamics of a task. Goals are explicitly
incorporated into the analysis, and there are several functions which operate on them. Although
there is no specific function to account for motivational goals, a twenty-sixth function explicitly for
motivation has been suggested ( Fleishman and Quaintance, 1984). Since the analysis accounts for
the processing of information, it explicitly addresses the short term dynamics of task performance.
Long term transitions and user learning are explicitly acknowledged by the possible proceduralisa-
tion of functions as sequences are learned and by the inclusion of work strategies to account for
highly skilled performance.

Cognitive Limitations on Processing and Use of the technique

There are several attempts in the analysis to provide cognitively salient limitations on processing.
The short term memory buffer and a "compute” task function are good examples. However, values
are not specified for these limitations.

Use of Technique

To use this approach an analyst must follow the four stages described eaarlier. Tools are not supplied
in the approach to support the first three of these stages. Definitions and descriptions are provided
which will guide the

The explicit entity that an analyst is given in this technique is the set of 25 functions, and the
definitions that permit their use. The specifications of the functions are detailed, but there is no indi-
cated method for the selection of the uniquely appropriate function. Thisis mostly due to the overlap
in the scope of several functions, which results in alternative ways of describing the same task
sequence. A consequence of thisisthat an analyst would have to be psychologically knowledgeable
in order to partition information in the world, and to select the appropriate functions based on a
separate psychological view of task performance.



In fact, the first stage of the analysis advocated by Miller could well be augmented by the kind of
technique outlined in the next section.

ii) Task Analysisfor Knowledge based Descriptions (TAKD)

Task analysis for knowledge based descriptions (Johnson et al,1984; 1985) aims to make explicit the
knowledge requirements for a particular world task. Whereas the task strategies approach represents
atask as a series of domain independent functions, here the task is characterised by domain specific
knowledge. Aswith the task strategies approach, TAKD involves four main stages:

generate a task description

identify required knowledge in terms of objects
and actions

classify these into generic actions and objects

express the task in a knowledge representation
grammar (KRG)

The authors stress the use of as many sources of information as possible in the first stage of the
analysis - structured interviews, direct observations of real and structured tasks, and the analysis of
protocols collected during and after completion of a task by trainees, instructors and experienced
users.

An initial task description generated after the first step will be a sequential plan of statements. For
example, from an analysis of ajoiner’s order for a staircase as part of the design of a computer based
ordering system (from Johnson, 1985), two steps in the task description were:

- receive order for 15 open-plan, piranha pine staircases of design pattern p1375; - check stock-list to
seeif supply can be met from stock (answer no);

the subsequent dictionary of identified generic objects and actions would include : CHECK: (inspect,
query) SELECT: (identify, choose) TIMBER: (piranha pine; standard pine) DESIGN: (open-plan;
closed) FINISH: (varnish, paint)

from which valid KRG expressions would be constructed, for example:

SELECT/ a TIMBER/ for a DESIGN/with a FINISH which could be translated as: "choose a piece
of piranha pine, for an open plan design no. p1375, with a polished finish".

TAKD has been used to design a syllabus for teaching information technology skills (Johnson et al,
1984) and for the generation of designs for computer programs (Johnson, 1985).

Knowledge

The principal objective of TAKD is to produce a specification of the knowledge required to use a
system, or the knowledge that a system would have to include to perform a task. Although the
methodology of TAKD will require the initial collection of both ideal and non-ideal knowledge, by
the time the final specifications are produced, non-ideal knowledge will have been filtered out by the
process of generification, and the KRG creation.

The method of representing knowledge elements in this technique, by action/object associations, is a
relatively weak formalism since it does not distinguish between subject and object, direct and
indirect objects, or instruments and agents. The power of this method is increased by the use of a
knowledge representation grammar, but it is not clear that the grammar used on one occasion would



be appropriate on another, any more than the knowledge suitable for one domain would be germane
to another.

User Centered Task Dynamics and Cognitive Limitations on Processing
TAKD has no representation of either task dynamics or cognitive limitations.
Use of technique

TAKD has certain weaknesses in identifying so-called generic actions and objects and in combining
them into a knowledge representation grammar.

For example, from an analysis of general information technology skills (Johnson et al, 1984), 14
generic actions and 22 generic objects were derived that would underlie a syllabus structure. The
recombination of these items into the KRG statements is very difficult as they overlap in scope, and
their structural relationships are not made explicit by the ssmple dictionary structure. Consequently,
it is not clear whether "type x" should be described as 'insert’ with a’textual input device' (eg. key-
board) or "insert" an include relationships between the abjects, this confusion would not arise.

For the non-specialist, therefore, TAKD is only likely to be usable when the ’generic’ actions and
objects are closely related to standard English terms.

iii) Command Language Grammar (CLG)

The Command Language Grammar was originated by Moran (1978; 1981) as a design tool to
'separate out the conceptual model of a system from its p. 5). CLG hierarchically decomposes a
system’s function into its objects, methods and operations. These are described in a set of definable
levels which progressively specify atask in more detail.

The grammar consists of three components, each divided into two levels which are further subdi-
vided. The Task Level describes of the user’s major intention. Below this are Semantic and Syntac-
tic Levels which focus on the objects and actions the user employs to accomplish the task. The
Semantic level contains a conceptual model composed of objects and operations that may be per-
formed on them, and semantic methods for accomplishing the tasks of the previous level. The Syn-
tactic Level describes the command language structure, discriminating between commands, argu-
ments, descriptors and command contexts. At the Interaction Level below this, the dialogue must be
mapped onto a sequence of physical actions, eg. key presses. The lowest two levels are the Spatial
Layout Level, where the physical layout of the input/output devices are specified, and the Device
Level, where the remaining physical features are defined.

The important feature of CLG is that its several levels of description are designed to correspond to
the levels of representation held by users. CLG maintains that users need not represent all knowledge
at al levels - some knowledge (especially at lower levels, but also higher) will be held as procedures
whilst other knowledge will be declaratively represented. CLG implies that users can operate
efficiently with only the Interaction Level methods. However, users who have not come to represent
the higher levels will probably be at a loss when something goes wrong. For example, they will not
possess the appropriate concepts to make sense of an error situation. Conversely, users may know
their objective but may not know what commands to use to reach it; that is, they know the semantic
method, but not the syntactic method.

CLG has been used as a design tool to develop the structure of computer programs (Moran, 1981)
and as a method for evaluating interfaces (Davis, 1983), for which it was only moderately successful.

Knowledge



Non-ideal knowledge is not an important part of CLG and its inclusion depends on the anayst, so
inconsistencies between interface terms or differences between interface terms and natural language
terms may well go unobserved.

