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ABSTRACT

This paper proposes an approach for obtaining block triangular preconditioners that can be
used for solving a linear system Ax = b where A is a large, nonsingular, real, n x n sparse
matrix. The proposed approach uses Tarjan’s algorithm for hierarchically decomposing
a digraph into its strong components (Tarjan 1982, Tarjan 1983). To the best of our
knowledge, this is the first work that uses Tarjan’s algorithm for preconditioning purposes.
We describe the method, analyse its performance, and compare it with preconditioners
from the literature such as ILUT (Saad 1994, Saad 2003) and XPABLO (Fritzsche 2010,
Fritzsche, Frommer and Szyld 2007) and show that it is the best preconditioner for many
matrices.
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1 Introduction

Given a linear system Ax = b, where A is a real, large, sparse square matrix, we propose
a method to construct a preconditioning matrix M to accelerate the solution of the system
when using Krylov methods. The proposed method is based on a hierarchical decomposition of
the associated digraph into its strong components. It permutes the rows and columns of the
original matrix A and obtains a block triangular preconditioning matrix containing a subset of
the nonzeros of A where the maximum size of a diagonal block is smaller than a desired value.

The proposed algorithm that creates M is a modified version of Tarjan’s algorithm HD that
decomposes a digraph into its strong components hierarchically (Tarjan 1983). Tarjan assumed
that the edges of the digraph are weighted and HD uses this weight information to create the
hierarchical decomposition. However, it requires distinct edge weights. In this paper, we propose
a modification on HD which allows us to handle digraphs whose edge weights are not necessarily
distinct. We use this modified algorithm to obtain a block triangular matrix M where the strong
components correspond to the blocks on the diagonal of M. To the best of our knowledge, this
is the first work that uses Tarjan’s algorithm for preconditioning purposes.

We have conducted several experiments to see the efficiency of the proposed algorithm.
We compare the number of iterations for convergence and the memory requirement of the
GMRES (Saad and Schultz 1986) iterative solver when the proposed approach and a set of
ILUT preconditioners (Saad 1994, Saad 2003) are used. We are also aware that block based
preconditioning techniques have been studied before and successful preconditioners such as
PABLO and its derivatives have been proposed (Fritzsche 2010, Fritzsche et al. 2007). These
preconditioners were successfully used for several matrices (Benzi, Choi and Szyld 1997, Choi
and Szyld 1996, Dayar and Stewart 2000). In this paper, we compare our results also with
XPABLO (Fritzsche 2010, Fritzsche et al. 2007).

For the experiments, we used several circuit simulation, device simulation and computational
fluid dynamics (CFD) matrices from the University of Florida Sparse Matrix Collection (http:
//www.cise.ufl.edu/research/sparse/matrices/). Experimental results show that the
performance of the proposed algorithm is comparable to that of ILUT and XPABLO preconditioners
for this set of matrices. Furthermore, it performs better than the other preconditioners for device
and circuit simulation matrices.

Section 2 gives the notation used in the paper and background on Tarjan’s algorithm. The
proposed algorithm is described in Section 3 and the implementation details are given in Section 4.

Section 5 gives the experimental results and Section 6 concludes the paper.

2 Background

Let G = (V, E) be a directed graph (or a digraph) where V' is a set of n vertices and E is a set of
m edges. An edge going from one vertex, u € V, to another, v € V| is denoted as uv. Let w(uv)
be the weight of the edge uv. Figure 2.1 shows a simple digraph with 6 vertices and 13 edges.
If u = v the edge uv is called a loop. An alternating sequence of vertices and edges is called a
path. A path is called closed if its first and last vertex are the same. A vertex u € V' is connected
to v € V if there is path from u to v in G. A directed graph G is strongly connected if u is
connected to v for all u,v € V. Note that a digraph with a single vertex u is strongly connected.



Figure 2.1: A digraph with 6 vertices and 13 edges. The numbers on the edges define an ordering.
That is, the first and the last edges are (2,1) and (2,4), respectively.

A digraph G’ = (V', E’) is a subgraph of G if V' C V and E' C EN (V' x V'). Furthermore, if
G’ is maximally strongly connected, i.e., if there is no strongly connected subgraph G” of G such
that G’ is a subgraph of G”, it is called a strong component (or a strongly connected component)
of G.

Let G = (V, E) be a digraph and P(V') = {V1, Va,--- , V. } define a partition of V into disjoint
sets, i.e., V;NV; = 0 for i # j and UleVi = V. Let V = {V1,Vs} be a set of two vertex partitions
such that V; = P(V) and

Vo= | P(Vh),
Viev:
i.e., Vo is a finer partition obtained from partitioning the parts in V;. Hence, if V; =
{{1,2,3},{4,5,6}} then V, can be {{1},{2,3},{4,5},{6}} but cannot be {{1,2},{3,4
},{5,6}}. Let noj(v) and nos(v) denote the index of the part containing vertex v € V' for V; and
Vs, respectively.

Let condense be an operation which takes G and V as inputs and returns a condensed
digraph condense(G,V) = GY = (V2, EV) where each vertex set V; € Vs, is condensed into a
single vertex v; € V2. For all uwv € E, with noa(u) = i and nos(v) = j there exists v;v; € EM if
and only if noj(u) # noj(v), i.e., u and v are in different coarse parts. Note that even though G
is a simple digraph, G¥ can be a directed multigraph, i.e., there can be multiple edges between
two vertices. The definitions of connectivity and strong connectivity in directed multigraphs are
as same as those in digraphs. An example for the condense operation is given in Figure 2.2.

2.1 Finding Strongly Connected Components

To find the strongly connected components of a digraph, Tarjan proposed an O(n+m) algorithm
SCC (Tarjan 1972). The algorithm uses a stack obtained from a depth-first search that records
the current path and all the closed paths so far identified. The vertices are numbered and placed
in the stack in the order in which they are visited. In addition to the visit number, visitno, during
the course of the algorithm each vertex w in the stack has a lowlink property which is defined as

lowlink(u) = min{wvisitno(v) : u is connected to v}.

Note that only the first vertex u of a strongly connected component in the stack has the property
that lowlink(u) = wvisitno(u). With this algorithm, each strong component eventually appears as
a group of vertices at the top of the stack and then its vertices are removed from the stack. We
refer the user to Duff, Erisman and Reid (1986) and Tarjan (1972) for a detailed description of
the algorithm.



Figure 2.2: An example for the condense operation on the digraph in Figure 2.1. The partitions
Vi = {{1,2,3},{4,5,6}} and Vo = {{1},{2,3},{4,5},{6}} are shown in 2(a). The condensed
graph is shown in 2(b).

2.2 Tarjan’s Algorithm for Hierarchical Clustering

Let G = (V,E) be a strongly connected digraph with n vertices and m weighted edges. A
hierarchical decomposition of G into its strong components can be defined in the following way.
Let o¢ be a permutation of the edges. For 1 <1i < m, let 0¢(¢) be the ith edge in oy and ao_l(uv)
be the index of the edge uwv in the permutation for all uv € E. Let Gy = (V,0) be the graph
obtained by removing all the edges from G. Consider that edges are added one by one to G in
the order determined by og. Let G; = (V,{o(j) : 1 < j <i}) be the digraph obtained after the
addition of the first ¢ edges. Initially in Gy, there are n strong components, one for each vertex,
and during the edge addition process, the strong components gradually coalesce until there is
only one. The hierarchical decomposition of G into its strong components with respect to the
edge permutation og shows which strong components are formed in this process hierarchically.
Note that a strong component in a hierarchical decomposition is indeed a strong component of
some digraph G;. However, it is just a strong subgraph of G and not a strong component since
G itself is strongly connected and has only one strong component.