CLG offers a symbolic notation, and a grammar for describing knowledge which permits the rela-
tionships between knowledge to be expressed. This is a more powerful formalism than the use of
object/action pairs which only permit a relationship between two items. The limitation on the use of
the formalism is in the identification of the knowledge to be represented. Once knowledge has been
specified, relationships and conflicts can be captured by the grammar.

User Centered Task Dynamics and Cognitive Limitations on Processing

The CLG grammar rules are not a performance theory and their structure While the different levels
for the representation of knowledge in CLG have psychological credibility, it is unfortunate that no
mechanism is provided to select which knowledge exists at which level.

Use of the Technique

CLG guides designers by placing an order on the decisions they must make. It aso enables the
designer to maintain consistency throughout this process, and suggests the stages at which reduction
in the elements should take place, but the analyst/designer must invent each new element. Thisisa
slow and laborious process. Without a tool such as CLG the process results in many inconsistencies
and the design must be checked and changed as conflicts and errors are discovered by chance. How-
ever, CLG is a cumbersome tool if used only to explicate consistency; other methods for this are
more easily managed - for example, TAG, discussed below. CLG can only aid the designer in mak-
ing design and trade off decisions if the rules of how to design user interfaces are included in it as
originally planned (Moran, 1978).

GROUP 2

The next four techniques focus on capturing knowledge of systems from designs and specifications
to assess complexity, learnability, transfer or performance times.

iv) External-Internal Task Mapping Analysis (ETIT)

The purpose of the External-Internal Task Mapping Analysis (Moran, 1983) is to assess the com-
plexity of learning a system for a naive user and the potential transfer of knowledge from one system
to another.

The user comes to a system with a task to perform which is defined for ETIT in terms of the external
task space (eg. reports, chapters) and not in terms of the internal task space (eg. directories, files,
editing commands). The complexity of the relationship between these two spaces will reflect the
difficulty found in using the system and especially in learning to useit.

ETIT compares representations of these two spaces, assuming the user’s knowledge of a system’s
properties is either complete or none. For atext editing task, the external task space can be taken as
the set of core editing tasks defined by Roberts and Moran (1983). They reduced 212 tasks which
text editors could potentially perform to "the minimal subset of an editor’s functions' (Roberts, 1979,
p8). That is, the 37 tasks which all of a sample of editors actually performed. Each task (eg.
Remove-Word) consists of afunction term and atask term. This external task space for editing tasks



was built from eight editing functions and five types of text entities. The internal task space for a
display editor (Moran, 1983) may have only one entity - a character string - and three functions -
Insert, Cut and Paste. To map from the external to the internal task space requires a set of ten rules.
One of these would translate all text entities into strings, another would map Remove-Word from the
externa space into Cut-String in the internal space of the editor commands. In contrast to this
straightforward mapping, a line editor (Moran, 1983) may require 15 mapping rules which would be
more complex than those for the display editor. Therefore the complexity of the mapping rules
reflects an increased complexity in using one system over another.

Transfer from one system to another can be assessed as the humber of common rules between the
systems. For example, every display editor rule exists for the line editor, therefore the transfer would
be easy. The converse is not true. This analysis assumes that learning will not necessarily be facili-
tated by any form of similarity between commands or command sequences in different systems.
Rather, the key factor is the similarity in mapping rules from the internal to external task spaces for
the two systems.

ETIT has only been used for the demonstration examples of a line and text editor summarised above
from Moran (1983), and in Douglas's (1983) thesis to account for several aspects of the Roberts and
Moran (1983) learning data for different text editors. Outside the area of text editing there are no
available applications, and there are no available specifications of the external task space other than
that of Roberts and Moran (1983).

Knowledge

The internal task space captures the ideal knowledge of the system. The external task space captures
knowledge of the world version of the task domain. Some aspects of knowledge of other devices and
systems can be identified by the comparison of the ETIT mapping rules for two systems. This com-
parison will not show how this knowledge will interfere with the ideal knowledge of any system
under consideration, athough it will show where the knowledge overlaps. Knowledge of natural
language is not caught by the analysis unless thisisincorporated in either the external or internal task
space.

The level of description of elements of knowledge used in the example external task space is of
actions and aobjects. This matches the simple ’function and one object’ command languages used on
the systemsinvestigated. For other external task spaces other descriptions may have to be derived.

User Centered Task Dynamics and Cognitive Limitations on Processing

This analysis only captures goals to the extent that they represent nodes in the external or interna
task space. There are no dynamic propertiesto this analysis and therefore no cognitive limitations on
it. ETIT does not address the problem of interference or negative transfer effects.

Use of the Technique

To use ETIT the analyst must code a system specification into an internal task space and code
domain knowledge into an external task space, and then produce mapping rules between these
spaces. The construction of the internal task space from a system specification can be performed by
anon-specialist.

The development of arepresentation of tasksin the real world as an external task space is more prob-
lematic. ETIT is presented as two example analyses using the same external task space provided by
Roberts and Moran (1983). The mechanism used for establishing this external task space appears to



establish the common internal task space of a set of computer systems designed to perform the same
task. To accurately reflect the performance of individuals, the external task space ought to be an
individual’s conceptual model of the task which would be susceptible to influences from that
individual’s general knowledge. There is no simple method of assessing this, therefore one must use
a representation of the task abstractly presented in the world. Whether the external task space pro-
duced by any method is sufficiently close to a user’s conceptual model for an analysts purposes can
only be judged by empirical investigation. Consequently, although an internal task space may be
easy to construct, the correct method for constructing an external task space is uncertain.

v) Task Action Grammar (TAG)

knowledge of the mappings from tasks to actions, and to predict |earnability by capturing all the gen-
eralities that the use may be aware of. Green et al. give a detailed account of TAG in this volume.

An analysis of a computer version of atask into a TAG requires its decomposition into "simple
tasks'. A simple task is "any task that a user can routinely perform" or which can be accomplished
with no problem solving component or control structure; they may be at a very low level, for
novices, or for more experienced users they may be compiled (Anderson, 1983) into larger group-
ings. For example, "move cursor one character upward" may require several actions, but after prac-
tice it would equate to a single command and therefore to one "simple task". Higher levels of plan-
ning, requiring several "simple tasks” are modelled by a separate planning component, left
unspecified.

TAG offers two mechanisms for capturing the generalities within command languages. Firstly, sim-
ple tasks may be defined as having the features of another simple task, but with one or more
specifically different. For example, "'move cursor one character down’, could be described as having
the features of 'move cursor one character upward’ with the "direction’ specifically set to 'down’.
The second mechanism allows TAG to capture different forms of general semantic knowledge in
separate rules. For example, when the command term "UP" is the token used in the command
language, it isnot an arbitrary symbol - it draws on knowledge of natural language.

TAG is able to express the notion that a command language token is based on the presumed natural
language knowledge of the user. Rules of this sort (which can apply to other domains besides natural
language) give TAG a powerful mechanism to capture information relevant to the interaction which
are not specified in the language itself.

TAG has been used (Payne, 1985) to describe the languages used in severa experiments (eg. Carroll,
1982) and its predictions are consistent with the experimental findings. It has also been used to
describe various systems such as MacDraw and Multiplan which are described in the chapter by
Green et al, in thisvolume.

Knowledge

Like ETIT, TAG captures other knowledge in addition to ideal system knowledge. However, TAG
goes further, in showing where non-ideal knowledge interferes with system knowledge. One of the
benefits of TAG isits ability to capture influences from natural language which ETIT and CLG could
not. TAG can therefore indicate potential user errors due to the choice of command names or com-
mand ordering. For example, abbreviating the commands UP, NEXT and DELETE to their first
letters (U, N, D) may unfortunately lead users to enter 'D’ when they want to move "down" because
of the relationship between up and down in natural language. Knowledge of other systems or of
world domain versions of tasks could also be entered into TAG representations to show effects of
interference from these knowledge sources. As yet, however, none of the presented examples of
TAGs include these components.



One problem is that the choice of features may be unstable. Thisis because the set of features that
defines a simple task depends on the contrast one set of directional features suitable for contrasts
between movement tasks which vary in direction and magnitude will be inappropriate for comparing
avariation between functions such as’'move’ and 'copy’. This mechanism has the advantage that no
absolute set of all the features need be specified, but it has the disadvantage that the feature set for a
command must be changed or increased to capture new contrasts. Unless the analyst has thought of
all possible contrasts which may occur in the analysis, errors due to unsystematic changes to the
feature sets are likely.

User Centered Task Dynamics and Cognitive Limitations on Processing

TAG claims to be a’cognitive competence’ model, not a performance model. It does not explicitly
account for any dynamics of the user’s representation or processing. User goals can be equated with
'simple tasks' in TAG, but there is no mechanism to chain ’simple tasks' and there is no precise
definition of what a 'simple task’ is or how a system’s language should be segmented into them.
There isaso no attempt to capture higher level goals or motivations.

As a competence model TAG proposes a more powerful view of users competence than is usually
adopted. Most models are presented as though users were unable to perceive the 'family resem-
blances' that TAG uses to give a structuring to the command language.

Use of the Technique

The TAG analyst must re-code an ideal representation of a computer interface dialogue into a task
dictionary and rule schemata. Other information must also be coded into the same form, and the
analyst must attempt to minimise the number of schemata required for the TAG description.

The re-coding of awell-specified system description into a TAG description is comparatively simple,
but the selection of what other (non-ideal) information to encode relies on the analyst’s intuition and
observation. This can lead to difficultiesin comparing two interfaces.

Complexity metrics can only be comparative between TAGs for different systems where the same
non-system knowledge is included in all analyses. If there were specified psychological constraints
in the model there might be a simple route for deriving a complexity metric by which to judge the
rules derived by the analysis. Without these the scope of the predictions from any analysis are lim-
ited to comparative judgments of the complexity of different systems.

vi) The GOMS Family of Models

The purpose of the GOMS analysis (Card, Moran and Newell, 1980; 1983) is to generate useful
engineering models to predict the time to complete tasks. Different members of the GOMS family
incorporate different grains of analysis. A technique of sensitivity analysis (Card et al, 1983) can be
used to assess the grain of analysis which is most appropriate for describing observed the GOMS
model itself, and the Keystroke model. Further details, together with examples, are given in the
chapter by Green et a. in the present volume.

The GOMS model provides a simple view of mental processes in terms of 'goals’, operators, and
"selection rules’ for choosing between alternative methods. The task to be analysed is decomposed
into successively smaller sub-tasks until the level of 'unit tasks is reached. This is the level that
drives the mechanisms in GOMS and for which the user is assumed to know particular methods (eg.



a"line feed" method for locating a ling); in the task of editing, the unit task can be equated with a
particular correction on a manuscript. Within the task a user is driven by a series of goals. The top
level goa (eg. EDIT-MANUSCRIPT) would create a sub-goal to perform each ’unit-task’ (eg.
EDIT-UNIT-TASK) which would be repeated until no more unit tasks remain to be performed.

The Keystroke Level model is based on the GOMS model but its role is purely to predict "the time
an expert user will take to execute the task using the system, providing he uses the method without
error" (Card et al, 1983, p 260). The user’stask isagain divided into ’unit tasks' but instead of being
decomposed into goals and methods, the time to perform each is directly the sum of three com-
ponents: an "acquisition time' (computed at 1.8 seconds); a performance time which is the sum of the
times to execute the keystrokes in the commands (dependent on the user’s typing speed); and times
for mental operations (computed at 1.4 seconds). The model incorporates a set of rules for the appli-
cation of mental operators such as, adding times for each ' cognitive unit’ (approximately a command
string).

The Keystroke Level model is only intended to give quantitative predictions of the performance time
for error free expert performance. In doing this, it assumes the shortest sequence of commands is
used to perform atask, although evidence suggests that even experts do not always use the technique
that is either fastest (eg. MacLean et al, 1985) or has fewest keystrokes (Embley and Nagy, 1982).
Additionally, Roberts and Moran (1982), found that major errors (those that took more than a few
seconds to correct) occupied between 4 and 22 percent of testing; Allen and Sczerbo (1983) report
that the average time spent correcting errors was 20.1 percent of the time not involved in errors.
Considering this, it is remarkable that the Keystroke Level model appears to generate fairly good
predictions.

Roberts and Moran (1983) present a comparison of nine text editors using the model and perfor-
mance tests. Although the values generaly follow the predictions, the editor predicted to be fastest
by the model was only found to be sixth fastest in practice. The model is reported as being accurate
to a standard error of 21% over a variety of different tasks and systems (Card et al, 1983, p 297).
The model’s predictions should be adjusted by a factor of 1.4 (1.1 to 2.0) to fit true performance
(Roberts and Moran, 1982).

Knowledge

These analyses seek to predict performance times assuming ideal system ideal system knowledge is
contained within the system specification, but in addition the models use individual typing speed esti-
mates, determined from performance, and in the case of GOMS individual selection rules are also
determined from performance.

User Centered Task Dynamics

GOMS incorporates task goals in the analysis, but not motivational goals, which are assumed to be
constant. Since the technique is limited to predictions for expert users, the goals and sub-goals are
derived from stored (learnt) plans, rather than being generated through problem solving. The
analysisis also greatly limited by being unable to account for learning, since it assumes that the user
has optimal system knowledge. GOMS can, however, describe the short term dynamics of the
interaction to some degree, depending on the grain of the operators used. The more the processing
operators used are based on the human information processing system, the more exact the account of
the dynamics of processing.