(1] ®
® ®

o0 © ©

Figure 2.3: The hierarchical decomposition tree for the digraph G and the permutation in
Figure 2.1.

A hierarchical decomposition can be represented with a hierarchical decomposition tree T,
whose leaf nodes correspond to the vertices in V', non-leaf nodes correspond to the edges in F
and subtrees correspond to the decomposition trees of the strong components that form as the
process proceeds. Note that only the edges that create strong components during the process

have corresponding internal nodes in T'. If o is the ordering determined by the edge numbers,



the hierarchical decomposition tree for the digraph in Figure 2.1 is given in Figure 2.3. As the
figure shows, after the addition of the 3rd and 6th edges in o, the sets of vertices {1,2,3} and
{4,5} form a strong component, respectively. These strong components are then combined and
form a larger one after the addition of the 11th edge. In Fig 2.3, the root of the tree is labelled
with 12. Hence, the first 12 edges in o¢ are sufficient to construct a strongly connected digraph.
For the figures in this paper, we use the labels of the corresponding vertices and the o L values
of the corresponding edges to label each leaf and non-leaf node of a hierarchical decomposition
tree, respectively.

Given a digraph G = (V,E) with n vertices and m edges, and a permutation o, the
hierarchical decomposition tree T" can be obtained by first constructing Gy and executing SCC
for each internal digraph G; obtained during the edge addition process. Note that this is an
O(mn + m?) algorithm since 1 < i < m and the cost of SCC is O(n +m). To obtain T in a more
efficient way, Tarjan first proposed an O(mlog?n) recursive algorithm (Tarjan 1982) and later
improved his algorithm and reduced the complexity to O(mlogn) (Tarjan 1983). He assumed
that the weights of the edges in the digraph are distinct, i.e., w(uv) # w(u'v") for two distinct
edges uv and u'v’. Here we modify the description of the algorithm slightly so that it also works
for the case when some edges have equal weights. Note that the edge weights do not play a
role in the connectivity of the digraph. In Tarjan’s algorithm, they are used in a preprocessing
step which defines a permutation og of the edges. In addition, they are also used for comparison
purposes during the course of the algorithm. We eliminate the necessity of the latter by using
the indices of the edges with respect to og for comparison. With this slight modification, the
algorithm remains correct when some edges have the same weight.

Tarjan’s algorithm HD uses a recursive approach and for every recursive call, it gets a digraph
G = (V, E), a permutation o of the edges, and a parameter i as inputs such that G is strongly
connected and G is known to be acyclic, i.e., every vertex is a separate strong component (Tarjan
1983). For the initial call, ¢ is set to 0 and the initial permutation is set to oo which is a
permutation of all the edges in the original digraph. A high level description of HD is given in
Algorithm 1.

Note that the digraph G = (V, E) and the permutation o in the recursive description of HD in
Algorithm 1 are not the original digraph and og except for the initial call. Similarly, for a call of
HD(G = (V, E),0,1), the size of the subproblem is set to |E| — i, the number of edges that remain
to be investigated (Tarjan used the term rank to denote the size of a problem). Note that in the
first step, HD knows that G; is acyclic, i.e., there are |V| strong components of G;, one for each
vertex. If the problem size is one, since G is strongly connected and G; is acyclic, the vertices
in V' are combined with the addition of the |E|th edge in 0. Hence, the algorithm HD returns a
tree T having a root labelled with o (o (|E])) and |V leaves. If the problem size is not one, HD
checks if G, j = [(¢ + |E|)/2] is strongly connected. If G; is strongly connected, then all of the
strong components should have been combined before the addition of the (j + 1)th edge. Hence,
the algorithm calls HD(G;, 0,¢). Otherwise, a recursive call is made for each strong component of
size larger than one. A detailed pseudo-code of HD is given in Algorithm 2.

In Algorithm 2, for the ¢th strong component SCy = (V;, Ey), lines 11-14 find the integer i,
such that the subgraph of SC; containing only its first i, edges is acyclic. Since G;, the graph
containing the first ¢ edges of G in o, is known to be acyclic, for SCy, i, is set to the index of
the last edge uv in oy such that o~ '(uv) < 4. If no such edge exists, i.e., all the edges in E,



Algorithm 1 7 = HD(G = (V, E),0,1) . For the initial call, 0 = oy and i = 0.
1: if the number of remaining edges to be investigated is one then

2:  The last edge uv € F makes the graph strongly connected. Return a tree T' containing the
vertices in V' as the leaves where the root is labelled with o *(uv).

3: else

4: Do a recursive binary search on the edges of the graph to find the first edge such that its
addition makes the graph strongly connected by setting j = [(i + |E|)/2].

o

if G; is strongly connected then

6: Continue the binary search with the edges between ¢ and j, inclusive, by calling
HD(Gj,O',i).

else

®

For each non-trivial strong component SC; of G}, i.e., those containing more than one

vertex, do a recursive call HD(SCYy, 0y, i¢) where oy, inherited from o, is the permutation

of the edges of SCy and i, is index of the last edge in o, such that the first iy edges of

SCy are known to form an acyclic graph. Note that the trees returned by these recursive

calls and the trivial strong components (singleton vertices) make a forest.

9: Continue with the binary search to find the edge which combines all the strong
components SCy of G into one strong component. Create a condensed graph in which
each vertex represents a strong component of GG;. For each edge uv € E of G, such that u
and v are in different strong components of G5, this condensed graph contains a distinct
edge between the vertices corresponding to the strong components of v and v and it is
labelled with the label of uv. Do a recursive call on this graph with a permutation of its
edges and largest possible 7' such that the first 7’ edges in the permutation are known to
form an acyclic graph.

10: Let T be the tree obtained from the last recursive call in line 9. Replace each leaf of T'

with the corresponding subtree obtained in line 8 and return 7. For trivial components,

the subtree is assumed to be a singleton vertex.




Algorithm 2 T = HD(G = (V, E),0,1) . For the initial call, 0 = oy and i = 0.

1. if |E| — i =1 then

2:  Let T be a tree with V leaves. Root is labelled with o' (o(|E]))
3: return T

& § =[G+ |ED/2]

5. if Gj = (V,{o(k) : 1 <k < j}) is strongly connected then

6: return 7 = HD(Gj,0,1)

7: else

8 for each strong component SCy = (V;, Ey) of G; do

9 if |Vy| >1 then

10: op = the permutation of F, ordered with respect to o
11: if i =0 or (07! (uv) > i, Yuv € E;) then

12: 10 =20

13: else

14: ip = max{k : 0~ (op(k)) < i}

15: Ty = HD(SCy, 0y, 1¢)

16: else

17: Ty = (Vl, @)

18: Vi = Vo = {V;: SCy is a strong component of G}

19: V= {V1, VQ}

20:  GY = condense(G, V) = (VY2, EV1)

21: ¢V = the permutation of EY! ordered with respect to o
22:  if (07 Y(ww) > 4, Yuv € EV1) then

23: iV =0
24:  else
25: i¥ = max{k : 0~ (oY (k)) < j}

2: TY = HD(GY,0Y,i")
27 replace the leaves of TV with the corresponding trees Ty
28: return TV




come after the ith edge in o, iy is set to 0. Since G; has more than one strong component and
G is known to be strongly connected, with the addition of some edge(s) after the jth one at
least two strong components should have been combined. To find this edge, another recursive
call, HD(GY, ¢Y,4") is made for the condensed graph GY. The iV value is set in a similar fashion
to iy as described above. But this time instead of ¢ we use j since we know that the graph
G}; = (VY2 {oY(k): 1 <k < j}) is acyclic.