The only aspects of the dynamics of processing which the Keystroke Level model attempts to cap-
ture are the times for the action and mental operators. This is reasonable since its sole purpose is to



predict the times for expert error free performance on a system. However, it has been suggested
(Allen and Scerbo, 1983) that the error margin that exists for these predictions is due to inadequacies
in the rules for the application of mental operators.

Cognitive Limitations on Processing

The very limited degree to which this analysis involves any psychological process model can be
assessed from the amount of psychological reasoning behind it. The analysis is based on two basic
principles of psychology. Firstly, that people act so as to attain their goals through rational action
given the structure of the task, and secondly, that problem solving activity can be described in terms
of a set of knowledge states; operators for changing states; and control knowledge for applying
knowledge.

Since "Operators are elementary ... information processing acts, whose execution is necessary to
change any aspects of the user’'s memory ..." (Card, 1978, p 58) the model has the potentia for
employing psychologically salient operators, to represent short term processing operations (eg. the
perception of salient cues). Card et al (1983) present a model incorporating such operators (the
Model Human Information Processor) which is used to derive action performance times, but these
operators are not included in the example analyses using GOMS.

Use of the Technique

The Keystroke Level model is a concise engineering formula which is obviously predictive of
approximate performance times from a design description and is also comprehensible to the non-
specialist. The only parts of the model which are not explicit are the definitions of the ’unit-task’ and
the "cognitive unit’. The approximation of these units to system commands is workable, units of
representation chosen in the model are those of the system (optimal methods and keystrokes) rather
than psychologically motivated units of representation. 1t could be avoided if the model were more
strongly motivated by a cognitive theory which specified cognitively salient units, or if the units were
based on user performance. However, it is unclear that a sufficiently detailed cognitive theory exists
to make predictions, and if assessments were made of user performance, time predictions would be
redundant and the model’ s applicability would be severely reduced.

The usability of the GOMS analysis is far more constrained by the problem of defining the ’"unit
task’. For applications where there is an established body of previous computer versions of the
domain application, the approximation to a command sequence may be acceptable. In other applica-
tions, the analyst must rely heavily on his own intuition in dividing the task into units. It would also
be difficult for a non-psychologist to estimate the correct range for the operators in an application.
In many cases, it may be necessary for any analyst to attempt several grains of operator before
accepting one as appropriate. It is also necessary for any potential users of the GOMS family of
tools to decide the extent to which predictions of times for optimal error free performance may in
fact be useful for their situation.

vii) The User-Device Model

Kieras and Polson (1985) present a two-component approach to assess the effects of transfer of
knowledge from one system to another, the complexity of devices, learning and performance times,
and error frequencies. This approach is described at length elsewhere in this volume, in the chapter

by Green, Schiele and Payne, and will only be outlined here.

The first component is a production system model of the user’s how-to-do-it knowledge of system



use, based on the GOMS representation. The user’s goal structure is derived using a mechanism
similar to that in GOMS, with the addition that active goals are represented in working memory. In
this model, one measure of user complexity is the depth of the goal stack during operation - a more
complex method for achieving a task will require a deeper goal stack than a simple method. Another
measure of complexity is the number of productions required to represent a method for achieving a
task. Performance time predictions can a so be made from the number of productions fired.

The second constituent of the approach is a Generalised Transition Network (GTN) model of the
device - that is the computer interface, showing the system’s possible states, the possible actions the
user can take in that state, and a connection to the next state that will result from that action. Whereas
the production system model captures the how-to-do-it knowledge this model can be viewed as cap-
turing how-it-works knowledge. This representation is comparable to other formal grammars of dev-
ices, with the advantage that it is visually more appealing.

The description of a device and a task using these formalisms offers the opportunity for running
computer simulations of task performance. A simulation has been presented for the IBM Display-
writer (Kieras and Polson, 1985) which appears to predict the learning rate and performance time for
the

Production rules are assumed to be single units that are learnt on an ’all or none' basis, and rules
already learnt for one "task’ or 'method’ can be incorporated when a new oneislearnt. Therefore if
two methods (eg how to delete a word, and how to delete a character)have some production rules in
common, learning one method will make it easier to learn the other. In the same way, knowledge
which the user possesses prior to learning a particular device is’device independent’ and therefore
has no learning cost; ' device dependent’ information does carry alearning cost. There is no formal-
ism for assessing the device independence of knowledge, although if the knowledge is employed in a
domain outside that of the device then it is assumed to be device independent.

Knowledge

This technique incorporates a representation of the ideal knowledge of the system, but not any non-
ideal knowledge. The technique does permit the comparison of ideal knowledge of different sys-
tems. Although not yet implemented, this approach is potentially capable of capturing other ’device
independent’ knowledge such as that from a domain version of atask. The technique contrasts with
ETIT where transfer of knowledge between systems is assessed, not by the overlap in representations
of methods from different systems, but in the mapping rules from those methods to a third user
representation. ETIT attempts to incorporate knowledge of a task outside any system whereas this
technique only incorporates knowledge of systems.

User Centered Task Dynamics

The production system component of the technique has many of the properties and drawbacks of the
GOMS approach on which it is based. The generalised transition network, however, presents one
element of task dynamics which none of the other techniques discussed in this chapter do. It presents
what information is on the screen at any time. This permits the analyst to assess the consistency of
use of system prompts etc. When this component of the approach islinked to the production system,
it will offer a starting point for assessing the perceptual and attentional aspects of an interaction. At
present, although rules can contain conditionals on the perceptual cues required for a method, no
mechanism is provided to account for the effort of discriminating these salient cues from other
objects in the environment.



Cognitive Limitations on Processing

Kieras and Polson’s model places few limitations on cognitive processing abilities. When modelling
experts, working memory is used as an infinitely large, non-decaying goal stack. Novice-level users
are assumed to test all goals that are in working memory, to explicitly attend to feedback information
and verify each step they take, so production rules to model novices are written in a constrained
style. It isnot clear how these views relate to other views of working memory in the human informa-
tion are applied. Constraints on these aspects could be added to the tool in the future, but are not at
present included.

Use of the Technique

The analyst would have to encode a system specification into two formalisms, one for each com-
ponent of the model. Both these formalisms are complex to use, and production systems are gen-
erally cumbersome to construct and maintain.