At line 6 of Algorithm 2, the size of the problem becomes at most j—i and for lines 15 and 26,
there will be smaller subproblems with size at most j — i and |E| — j, respectively. By definition
of j, every subproblem has a size at most % of the original problem size (consider the case when
i = 0 and |E| = 3). Note that every edge in the original problem corresponds to an edge in at
most one subproblem and, if we do not count the recursive calls, the rest of the algorithm takes
O(|E|). Let |E| = m, t(m,r) be the total complexity of a problem with m edges and r problem
size, and k be the number of recursive calls. Then

k

t(m,r) = O(m) + Y t(ms,rs).

i=1

Since Zle m; < m and r; < 2r/3 for 1 < i < k, an easy induction shows that t(m,r) =
O(mlogr). Hence the total complexity of the algorithm is O(mlog m) which is actually O(mlogn)
since the original graph is a simple digraph (not a directed multigraph).

Let us sketch the algorithm for the digraph G = (V, E) in Figure 2.1. Assume that oy is
the ordering described in the figure. In the initial call, step 4 of Algorithm 1 computes j = 7
and checks if G7 is strongly connected. As Figure 2.4 shows Gy has three strong components
where the first and second are the new subproblems solved recursively. Since the third strong
component contains only one vertex, HD does not make a recursive call for it. An additional
recursive call is made for the condensed graph. Figure 2.5 shows the graphs for the recursive calls
and the returned trees. The number of edges in Figs. 5(a), 5(b) and 5(c) are 4, 2 and 7, whereas
the corresponding problem sizes are 4, 2 and 6 respectively. Note that ¢1 and i5 are 0 for the first
two calls and 7Y = 1 for the last one with G since GY is known to be acyclic because j = 7 and

oY (1) = a(7).

se sc; scs
Figure 2.4: Strong components of G7 for the digraph G given in Figure 2.1

Because of the multiple edges between two vertices, the condensed graph in Figure 5(c) has 7
edges. However, the algorithm still works if we sparsify the edges of GY = (V¥2, EY1) and obtain
a simple digraph as follows: For a uv € E such that v € V; and v € V; and i # j, there exists
v;v; € EYVif no other u/v' € E exists such that «' € V; and v/ € V; and o~} (u/v') < o7 (uv).



That is, for multiple edges between u and v, we delete all but the first one in the permutation o.
In Figure 5(c), these edges, o(7) and o(8), are shown in bold. Tarjan (1983) states that although
having less edges in the condensed graphs with this modification is desirable, in practice the
added simplicity does not compensate for the cost for the reduction of multigraphs to simple
digraphs. This is also validated by our preliminary experiments.

3 1 12

®
\@ (2) ®
6o @O
(a) Call (b) Call for (¢) Call for the

for SCy SCs condensed graph with
three vertices

; @
7(10,13) 8(9)

Figure 2.5: Three recursive calls for the digraph G and g in Figure 2.1. Internal nodes in trees
are labelled with the o ! value of the corresponding edge. Note that the overall hierarchical
decomposition tree is already given in Figure 2.3.

3 A Strong Component based Preconditioner

Let A be a large, nonsingular, n X n sparse matrix with m nonzeros. The digraph G = (V, E),
associated with A, has n vertices in V' where v; corresponds to the ith row/column of A for
1 <i<nandwwv; € Eiff Aj; is nonzero, for 1 < ¢ # j < n. The weight of an edge is set to the
absolute value of the corresponding nonzero. Hence, all of the edges have positive weights.

We assume that A is irreducible, i.e., it cannot be permuted into block triangular form by
simultaneous row/column permutations. Note that a matrix is irreducible if and only if its
associated digraph is strongly connected. The directed graph G in Figure 2.1 is the associated
digraph for the matrix in Figure 3.1. Since we know that G is strongly connected this matrix
is irreducible. Note that the diagonal entries can be omitted in the associated digraph since
they do not play a role in the reducibility of the matrix. They will correspond to the loops in
the associated digraph, and hence they do not affect the connectivity of the digraph. Note that
we only consider transformations of the form PAPT where P is a permutation matrix which
means that we preserve the large entries that we previously permuted to the diagonal using an
unsymmetric permutation.

We will generate a preconditioner M with a block upper-triangular structure where the size of
each block is smaller than a requested maximum block size mbs. Given A and mbs, our proposed
SCPRE algorithm first scales the matrix and then obtains a nonzero diagonal by permuting the
columns of A with a permutation matrix P. After that it generates another permutation matrix
Q such that the block upper triangular part of the matrix A’ = QAPQT contains a large
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Figure 3.1: The associated matrix for digraph in Figure 2.1

proportion of the nonzeros and the sum of the absolute values, i.e., magnitudes, of these nonzeros
is also large. In this section, we describe the steps of the algorithm SCPRE in detail.

3.1 Obtaining a Nonzero Diagonal and Scaling

Let 7 be a permutation of the columns of A such that all of the entries, A;(;, are nonzero.
The permutation 7 has an associated permutation matrix P such that AP has the nonzero
entries A;.(;) on the diagonal. Finding such a permutation (usually called finding a transversal),
has been extensively studied and several algorithms have been proposed in the literature (Duff
1981a, Duff 19815, Duff and Wiberg 1988, Hopcroft and Karp 1973, Pothen and Fan 1990).
Note that a transversal yielding a nonzero diagonal always exists for nonsingular matrices.
However, it is usually not unique. Among these transversals, those that maximize the product
I, |Aix(i)| are called the mazimum product transversals. As previous work on direct and
iterative solvers has shown, to solve linear systems using such a transversal is more promising
than using a random one (Benzi, Haws and Tuma 2000, Duff and Koster 2001). The
problem of finding a maximum product transversal can be reduced to the well known linear
sum assignment problem (LSAP) (Burkard, Dell’Amico and Martello 2009) by taking the
logarithm of the magnitudes of the nonzeros. For LSAP, there exists primal-dual algorithms
in the literature (Fredman and Tarjan 1987, Jonker and Volgenant 1986). Actually, these
are the first polynomial methods proposed for LSAP (Kuhn 1955). By using a primal-dual
approach, in addition to the permutation obtained from the primal solution, Olschowska and
Neumaier (Olschowska and Neumaier 1996) use the dual solution’s variables to propose an
algorithm which permutes and scales the matrix in such a way that the magnitudes of the diagonal
entries are one and the magnitudes of the off-diagonal entries are all less than or equal to one.
Such a matrix is called an I-matriz. For direct methods, it has been observed that the more
dominant the diagonal of a matrix, the higher the chance that diagonal entries are stable enough
to serve as pivots for elimination. For iterative methods, as previous experiments have shown,
such a scaling and I-matrices are also of interest (Benzi et al. 2000, Duff and Koster 2001).
Using the ideas above, Duff and Koster (2001) implemented an algorithm MC64 such that,
given a matrix A, it returns a permutation 7 and row and column scaling vectors r and c. Let
P be the corresponding permutation matrix for 7 and R and C be the diagonal scaling matrices
such that R;; = exp(r;) and C; = exp(c;) for 1 < ¢ < n where exp is the exponentiation
function with base e. Then Apmces = (RAC)P is an [-matrix. We use the algorithm MC64
as a preprocessing step and obtain the permuted and scaled matrix Ances. Note that MC64
has other options such as finding a random transversal or a maximum bottleneck transversal

which maximizes min;(|A;x(;|). In our experiments, we observed that permuting the matrix with



respect to the maximum product transversal is the most promising one for the preconditioned
iterative solver in terms of the iteration count.