Programming style determines the number of production rules used to represent a method. The
analyst must therefore take care to maintain a strict consistency of style so that a count of produc-
tions can be used as a complexity metric. Various metrics of performance and transfer are available
with this technique and the choice of the 'best’ one for any circumstances cannot be guided until
more experimental data is available (but see Polson, 1987). If an assessment was to involve rules of
different flavours (eg. rules for natural language or the work domain version of a task) then a more
complex metric than mere rule counting would have to be employed. This metric would have to
incorporate some psychologically based balance between the different rule types.

GROUP 3

The next two techniques are empirically based analyses of the knowledge actually possessed by
users, not the idealised knowledge presented in design specifications.

viii) Information Structure Description

Wilson et a (1985) used a task analysis to classify user errors, so that the knowledge elements or
"information structures supporting actual user performance could be derived. A second purpose was
to describe long term transitionsin learning as knowledge structures evolve.

This approach makes use of two levels of task description. One level describes the overall process of
controlling a dialogue sequence in terms of attempts to satisfy task goals. The other specifies partic-
ular "information structures' or "meta information structures’ that make up the knowledge called
upon to achieve those goals. Performance protocols are analysed with respect to these two levels.

The process of controlling a dialogue sequence is described as a simple goal structure, consisting of a
major goal (eg. edit-manuscript) subdivided into individual goals approximately equivalent to indi-
vidual editing instructions. It is assumed that for each goal the user makes an attempt to achieve it
and teststo see whether the attempt succeeded: an attempt-test cycle.

The attempt-test cycle for the example study involved four stages: one of attempt specification (a
mental event) and three of action with contingent tests on that action - establishing a command con-
text, the performance of a command specific procedure, and termination of a command seguence.
The definiton of these three latter stages was derived from a syntactic analysis of the particular menu



interface examined.

At each stage the test could either be passed, and the attempt continued as specified; failed resulting
in alocal correction (e.g. deleting the last character typed) or, failed resulting in the specification of
a new attempt or goal. There were also special cases for passing a test and the user assuming the
attempt was completed so a new goal was prematurely attempted. This analysis permits a complete
classification of user performance (both correct and erroneous), to arcs connecting the four stages of
the attempt-test cycle, that is, a description that is sensitive to the device specification.

When tasks are performed in an optimal fashion it can only be assumed that users possess ideal task
knowledge. When errors arise, non-ideal knowledge can be inferred or a performance breakdown
assumed. The second level of the analysis involves a specification of the user knowledge required to
support the analysed performance. Two classes of information structure are incorporated in this
analysis: Meta-Information Structures, or general rules of system performance, and Information
Structures, or specific fragments of performable methods. Information structures for an expert user
are similar to the methods (or task-action mappings) used in GOMS, however for other users these
will account for the partial knowledge they hold

The changes that take place during a user’s learning are viewed as changes in a repertoire of these
information structures. Early in learning, the repertoire contains a small number of both types, some
of which may accurately and completely specify appropriate task-action mappings, or general
characteristics of system operation. Other members will be inaccurate, incomplete or contradictory
with each other. As practice continues, inaccurate or incomplete information structures may become
inaccessible with the addition of new members. Expert status may be achieved when the content of
knowledge within the repertoire stabilises, and is in accord with, the system requirements for the
tasks that that user needs to undertake.

As the process of learning progresses, information structures are derived from more general meta-
information structures which are themselves also generated. An illustrative model has been
presented that could account for this process but it will not be described here.

Particular information structures and meta-information structures can be inferred from the analysis of
user performance provided by the first half of the technique. This enables the system knowledge
held by users at different stages of learning to be characterised without merely assuming it to be none
for a novice and 'complete’ for an expert. This allows the designer to be aware of user difficulties
and to support performance at different stages of knowledge development, and for different types of
user.

Knowledge.

This technique attempts to capture the knowledge involved in actual error prone performance. Con-
sequently, it captures both ideal system knowledge and the non-ideal knowledge which a user may
have acquired. The information structures and meta-information structures derived from perfor-
mance can contain influences from natural language, the task domain and other devices and systems.

The information structure terminology provided by this technique is powerful enough to capture con-
sistencies and structured relationships between knowledge at various levels. The information struc-
tures are written as informal English phrases embedded within a bracketing notation. Mismatches
between the knowledge assumed for actual system use and idealised system use emerge in the con-
text of the bracketing of sequences which actually occur.

User Centered Task Dynamics



The first level of the analysis captures the goal structure of atask in atree. Thetop level of the tree
in the example analysis did not capture high level motivations, but these could be represented in the
same way as other goals if required. All actions by the user and changes in the system state are
specified in this technique. Therefore the task model developed in the example analysis permits the
capture and structuring of al short term transitions both in the system and in the user's mental
representations. Since the system state is described and the user’ s representation, the technique per-
mits the mismatches between between the two to be identified.

The area where this analysis differs from most of the others, isthat it captures not only the short term
transitions but also the long term transitions in the user’ s representations. The description of areper-
toire of information structures which changes as knowledge devel ops permits the analyst to investi-
gate the interaction of the various knowledge sources for maturing user popul ations.

Cognitive Limitations on Processing

This analysis does not assert that the inferred information structures have absolute psychological
saliency. These structures are taken to represent the 'content’ of knowledge held by users but not
necessarily the 'form’ in which that knowledge is represented. The analysis characterises the set of
information structures that might need to be generated to support the task-action mappings per-
formed by users. Beyond these qualities of the representations, there are no other information pro-
cessing constraints included in the analysis on the processing of user knowledge.

Use of the Technique

To use this technique analysts must describe the optimal method to achieve atask. Then they must
specify the stages of the attempt-test cycle for that task. They can then assign user actionsto arcsin
that cycle. Having identified the sites of major deviations from the optimal method, analysts must
hypothsise the knowledge held by users which led them to these deviations. Where performance is
studied for a sufficient period, the analysis can be used to identify the changes that take place in a
repertoire of knowledge as learning progresses.

The technique has been described for a single system, and much of its application is heuristic rather
than formalised. The major drawback with using this analysis is the time and effort required to
assign individual user actions to the possible arcs of the fully specified attempt-test cycle. The origi-
nal analysis was performed to give example mismatches between actua user knowledge and ideal-
ised knowledge in order to motivate further experimental research. For these purposes the significant
effort required is often worthwhile (e.g. Wilson, Barnard and MacL ean,1985). However, for more
practical system evaluations, problems can be identified with much less effort (eg. Hammond et al,
1983) and progress may depend upon automating the more sophisticated scoring schemes such as
that deployed with this technique.

iX) An Analysis of Menu Systems

Few of the previous analyses attempt to account for problem solving during performance. The next
method of task analysis (Y oung and Hull, 1982; 1983) explicitly addresses real-time problem solving
during a search for target information, and illustrates how the performance of users can be based on
the effects of their deep mental models (Carroll, 1984) - both of the system and of the domain of the
information presented on-screen.