3.2 Obtaining the Block Triangular Form

SCPRE obtains the block upper triangular matrix M in four steps: first, it creates a permutation
oo for the edge set of the corresponding digraph. Second, it uses a modified version of Tarjan’s
HD algorithm to obtain the initial block structure. Third, it combines the blocks to put more
nonzeros into the block diagonal of M. While combining these blocks, SCPRE takes block sizes into
account and always obtain blocks of size smaller than or equal to mbs. Finally, it determines an
ordering and finds a row/column permutation to put more nonzeros into the upper block diagonal
M. While describing these steps, the terms row/column and vertex can be used interchangeably,
as well as the terms nonzero and edge.

3.2.1 Obtaining the Permutation

As mentioned in Section 2.2, Tarjan proposed HD for hierarchical clustering purposes and sorted
the edges with respect to increasing edge weights. That is, for the permutation oy used for
hierarchical clustering, if ¢ < j then w(og(i)) < w(op(j)). In this work, we propose using two
different approaches to obtain the permutation: the first one solely depends on the weights of
the edges and sorts them in the order of decreasing edge weights, i.e., we define the permutation
o such as w(o(i)) > w(o(j)) if i < j. The second one uses both the weight information and the
sparsity pattern of the matrix. It first uses the reverse Cuthill-McKee (RCM) ordering (Cuthill
and McKee 1969, George 1971) to find a symmetric row/column permutation and relabels the
vertices of the digraph accordingly. After that, the edges with weights larger than a threshold
A € [0,1) are ordered in a natural, row-wise order. That is, an edge ¢j always comes before k¢
ifi<kor,i==kand j </ After these edges, those remaining with weights smaller than \ are
put to the end of o in the order of decreasing weights.

Note that when we sort the edges with respect to the decreasing edge weights, we increase
the chance that entries with larger magnitudes are within the block diagonal after permuting the
rows and columns with SCPRE’s output. Also eliminating edges with relatively smaller weights
has the same effect when combined with the RCM ordering which tries to reduce the bandwidth
of the matrix and put the entries closer to the diagonal.

3.2.2 Obtaining the Blocks

The output of Tarjan’s HD algorithm, the decomposition tree T', can be used for preconditioning
without modifying the algorithm: Given the maximum block size mbs, by partitioning the
leaves to the maximal subtrees containing at most mbs leaves, an initial block diagonal for the
preconditioner M is obtained. For the decomposition tree T" in Figure 2.3, the cases for mbs = 2
and mbs = 3 are given in Figure 3.2. In T, for the case mbs = 2, vertices 1, 2, and 3 cannot
be combined since the number of vertices in the combined component will be 3, greater than
mbs. Hence, there will be 5 blocks after this phase. However, such a combination is possible
for the case mbs = 3 and the number of blocks will be 3. Note that for preconditioning, we do
not need to construct the whole tree of HD. We only need to continue hierarchically decomposing
the blocks until they contain at most mbs vertices. Hence, for efficiency we modify the line 9 of
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HD to check if the current strong component has more than mbs vertices (instead of one vertex).
Hence the modified algorithm will make a recursive call for a strong component if and only if the

component has more than mbs vertices.

(a) mbs =2 (b) mbs =3

Figure 3.2: Using the output of HD algorithm. Two cases, mbs = 2 and mbs = 3, are investigated
for the decomposition tree in Figure 2.3.

To obtain denser and larger blocks, we incorporate some more modifications to HD as follows:
first, we modify the definition of V. Note that V = {V1,Vs} for HD, where the parts in V; = Vs
are the vertex sets of the strong components of GG;. For preconditioning, we keep the definition of
V1 but we use a finer partition V5 which contains the vertex sets of strong components obtained
by hierarchically decomposing the strong components of size larger than mbs. For example,
in Figure 2.4, we have 3 strong components of sizes 3, 2 and 1, respectively. Hence, Vi =
{{1,2,3},{4,5},{6}}. If mbs = 2, SCy will be further divided so Vo = {{1},{2}, {3}, {4,5},{6}}.
However, if mbs = 3 no more decomposition will occur and V; will be equal to Vo. With this
modification, the algorithm will try to combine the smaller strong components and obtain larger
ones with at most mbs vertices. Note that setting V = {Va,Vs} tries to do the same but it will
fail since the only components that can be formed by this approach will be the same as those
in V1. Hence, by deleting the edges within the vertex sets in Vi, we eliminate the possibility of
obtaining the same components.

A second modification is applied to the condense operation by deleting the edges between
two vertices v;,v; € VY1 in the condensed graph GV, if the total size of the corresponding parts
Vi, V; € Vo is larger than mbs. Note that if we were to retain these edges, they would only be
used to form blocks of size more than mbs. We call this modified condense operation pcondense.
An example of the difference between condense and pcondense is given in Figure 3.3.

As Figure 3.3 shows, with the last modification, some of the graphs for the recursive calls may
not be strongly connected. Hence, instead of a whole decomposition tree, we may obtain a forest
such that each tree in the forest, which corresponds to a strong component in the hierarchical
decomposition, has less than mbs leaves. The modified algorithm HDPRE, described in Algorithm 3,
also handles digraphs which are not strongly connected. Note that, for preconditioning, the only
information we need is the block information for the rows/columns. That is, we need to know
which vertex is in which tree in the forest after the modified hierarchical decomposition algorithm
is performed. Instead of a tree (or a forest), HDPRE returns this information in the scomp array.

The structure of the algorithm HDPRE is similar to that of HD. In addition to G, ¢ and ¢,
HDPRE requires an additional input array vsize which stores the number of vertices condensed
into each vertex of V. Note that for a simple vertex, this value is one. Hence, for the initial call

11
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Figure 3.3: Difference between condense and pcondense operations for the strong components
of G7 given in Figure 2.4. Let mbs = 3 so all of the components have a desired number of vertices
and V; = Vo = {{1,2,3},{4,5},{6}}. Note that the condensed graphs obtained by condense
and pcondense are the same except that the latter does not have some of the edges that the
former has. For this example, the edges 7, 10, 11 and 13 are missing since the total size size of
SCy and SCs is 5, greater than mbs. As a result, for the condense graph, we obtain 3 blocks of
sizes 3, 2 and 1, respectively, whereas for the pcondense graph, we have 2 blocks of size 3.

with G = (V, E), vsize is an array containing |V| ones. On the other hand, for the condensed
vertices, this value will be equal to the sum of the vsize values condensed into that vertex. For
the condensed digraph in Figure 5(c), vsize = {3,2,1} when its vertices are ordered from left to
right. To be precise, for a recursive call with G = (V| E), the total number of simple vertices is
Y vey vsize(v) and this number is larger than mbs for all recursive calls because of the size check
in line 14 of Algorithm 3.