(Prestel). In this system each page, or frame, provides information and a menu leading to other



frames. The user's task, at each step, is to select the appropriate item from the menu; that is, to
match a menu item with a hypothesis about the route leading eventually to the target information.
Y oung has analysed examples of user’s performance on the menu search task and has suggested an
implicit relation between the overall topic of a menu frame and the individual options on its menu,
and the way these relations can constrain the way that users can process the frame.

Each menu presents a categorisation of a domain into subsets. Different decision strategies in order
to handle them correctly. Young attempted to develop a taxonomy of ’categorisation structures' for
menu systems giving the prototypical decision strategy for each. Examples of these structures
include partitioning the topic into non-overlapping subsets; the 'N + Other’ structure, with a series
of specific choices followed by a catch-all category; categorisation by multiple bases or dimensions,
forcing the user to first pick the appropriate dimension, then to choose within it; overlapping
categories; and structures based on anal ogies to other sources of information, such as newspaper lay-
out. Each of these requires a different user strategy.

In relation to this partial taxonomy Y oung presented a tentative process model for menu selection.
In this’the decision making is opportunistic, driven strongly by the particulars of each choice, so that
the decision "method" emerges as a product of the interplay between the context, the user’s query,
and the details of the frame itself’ (Y oung and Hull, 1983).

Knowledge

This technique recognises that the knowledge used to construct a hypothesis or understand a menu
frame could originate from any source available to the user - not just the 'idealised’ knowledge of
how to find the target. Thus it captures aspects of the general knowledge brought to bear by users
which other analyses have not considered.

User Centered Task Dynamics and Cognitive Limitations on Processing

Young's process model is restricted to cases where the user’s main goal is always constant and nei-
ther higher motivational goals nor lower goa nestings need be considered. The process model
presented does not attempt to include any cognitive limitations on processing.

Use of the Technique

This analysis is smply an example of one analysis of a particular task which results in a partial tax-
onomy of menu structures. It serves as an illustration and a reminder of the shortfall of many other
analysis techniques, but as it stands it does not generalise further.

GROUP 4

occurs during task performance. These complement the analyses outlined in the previous sections
which emphasised the knowledge requirements of tasks.

x) Decomposition of mental activity

Norman (1984, 1986) describes an analysis based upon the decomposition of a task into different

mental activities. The description of mental activities is intended to help analysts understand the
cognitive consequences of design features. The analysis requires mapping from system variables to



psychological ones.

The user approaches a system with a set of goals to achieve, yet these goals must be realised through
physical actions at the terminal. The gap between goal formation and action is what Norman calls
"the gulf of execution". Bridging that gulf requires three types of mental activity: forming an inten-
tion to act; specifying an appropriate action sequence; and executing that action sequence.

Once an action sequence has been executed, there is a corresponding "gulf of evaluation" because
the user must relate the system’s response to the original goal. This is again bridged by three com-
plementary types of activity: perceiving the physical properties of the system state; interpreting
them; and evaluating those interpretations in relation to the original goal.

Taking these stages together with the initial formation of a goal gives seven stages of mental activity:

Establishing the Goal.

Forming the Intention.

Specifying the Action Sequence.

Executing the Action.

Perceiving the System State.

Interpreting the State.

Evaluating the System State with respect to the Goals and Intentions.

~NOoO b~ WNPRE

In real tasks the stages need not necessarily occur in strict sequence and some may even be omitted.
The definition of stages represents an approximate theory of action which itself is undergoing evolu-
tion (the number and definition of stages may change). In practice, the analysis "must be used in
ways appropriate to the situation” (Norman,1986, p. 42). The system designer can tackle substantial
gulfs of execution or evaluation by making the system more like the user’s psychological needs.
Alternatively, the user may have to create plans and and carry out action sequences that meet the
requirements imposed by the physical system. These action sequences can, of course, be developed
through experience and supported by training until they feel aimost part of the system.

Different aspects of system design support different stages of activity, and designers can use this
analysis to assist their choices. In many cases, design decisions are really trade-offs between sup-
porting one stage or another. Menus, for example, can assist the stages of intention formation menus
may slow down the stage of action execution. In contrast, command languages may support rapid
execution of action but create problems in action specification and so on.

Such an analysis helps us to understand the benefits that arise from direct manipulation interfaces or
from providing a consistent and explicit system image. Menus and pointing devices combined with
immediate visual feedback can help to reduce the gulfs of execution and evaluation. Likewise, a
consistent model can help support the user during phases of activity that involve a strong problem-
solving component.

Knowledge and User Centered Task Dynamics

This analysis makes frequent reference to the use of knowledge, both correct and incorrect, during
the various stages of activity. No formalism is offered for specifying or analysing that knowledge.
Rather, analysts must draw their own inferences about how and when particular forms of knowledge
are relevant.

Similarly, the approach incorporates an analysis of goals during task performance, and also allows
for the construction of plans during performance - in fact, it emphasises plan construction. Aswith



the case of knowledge, no explicit mechanisms are provided to guide more detailed analyses or for
assessing their relation to higher motivations.

By simply identifying attributes of the gulf between the state of the user and the state of a system, the
approach alows the analyst to be aware of where learning would be required by the user. Once
again, the technique does not specifically address how longer term changes in user representations
might come about.

Cognitive Limitations on Processing

The seven stages suggested are all forms of cognitive processing that are required to map a mental
representation onto a physical system. In this respect, the approach provides a means of thinking
about the likely complexity of that mapping. In its current form the analysis does not seek to specify
constraints on mental representations, mental capacity or mental processing in exact form. As an
"engineering approach” it makes use of approximate representations drawn more generally from the
science base of psychology - such as known attributes of cognitive skills (eg. perceptual search, the
motor control of typing), or of underlying processing constraints (eg. the approximate capacity of
human short term memory).

Use of the Technique

Users of this analysis technique need to divide the user’s tasks into the seven stages and see what
support the system gives to each stage. The mappings from the system to the users’ model must be
as direct as possible, another. Approximate tools for assessing the value of these trade offs are also
suggested but they are outside the scope of thisreview. At present, the technique is best viewed as a
tool for thought rather than a rigorous form of task analysis. Since the technique clearly requires a
basic knowledge of cognitive psychology, users of the technique will need a working knowledge of
cognitive skills and capabilities relevant to the tasks and systems being analysed. Although not as
explicit as some of the analyses presented in earlier sections, it does provide a way of representing
what a user might actually being doing. In this respect, human factors specialists have commented
that this form of analysis makes contact with their immediate concerns more readily than more for-
mal approaches (eg. Whiteside & Wixon, 1987).

xi) Cognitive Task Analysis (CTA)

Like Norman’s approach, Cognitive Task Analysis (Barnard, 1987) focuses on the nature of mental
activity rather than on tasks themselves. The general idea is that a theoretically based decomposi-
tion of cognitive resources can be used to describe mental activity associated with dial ogue tasks.