At first, HDPRE checks if the problem size of the recursive call |E| — i is equal to one. If
this is the case, it finds the strong components of G. If a strong component SC, = (Vy, Ey)
has Zvew vsize(v) > mbs vertices then HDPRE considers each vertex in Vy as a different strong
component. Otherwise, i.e., if the size of a strong component is less than or equal to mbs,
that component is not divided. HDPRE constructs the scomp array and returns. If the problem
size, |E| — i is greater than 1, similar to HD, it constructs G; for j = [(i + |E|)/2] and if it is
strongly connected the search for the combining edge among the first j edges starts with the
call HDPRE(G}, 0,14, vsize). If not, for every strong component SC; = (V;, E;) of G; such that
zvew vsize(v) > mbs, it makes a recursive call HDPRE(SCYy, oy, iy, vsize;) and updates the strong
component information for the vertices in V,. This update operation can be considered as further
dividing the strong component SC} hierarchically until all of the strong components obtained
during this process contain at most mbs vertices.

Similarly to HD, at line 28, HDPRE makes one more recursive call for the condensed graph G
where the definition of the vertex partition V (in line 22) is modified as described above. In HD,
each vertex in the condensed graph corresponds to a strong component of G; which defines a
partition V;. In HDPRE, these components are further divided until all of them have a size no
larger than mbs. A second partition, V5 is obtained from these smaller strong components and
V = {V1,V,} is defined. After obtaining the condensed graph GV, before the call, HDPRE checks
if GV is known to be acyclic. Note that if i¥ = |EY!|, no strong component with two or more
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Algorithm 3 scomp = HDPRE(G = (V, E), 0,1, vsize) (mbs is global, i = 0 for the initial call).

1. if |E| —i¢ =1 then
find strong components of G
for each strong component SC, = (V;, Ey) of G do
if 3 ey, vsize(v) > mbs then
consider each v € V as a strong component
else
Vv € Vi, scomp(v) = ¢
return scomp
=[G +|ED/2]
10: if G = (V,{o(k) : 1 <k < j}) is strongly connected then
11:  return scomp = HDPRE(G), 0,1, vsize)

e

12: else
13:  for each strong component SC; = (V;, Ey) of G; do

14: if 3 ey, vsize(v) > mbs then

15: op = the permutation of E, ordered with respect to o
16: compute iy as in Algorithm 2

17: vsizeg(v) = vsize(v), Yo € Vj

18: scompy = HDPRE(SCYy, 0y, iy, vsizey)

19: update scomp according to scompy

200 Vi ={V;: SC is a strong component of G}

21: Vo ={Vyp : SCp = (Vy, Ep) is a strong component in scomp}
22: V= {V1, VQ}

23:  GY = pcondense(G,V, mbs) = (VY2, EV1)

24: 0¥ = the permutation of E¥' ordered with respect to o

25:  compute i¥ as in Algorithm 2

26: if i¥ # |EV!| then

27: vsize (vp) = ZUGVZ/ vsize(v), YV € Vo
28: scomp? = HDPRE(GY, oY ,iY, vsizeY)
29: update scomp with respect to scomp?

30: return scomp
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vertices exists in G¥ and hence it is acyclic. If i¥ # |EY1|, after obtaining scomp", HDPRE updates
scomp if a larger strong component is obtained.

For the matrix given in Fig 3.1, HDPRE generates the blocks for the cases mbs = 2 and mbs = 3
as given in Figure 4(a) and Figure 4(b), respectively. For mbs = 2, the condensed graph has 5
vertices and no edges hence no combination will occur. For mbs = 3, as shown in Figure 4(b),
the condensed graph has 3 vertices where 2 of them will combine with the 12th edge in og.

1 2 3 4 5 ¢ 1 2 3 4 5 ¢
1% 3 1] x 3
2|1 x4 13|z 21 |x|413|7
3 2 % 10 3 X 10
4 11 X|5|s 4 11 X|[5]8
5 X |9 5 6[x]|eo
6 12 X 6 12 X
(a) mbs =2 (b) mbs =3

Figure 3.4: Initial block structure of the preconditioner after HDPRE algorithm. Two cases,
mbs = 2 and mbs = 3, are investigated for the matrix in Figure 3.1.

3.2.3 Combining the Blocks

After HDPRE, an initial block diagonal partition is obtained. In the next phase, SCPRE performs
a loop on the nonzeros which are not contained in a block of the diagonal to see if it is possible
to put more nonzeros into the block diagonal by combining initial blocks. To do this, SCPRE first
constructs a condensed simple digraph ﬁ where the vertices of ﬁ correspond to the diagonal
blocks and multiple edges are combined as a single edge with a weight that is the sum of the
weights of the combined edges. After that, an undirected graph H is constructed by recombining
the edges uv and vu into a single edge with weight equal to w(uv) + w(vu).

After H is obtained, its edges are visited in an order corresponding to a permutation o g. This
permutation is consistent with the original permutation og. That is, if the edges of the original
digraph are sorted in descending order with respect to the edge weights, o g permutes the edges of
H with respect to descending edge weights. On the other hand, if the initial permutation is based
on the RCM ordering we compute the RCM ordering of ﬁ, relabel the vertices of H accordingly,
and order the edges as described in Section 3.2.1. Let vsize(u) be the number of rows/columns
in a block corresponding to the vertex u. The pseudo code of this phase is given in Algorithm 4.

Algorithm 4 comb(o,vsize), mbs is global.

1: for each uv € oy do

2:  if vsize(u) + vsize(v) < mbs then
3: merge blocks u and v

4: update vsize accordingly

Assume that SCPRE constructs o by sorting the edges with respect to decreasing weights. For
the matrix given in Figure 4(a), if w(2) +w(4) > w(1) then vertices 2 and 3 are combined. Since
mbs = 2 and there is no edge between vertices 1 and 6, these two vertices remain as singletons.
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3.2.4 Ordering the Blocks

After comb, no block can be combined with the others to obtain a larger block with size no larger
than mbs to put more nonzeros into the block diagonal. However, the order of these blocks is
still important since it changes the nonzeros in the upper part of M.

Let G = (V, E) be the digraph associated with the matrix and k be the number of its diagonal
blocks after comb. Let Vi = {Vi, Vs, -+, Vi} be a partition of V' such that the vertices in V;
correspond to the rows/columns of ith block. Let V = {V1,V1} and G¥ = condense(G,V) be
the condensed multigraph. Note that if GV is acyclic, a topological sort in GV gives a symmetric
block permutation such that all of the nonzeros in the matrix will be in the upper triangular part
of the permuted matrix. Unfortunately, we observed that this usually does not happen for real
test matrices.

The problem of finding a good block permutation, which maximizes the number of nonzeros
in the upper part of M, can be reduced to the problem of finding the smallest edge set E’ such
that G = (VY1 EY1\ E') is acyclic. For the weighted version of the problem, i.e., to maximize
the total magnitude in the upper part, we need to find an edge set E’ where G is acyclic and the
sum » . |w(uw)| is minimum. In the literature, the first problem is called the directed feedback
arc set problem and the second one is called the directed weighted feedback arc set problem. Both
problems are NP-complete (Garey and Johnson 1979, Gavril 1977).

We use a simple greedy heuristic called gperm to solve the weighted version of the problem.
Let GV be the condensed graph described above. For each vertex u € V'V, let tweight(u) =
> wwerpy W(uv). gperm’s main body is a for loop where at the ith iteration, it chooses the vertex
u with maximum tweight and assigns it as the ith vertex in the permutation. It then removes u
from V'V, its edges from EY, and continues with the next iteration.

4 Using SCPRE with an Iterative Solver

The iterative solver we use in our experiments is MATLAB’s left-preconditioned GMRES (Saad
and Schultz 1986) with restarts. The template for this can be found in Barrett, Berry, Chan,
Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine and der Vorst (1994). Let A=D+ U+ L
be the scaled and permuted matrix so that M = D + U is the preconditioner for A. Now the
computation M~1Ax becomes

M 'Ax=(D+U)'D+U+Lx=x+(D+U) HLx).

Note that gperm tries to maximize the total magnitude in D and U. As a consequence, L usually
contains many fewer nonzeros than A. Hence computing the vector z = Lx usually takes very
little time and the main operation is to compute (D 4 U)~!z.

In our implementation, in addition to A, we store the LU factors of the diagonal blocks, i.e.,
the factors L; and Uj such that D; = L;U; where Dy is the ith diagonal block. We reduce the
memory requirements for these factors by ordering the blocks using the approximate minimum
degree (AMD) heuristic (Amestoy, Davis and Duff 2004, Davis Sept. 2006) before the MATLAB
sparse factorization. We then solve the upper block triangular system My = z using these factors,
starting with the last block, so that the off-diagonal part U is only used to multiply vectors.
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4.1 Robustness

Although it is very rare, we observe that the preconditioner M obtained by SCPRE is singular for
some matrices in our test set. That is, some of the blocks on the diagonal of M are singular.
Note that since the scaled and permuted matrix is an [-matrix, the diagonal blocks of M are
I-matrices as well. Hence, with high probability, the diagonal blocks will be nonsingular and
well-conditioned.

Thus, when using the MATLAB factorization, we guard against this potential problem by
using the simple and cheap stability check proposed and used by (Fritzsche 2010) for XPABLO.
That is, if n; is the dimension of Dj, after computing L; and Uj, we check whether

Ui 'L !
1— % < Ve, (4.1)
e
where e = (1,...,1)T is an n; x 1 column vector, x = Dje, and ¢j; is machine epsilon. He

suggests that, if a block does not satisfy (4.1), Dj is replaced either by U;j or L; according to
whether he is solving a block upper or lower triangular system respectively. For SCPRE, we always
use the factor having the largest Frobenius norm to replace D;, where the Frobenius norm of an

IBllr= | > B[
1<4,5<n

We conduct several experiments to see the influence of the parameters on the performance of the

n X n matrix B is given by

5 Experiments

algorithm. These are the maximum block size mbs and the permutation ¢y. For the experiments,
we use two sets of matrices from the University of Florida Sparse Matrix Collection!. The
first set contains circuit simulation matrices and the second set contains computational fluid
dynamics (CFD) and device simulation matrices. The list of these matrices is given in Table 5.1.

In our experiments, we restarted GMRES (Saad and Schultz 1986) after every 50 iterations.
The desired error tolerance for GMRES(50) is set to e = 10~8 and the stopping criterion we use for

GMRES is o
M~ (AX —b)|

M~ 1|

where X is the solution found. The maximum number of outer iterations is set to 20, hence the

maximum number of inner iterations is 1000. In the tables, we give the iteration count when this
criterion is satisfied. However, when this does not happen, that is, when the residual after 1000
iterations is bigger than €, or when the MATLAB GMRES solver detects stagnation, we put a
dash symbol (-) to denote this. Also, we put the lowest iteration count for each matrix in bold
font.

To compare the efficiency of the preconditioner, we used a generic preconditioner, ILUT (Saad
1994, Saad 2003), from MATLAB 7.8 with two drop tolerances, dtol = 1073 and 10~*. In addition
to ILUT, we also compared our results with those of XPABLO (Fritzsche 2010, Fritzsche et al. 2007).
For all of the preconditioners, we use MC64 and obtain a maximum product transversal by scaling
and permuting the matrix as a preprocessing step.

"Mttp://www.cise.ufl.edu/research/sparse/matrices/
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Table 5.1: Properties of the matrices used for the experiments. n is the dimension of the matrix,
m is the number of nonzeros, psym is the pattern symmetry and nsym is the numerical symmetry,
where the matrix is symmetric when the value is 1 in each case.

Description Group Matrix n m psym  nsym
AMD G2_circuit 150102 726674 1 1
Bombhof circuit_2 4510 21199  0.807 0.415
Bombhof circuit-3 12127 48137  0.770  0.300
Bomhof circutt_4 80209 307604 0.829  0.364
Grund megl 2904 58142  0.002  0.002
Grund meg4 5860 25258 1 1
Circuit Hamm beircuit 68902 375558 1 0.908
simulation Hamm hcircuit 105676 513072 1 0.195
problems Hamm memplus 17758 99147 1 0.496
IBM_Austin coupled 11341 97193 1 0.782
IBM_EDA ckt11752_dc_1 49702 333029 0.984  0.736
Rajat rajat03 7602 32653 1 0.402
Rajat rajat27 20640 97353 0.965 0.304
Sandia ASIC_100k 99340 940621 1 0.003
Sandia mult_dcop_01 25187 193276  0.614  0.003
DRIVCAV cavity16 4562 137887 0.953  0.654
Computational| DRIVCAV cavity26 4562 138040  0.953 0
fluid Garon Garonl 3175 84723 1 0.672
dynamics Garon Garon?2 13535 373235 1 0.673
problems Shyy shyy161 76480 329762 0.726  0.182
Simon raefsky2 3242 293551 1 0.098
Sanghavi ecl32 51993 380415 0.922  0.603
Schenk IBMSDS  2D_27628_bjtcai 27628 206670 1 0.219
Schenk IBMSDS  2D_54019-highk 54019 486129  0.998 0.190
Schenk IBMSDS  3D_2898/_Tetra 28984 285092  0.987  0.361
Semiconductor Schenk IBMSDS 3D-5144873D 51448 537038 0.992 0.187
device Schenk IBMSDS  ibm_matriz_2 51448 537038 0.992  0.186
Schenk IBMSDS  matriz_9 103430 1205518 0.997 0.174
problems Schenk IBMSDS  matriz-new_3 125329 893984  0.987  0.283
Schenk ISEI igbt3 10938 130500 1 0.172
Schenk ISEI nmosd 18588 237130 1 0.167
Wang wangd 26064 177168 1 0978
Wang wang4 26068 177196 1 0.046
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In the MATLAB implementation of ILUT, for the jth column of the incomplete L and U,
entries smaller in magnitude than dtol x ||A,;|| are deleted from the factor where ||A,;|| is the
norm of the jth column of A. However, the diagonal entries of U are always kept to avoid a
singular factor. To use ILUT based preconditioners, we use RCM before computing the incomplete
factorization of the matrix. For XPABLO preconditioners, we use the LX and UX variants with the
parameters given in Fritzsche (2010) and Fritzsche et al. (2007). As suggested in these papers,
we set the minimum and maximum block sizes to 200 and 1000, respectively.