Following the Interacting Cognitive Subsystems (ICS) approach to human information processing
(Barnard, 1985), it is assumed that the cognitive system is divided into subsystems, each of which
processes information in a particular mental code (eg. propositional). Each subsystem has associ-
ated with it a local 'image record’ which stores representations in its own code. A subsystem also
contains tranglation processes that recode its input into the codes that are used by other subsystems or
by specific effectors.

Sensory subsystems (e. g. Visual, Acoustic) generate codes that can be processed by representa-
tional subsystems, which in turn handle higher level descriptions of linguistic and visual structure, as
well as meaning and its implications. Effector subsystems (eg. articulatory, limb) trandlate the
representational codes into codes for controlling particular effectors (eg. hands, speech muscula-
ture).



The description of mental activity contains four components: the mental processes required; the pro-
cedural knowledge embodied in those processes; the contents of relevant memory records that may
be accessed; and the way in which the cognitive mechanism will be dynamically controlled during
task execution.

The first component, the configuration of processes, does no more than describe what is required for
a given phase of cognitive activity. In reading, for example, a visual representation is trandated into
an object encoding, which is subsequently recoded through a representation of linguistic form into a
propositional representation of the meaning of the information and so on. The set of processes
required defines the configuration for reading. A different set of processes would define the
configuration for say typing text.

The second component, procedural knowledge, describes the properties of each individual process
within the configuration. For example, this component out a particular mental recoding required by
the task. So, linguistic processes cannot automatically recode novel command words (eg. BLARK)
into a propositional representation of their meaning.

The third component, record contents, specifies the properties of memory records that are likely to be
accessed during task execution. This includes a representation of the task to-be-performed. 1n some
circumstances users may rely on a semantic form of encoding (eg. a propositional representation).
Under these circumstances they may confuse elements with similar meaning (such as "Display" and
"Show") and have trouble resolving the sequencing of dialogue constituents. In other circumstances
they may rely on arepresentation of linguistic form which specifies sequencing but which is open to
confusions between constituents that sound similar (such as the filenames "Nine.txt" and "Mine.txt").

The first three components describe properties of processes and representations. The fourth com-
ponent, dynamic control, describes the flow of information among processes. This component
specifies both the nature and extent of the transactions among processes that occur during task execu-
tion. Thus, the generation of a dialogue sequence may require resolving the identities of constituents
and their order. This may be achieved by inferential activity or by recovering specific memory
records or by some combination of both.

The description of dynamic control is arrived at by applying rules which interrelate the components.
These rules are derived from empirical phenomena of system use (eg. Barnard, 1987). For example,
where the knowledge required for a task is incompletely proceduralised, or where record contents
have a high degree of order uncertainty associated with them, then the complexity of dynamic con-
trol will increase and may take on a different form.

The complete four component description makes up a cognitive task model and the attributes of such
models are used to predict user behaviour at novice, intermediate, and expert levels. The complexity
of dynamic control required by atask is, for example, assumed to relate to overall ease of learning
and performance.

This form of task analysis is based upon a theoretical decomposition of cognitive resources and
heuristic principles which describe their functioning. Both the decomposition and the principles can
be explicitly represented in the knowledge base of an expert system. Hence, the process of analysis
and prediction can be automated (see Barnard et al., 1987). To date, illustrative principles have been
derived to deal with a limited range of issues associated with command names, structures and menu
dialogues.

Knowledge

In Cognitive Task Analysis knowledge is described in two forms - the form required for mental



recodings (procedural knowledge) and the form required to represent task specific concepts and
sequences (record contents). The analysis can therefore take into account a broad range of user
knowledge, including knowledge of other systems, natural language, and domain versions of tasks.
The important feature of thisanalysisisthat knowledge is described in an approximate form in a way
that relates directly to mental of order uncertainty via inference). It seeks to represent the use of
knowledge in performance rather than providing a formalism for representing the structure of
required system knowledge. Task action grammars, in contrast, attempt to represent the structure
rather than the use of knowledge.

User Centered Task Dynamics

The CTA is capable of characterising most aspects of task dynamics. Goals are implicitly specified
in this model as information structures held in propositional memory records. Short term aspects of
task dynamics are captured in terms of phases of cognitive activity and their contents. Longer term
changes that take place during skill acquisition are dealt with by building different models for
novice, intermediate and expert users.

Cognitive Limitations on Processing

CTA isfirst and foremost a means of making relationships explicit between approximate knowledge
representations and cognitive limitations on their mental processing. The characteristics and limita-
tions are specified in terms of the properties of mental codes; restricted capabilities for coordinating
and controlling processes which handle those codes;, and more specific limitations such as recency
and description effects in memory retrieval. The approach essentially provides a language in which
such constraints can be specified. The language refers to processes and coded mental representations
which can be described in terms of their attributes. In its present form, only a limited range of attri-
butes and constraints are actually utilised. They can, however, be added to as further analyses of user
performance provide additional empirical justification for extending that range.

Use of the Technique

CTA can be used in two ways by different kinds of analysts. One class of analyst needs to analyse
tasks in detail and establish the principles which interrelate the four components of the task model
(cf. Barnard, 1987). Clearly, this type of analyst needs both to be a specialist in the cognitive sci-
ences and to have a detailed working knowledge of the model-building process. The products of this
class of usage are principles of cognitive task modelling; mappings from those principles to particu-
lar classes of application or system; and mappings on to properties of user behaviour. These princi-
ples and mappings can then be incorporated in the knowledge base of an expert system, as has been
shown by Barnard et al., 1987.

The second class of analyst isthe user of the resulting expert system. One of the attractive features of
this approach is that the expert system users do not need detailed knowledge of the model building
process. They simply need to be in a position to answer the particular queries for information that
the expert system needs in order to build its model (Barnard et al, 1987). In its present form, the
expert system user does need a working knowledge of cognitive psychology in order to answer all
the queries in abehavioural analyst rather than a system designer.

The authors see this approach as the most extreme position yet reached in a trend that will affect
other models. Understanding human behaviour requires detailed consideration of many different
processes. The underlying models therefore become increasingly detailed and accessible only to



specialists. While one solution is to look for powerful approximations (such as the GOM S approach),
our belief isthat it will be more successful to develop intelligent design aids, such as the expert sys-
tem tool that is under development via this technique.