In addition to the number of iterations required for convergence, we compare the performance
of the preconditioners according to the relative memory requirement with respect to the number
of nonzeros in A. Let nz(B) be the number of nonzeros in a matrix B. For ILUT, the relative
memory requirement is equal to

nz(L) + nz(U)
nz(A) '

memsiryr =

where L and U are the incomplete triangular factors of A. On the other hand, the relative
memory requirement for SCPRE and XPABLO is equal to

Sk (nz(Ly) + nz(Uy))
nz(A) '

Memgcpre = TETNXPABLO =

where k is the number of blocks in the block diagonal D and L; and Uj are the lower and upper
triangular factors of the LU factorization of the ith block in D. Note that the relative memory
requirements of the preconditioners can give an idea for the cost of computing M~!Ax. Assuming
x is a dense vector, a preconditioned GMRES iteration will require approximately nz(A)(1+mem x)
operations for the preconditioner X.

There are three parameters for the proposed algorithm: the first is the maximum block size,
mbs, the second is the permutation for the nonzeros, denoted by og, and the third is A\ used to
generate oy when RCM is used. Our experiments (not reported on here) show that setting A = 0.05
works well for most of the matrices. Hence, in our experiments, we use this value. Table 5.2
shows that increasing mbs will decrease the number of iterations for convergence but will increase

the relative memory requirement.

Table 5.2: Effect of the maximum block size mbs for SCPRE used to solve the matrix rajat27.
The permutation oy is obtained by ordering the edges with respect to decreasing edge weights.
M =D+ U = A — L is the preconditioner, nb is the number of blocks in D, memgcprg is the
relative memory requirement and iters is the number of iterations required by the preconditioned
GMRES (50) for convergence.

mbs  ||[M|lr ||L|lr nb memscre iters
1000 163.88  33.11 26 1.25 7
2000 164.22 2537 15 1.66 5
3000 164.65 21.69 11 1.53 5
4000 164.78  19.32 8 2.03 4
5000 165.38  12.38 7 2.21 3

We conduct some experiments to show the effect of our choice of oy on the performance of our
algorithm. Note that in Tarjan’s algorithm the edges are sorted in increasing order with respect
to their weights. In our implementation, we define the weight of an edge as the magnitude of the
corresponding nonzero and sort the edges in decreasing order. We test our decision by comparing

its effect with that of a random permutation. As Table 5.3 shows, our decision to sort the edges
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in decreasing order with respect to the edge weights works much better. Although we do not
record our runs using Tarjan’s oy, its performance was also considerably worse than our strategy.

Table 5.3: Effect of the permutation o¢ on the number of iterations. Two options are compared:
decreasing order with respect to the edge weights and a random order. Maximum block size
for SCPRE is set to 250. For each case, the Frobenius norms of M and L, the relative memory
requirement and the number of iterations for preconditioned GMRES are given.

Decreasing Random
Matrix [IM||r  ||L|lr memscre iters | ||[M|lr  ||L||lF memscere iters
circuit_2 93.72 5.67 0.90 4 93.30  10.49 0.97 20
circuit_3 140.64  10.86 1.20 21 | 139.53  20.69 1.25 -
megl 74.95 3.08 0.85 4 74.51 8.68 0.86 10
meg4 79.75 0.00 1.30 1 79.75 0.00 1.32 1
memplus 170.07 0.02 0.96 8 | 16949 14.01 0.94 69
coupled 128.55 2.51 1.04 12 | 125.70  27.02 0.98 56
rajat03 101.26 0.00 0.93 2 | 100.04 15.68 1.65 141
rajat27 166.39  35.16 1.17 7 | 165.65 38.49 1.11 57
mult_dcop_01 | 257.87 0.00 0.78 1 | 257.87 0.00 0.78 1

Looking again at Table 5.2 we see that the number of iterations is lower when the memory
used to store the preconditioner is higher and the value of ||L||r is lower. However, as Table 5.3
shows, ||L||F is more important. That is, the iterative solver may suffer due to large entries in
L even when its memory usage is larger. Although our experiments show that ||L||r and the
number of iterations required for convergence are not strictly correlated, smaller ||L||p norms
usually imply faster convergence.

Table 5.4 shows the performance of SCPRE, XPABLO and ILUT for circuit simulation matrices.
As the table shows, for some matrices such as meg4 and mult_dcop_01, the block triangular form
from SCPRE can contain all of the nonzeros and hence the solution can be found in one iteration.
Figure 5.1 shows the structure of meg4 and mult_dcop_01 before and after permutation by SCPRE.
In nearly all cases SCPRE(dec) outperforms SCPRE(RCM) so we recommend this variant on this
class of matrices. In general all the preconditioners work well for circuit simulation problems,
and the ILUT preconditioners and SCPRE(dec) converge for all matrices in this set. Both variants
of XPABLO fail to converge for bcircuit and ckt11752_dc_1 and XPABLO requires fewer iterations in
only two cases and then not by a significant margin. Thus SCPRE(dec) is the best block based
preconditioner on this set of matrices.

The comparison of SCPRE(dec) with the ILUT preconditioners is less clear cut. There are only
three cases where ILUT(10~4) requires more iterations than SCPRE(dec), although in one of these
cases (bcircuit) it requires many more iterations and on another (mult_dcop_01) it requires very
much more memory. Indeed, in nearly all cases, ILUT(10~%) requires more memory sometimes
substantially more. The memory requirements of ILUT(1073) are less than for ILUT(10™4) but
it still usually requires more memory than SCPRE(dec) and has fewer iterations on only 7 out of
15 matrices. There are only two cases where the ILUT preconditioners require significantly fewer
iterations, namely G2_circuit and ckt11752_dc_1 although in both cases the ILUT preconditioners
require more memory. From our previous experiments we might hope to reduce the iteration count
for SCPRE(dec) by increasing mbs and thus increasing our memory requirement. For G2_circuit,
if we increase mbs to 5000, then the number of iterations drops to 95 and our relative memory
requirement increases to 6.10 which is comparable although slightly worse than the figures for
ILUT(1073). For ckt11752_dc_1, increasing mbs to 5000 reduces our iteration count to only 5
although our relative memory requirement is then 3.93. However, by increasing mbs to only
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Table 5.4: Numbers of iterations and relative memory requirements for XPABLO, ILUT and SCPRE
when they are used for circuit simulation matrices. For SCPRE, mbs is set to 1000 and we show
the results using two permutations for oy, based on RCM and descending order. For XPABLO, the
parameters suggested in Fritzsche (2010) are used and the minimum and maximum block sizes
are set to 200 and 1000, respectively. For ILUT, the drop tolerance is set to 10~3 and 1074,

Matrix XPABLO XPABLO | ILUT ILUT SCPRE  SCPRE
UX LX 1073 107" | dec RCM
G2_circuit 743 727 89 38 642 571
1.77 1.77 5.47 13.30 | 2.23 2.16
circuit-2 13 13 6 4 3 4
1.17 1.17 1.23 1.77 2.17 2.06
circuit-3 572 572 3 2 14 78
1.25 1.25 2.16 3.7 1.40 1.24
circuit_4 18 18 2 3 20 21
0.97 0.97 1.03 2.70 0.99 0.98
megl 9 9 3 3 3 4
0.91 0.91 0.46 0.71 0.70 0.58
megs4 1 1 2 2 1 1
1.35 1.35 0.49 0.49 1.59 1.61
beircuit - - 238 136 16 386
1.32 1.32 1.10 1.22 1.38 1.15
hcircuit 7 7 7 4 11 16
1.19 1.19 1.54 1.94 1.25 1.18
memplus 7 7 12 8 6 13
0.80 0.80 0.77 0.94 1.01 0.59
coupled 13 13 7 5 10 13
1.05 1.05 1.70 3.28 1.33 1.25
ckt11752_dc_1 | - - 11 18 213 -
1.02 1.02 2.55 9.02 1.32 1.09
rajat03 4 4 3 2 2 2
0.77 0.77 0.92 0.93 0.98 0.96
rajat27 15 15 6 4 7 14
1.16 1.16 1.58 2.27 1.25 1.21
ASIC_100k 5 5 5 5 5 5
0.69 0.69 3.11 8.27 0.81 0.74
mult_dcop_01 12 12 6 4 1 1
1.04 1.04 2248 47.52 | 0.86 0.97
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3000 we require only 11 iterations with a relative memory cost of only 1.45. Also, as Table 5.2
shows, we can use a larger mbs for rajat27 to obtain faster convergence and less relative memory
requirement than ILUT(10~%).

Thus, although we require a better control on mbs than at present and this choice is problem
dependent, it is similar to the problem of choosing a drop tolerance for the ILUT preconditioners,
and thus we feel we can we recommend using SCPRE(dec) for circuit simulation matrices especially

when the amount of memory to store the preconditioner is the main concern.
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Figure 5.1: Matrices meg4 and mult_dcop_01 and the preconditioners obtained by the algorithm
SCPRE with mbs = 250. Note that the numbers of nonzeros in the original matrices and
preconditioners are equal which means that SCPRE manages to put all of the nonzeros in the
block upper triangular form.

We show, in Table 5.5, results for a second set of test problems from applications in CFD and
device simulation problems. We see from these results that the performance of the preconditioners
is highly influenced by the application.

For the CFD matrices in the top part of the table, we see that the SCPRE(RCM) works much
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Table 5.5: Numbers of iterations and relative memory requirements for XPABLO, ILUT and SCPRE
when they are used for CFD and device simulation matrices. For SCPRE, mbs is set to 1000 and
we show the results using two permutations for oy, based on RCM and descending order. For
XPABLO, the parameters suggested in Fritzsche (2010) are used and the minimum and maximum
bloc4k sizes are set to 200 and 1000, respectively. For ILUT, the drop tolerance is set to 102 and
107,

Matrix XPABLO XPABLO | ILUT ILUT SCPRE  SCPRE
Ux LX 1072 107 | dec RCM
cavity16 35 34 7 4 345 54
2.03 2.03 4.20 5.33 1.21 1.43
cavity26 26 37 5 3 - 43
5.30 5.30 5.87 7.70 1.26 3.22
Garonl 38 39 8 4 267 30
6.01 6.01 3.41 5.55 1.79 5.96
Garon2 123 135 14 7 - 193
6.75 6.75 4.56 8.48 1.17 5.83
raefsky2 36 36 12 6 48 33
2.91 2.91 3.13 5.86 2.06 2.03
shyyl61 9 - 11 - - -
1.27 1.27 5.54 6.63 2.29 2.32
ecl32 67 87 35 15 34 32
5.71 5.71 5.44 12.23 | 5.74 5.74
2D_27628_bjtcar | 48 45 - 1 142 146
1.85 1.85 2.58 5.81 2.22 2.48
2D_54019_highk | 140 139 16 - 192 340
2.45 2.45 18.68 41.27 | 1.54 1.54
8D_28984_Tetra | 234 232 - - 98 89
2.82 2.82 1.98 5.20 2.65 2.61
8D_51448-3D 27 26 - - 15 12
5.80 5.80 20.97 36.83 | 5.24 5.93
ibm_matriz_2 24 23 - - 13 14
5.39 5.39 23.24 38.27 | 5.12 5.76
matriz_9 168 182 - - 205 177
4.96 4.96 37.32  42.57 | 2.27 3.88
matrix-new-3 1 1 - - 1 1
5.07 5.07 21.57 29.86 | 3.75 4.64
1gbt3 99 107 42 19 21 20
4.62 4.62 1.82 2.90 4.09 3.32
nmos3 37 38 1 1 24 28
4.13 4.13 2.55 4.09 3.31 2.15
wangs 100 100 20 10 79 76
2.42 2.42 8.02 25.78 | 3.85 2.98
wang4 38 27 13 7 19 37
4.15 4.15 5.04 12.36 | 4.55 3.75

22



better than SCPRE(dec) although it requires more storage. Although we are not sure why the
RCM ordering works well for these matrices, we believe that SCPRE(dec) performs badly because
the edges with relatively larger weights in the digraph associated with the scaled and permuted
matrix form long cycles. Also, the vertices on these cycles do not have many edges between them.
Hence, the blocks that SCPRE creates contain less nonzeros than usual even when their sizes are
big. By using RCM, which reduces the bandwidth of the matrix, SCPRE is able to find smaller strong
components during the course of the algorithm. On these matrices, the SCPRE(RCM) and XPABLO
based preconditioners are comparable with the latter usually have a lower iteration count but a
higher memory requirement. The ILUT based preconditioners are clearly the best preconditioners
on this set although their memory requirements are often somewhat higher.

For the device simulation matrices in the lower part of the table, the results are completely
different. There is not much to choose between the versions of our SCPRE preconditioners although
we prefer SCPRE(dec) and use that in the comparisons with the other approaches. Perhaps the
most noticeable thing is that the ILUT based preconditioners are much less robust than they were
in our previous experiments. Although the iteration counts are low when ILUT preconditioned
GMRES converges, it fails to converge on 6 out of 12 matrices. The block based preconditioners
are far more robust on this set with convergence for all the test matrices. SCPRE(dec) has a
lower iteration count than the XPABLO based preconditioners for 8 out of 12 matrices, sometimes
significantly lower and the memory requirements on both approaches are similar with SCPRE(dec)
requiring less memory on 9 matrices. We therefore feel that we can recommend SCPRE as the
best preconditioner for our device simulation matrices.

6 Conclusions and Future Work

Given a linear system Ax = b, we have proposed a method to construct a generic, block triangular
preconditioner. The proposed approach is based on Tarjan’s algorithm HD for hierarchical
decomposition of a digraph into its strong components. Although our preconditioner SCPRE does
not perform well for CFD matrices, we obtain promising results for device and circuit simulation
matrices and we suggest using it with these types of problems. In future research, the structure
of graphs for different classes of matrices can be analysed to try to understand the reason for the
difference in performance.

There are two main parameters for the algorithm: the way that a permutation oy of the
edges is obtained and the maximum block size mbs. For og, we tried two approaches: the first
sorts the edges in the order of decreasing weights. With this approach, we wanted to include
the nonzeros with large magnitudes in our preconditioner. The second approach uses the well
known reverse Cuthill-McKee ordering. We tested this approach since a sparsity structure with a
small bandwidth may be useful to put more nonzeros into the preconditioner. The permutation
decisions are validated by the experiments which also show that the first approach is usually
better than the second. In future work, other ways to generate oy can be investigated.

The second parameter, mbs, affects the memory requirement of the matrix significantly, and
hence the number of iterations required for convergence. The experiments show that for the
preconditioners ILUT, SCPRE and XPABLO, the memory requirement and the number of iterations
are inversely correlated. For SCPRE, mbs is first set by the user and then the relative memory
requirement is computed. In future work, we will look for a self-tuning mechanism which

23



enables SCPRE to determine mbs automatically given the maximum available memory to store

the preconditioner.
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