CONCLUSIONS

At the start of this chapter we observed that the interaction of people with computers offers novel
problems for task analysis, and in the course of this chapter we have reviewed the various attempts at
solving these new problems. The eleven techniques of task analysis summarised in this chapter are
not simple rivals, all trying to achieve the same results in the same ways with varying degrees of suc-
cess. Although, for expository purposes, they have been grouped into four groups according to the
starting points they take for their analysis, the techniques differ also in their focus, their output, and
their usability to the non-specialist. Thereis no single "best”" technique. As Olson (1987) has pointed
out, we have fragments of the kinds of representations required to meet the full needs of researchers
and practitioners.

Users of task analysis do, nevertheless, have to choose among the fragments to get the form of
representation that best suits their particular requirements. But is any method acceptable at present?
Degspite the wide variety, there are obvious and important problems that none of these techniques
satisfactorily address at present, so we shall start this final section by reviewing some shortcomings
and conclude with some remarks concerning future prospects.

Shortcomings of Present Techniques

None of the techniques discussed provides very much in the way of a treatment of cognitive stra-
tegies or individual differences. Thisislikely to be an important area of development since there is
a body of research (eg. Egan and Gomez, 1985; Greene et al, 1987) which suggests that there are
different learning styles between individuals as well as differences in various cognitive abilities.
TAG, for example, explicitly excludes any mechanism to describe how users choose their strategy to
achieve their goals. In contrast, GOMS provides at |east some basis for strategic variation via selec-
tion rules based on actual user preferences incorporating empirical data. There is a clear need to
develop analyses which can more readily cope with individual and strategic variation.

Similarly, user motivation - including the social motivations to work isill-represented as are the con-
straints of office and organisational life (but see Olson, 1987; Malone, 1987). Studies of office auto-
mation have demonstrated that the attitudes of workers to the introduction of technology affect how
that technology is used (eg. Long et al., 1983; Macaulay et al., 1985), yet only one of the analyses
considers higher-level motivationsin any significant degree.

Assessments of reliability and validity are another weak spot. Where predictions are offered there is
little data as yet on the general validity. In addition, most of these techniques have only been used by
their originators. How would they fare in other hands? Would other people produce the same ana-
lyses, in the analysis method used by Kieras and Polson, where the number of production rulesis one
of the metrics of complexity. Here the style in which the rules are written determines their number.
Unless the style can be acquired by other analysts, the methodology will be difficult to standardize.

Finally, different techniques require different analytical skills. Some techniques are expected to be
easy for designers to use, eg. the Keystroke Level Model; but others, notably the Young/Hull
analysis and Wilson et a, effectively require training in cognitive science. This makes it hard to
transfer methodol ogies from the research community to the design community, who are the potential
users of these techniques. One solution may be to automate them as executable formalisations, as
Kieras and Polson have done and as the authors of TAG are currently doing, or as automated deci-
sion aids, as is being done with CTA. The use of intelligent interfaces to these techniques (see



Barnard et al, 1987) may offer the best hope of making the more complex techniques directly avail-
able to designers rather than indirectly through behavioural specialists.

Pragmatic |ssues

Choice of atechnique must also be influenced by such pragmatic issues as ease of use, and some-
times a balance must be struck between pragmatic and conceptual advantages. For instance, there
are two techniques aiming at knowledge specifications, TAKD and CLG. Of these, TAKD is more
general and less cumbersome; but it also less formalised, and unlike CLG it does not include specific
components to help in the structuring of design specifications.

Similarly, withinthe group of four techniques aiming at complexity predictions, increase in concep-
tual power must be balanced against predictive tightness. At one end, GOMS uses only the
knowledge in the design, and produces absolute estimates of performance time - "It will take 3.45
seconds for an skilled user to perform this task using this system". Kieras and Polson increase the
conceptual power by including knowledge of other systems, to estimate times for transfer of learning
as well; ETIT tries to capture world knowledge of the task and makes estimates of comparative
complexity of learning systems. At the far end, TAG introduces knowledge of natural language and
of family resemblances between commands, but is limited to estimates of relative difficulty in learn-
ing systems - "This system will be harder to learn than that".

Choice of Focus

The techniques we have surveyed have, broadly speaking, three kinds of focus: ideal knowledge
representation, user-centered task dynamics with less than ideal knowledge, and cognitive activities.
We are now in a position to offer some observations on these possibilities.

A focus on knowledge representation seems to lead to techniques which are relatively quick to apply
but are limited in predictive range. The simplest a system design. This clearly restricts predictions
to error-free optimal performance. Introducing other types of knowledge requires more time and
effort to verify the knowledge, and its completeness is always doubtful, so that increasing generality
also leads to increased uncertainty. These approaches use models of performance which collapse
over short term transitions in processing so that they cannot predict which particular errors will be
made, only that one system will be more complex than another and hence that 'more’ errors will be
made or that 'more time' will be spent learning it.

However, these estimates of performance time and judgments of complexity can be used as soon as a
design is available; they do not have to be based on a running system, and they are comparatively
quick to use, so they can be applied early in the design cycle and their output can be used to guide
design decisions before the systems are programmed (cf. Card et al., 1983).

A focus on user-centred task dynamics, associated in this survey with the work of Miller, Young &
Hull, and Wilson et al., gives amore detailed understanding of why particular errors occur. Assuch
these techniques can potentially provide more directive input concerning design attributes. However,
they are time consuming, since they are based on actual behaviour, and they also require a running
system, a simulation, or a comparable product for data collection. (Note that even if a prototype is
used, it must still present a very accurate version of the intended user interface.) The time and effort
required during the design cycle may not be worthwhile (Hammond et a., 1983).

A focus on the constraints of the human information processing system is given by the work of Nor-
man and of Barnard. At present these are best described as conceptual frameworks which require



considerable development to produce mature design aids.

Prospects

In the last analysis, user-system behaviour must be determined by a combination of task require-
ments and the ways in which the human information processing system copes with them. Accord-
ingly, it seems vital to develop integrated approaches that can encompass different forms of
knowledge requirements as well as information processing activity (Barnard, 1987): and if the tech-
niques are to be useful outside the laboratory, mature ways of transferring the required skills and
knowledge to the design community or to others who wish to use the techniques.

For the knowledge based techniques to move towards integration, they must identify sources of
knowledge which are likely to interfere with ideal system knowledge during task performance. Then
they must specify thisin away that does not rely on experts' abilitiesto identify relevant information
for each analysis. Having done this, they require a mechanism to describe the user’s mental process-
ing that takes place during performance so that they can predict which errors will occur as well as
offer comparative judgements of complexity.

the starting point point required by its techniques, and the form of its output. To these must be added
the more pragmatic concerns of the requirements for particular skills, knowledge and effort. Little
enough attention has been paid to these pragmatic considerations to date. Before the discipline can
be called mature, we shall need to study these pragmatic issues in far more depth.
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