
7 February 2011 1

Brian Matthews,

Leader, Scientific Applications Group

STFC e-Science Centre

Arif Shaon, Juan Bicarregui, Catherine Jones, Esther

Conway, David Giaretta, Brian McIlwrath

How do I know that I have

preserved software?

Science and Technology

Facilities Council
• Provide large-scale scientific facilities for UK Science

– particularly in physics and astronomy

• E-Science Centre – at RAL and DL

– Provides advanced IT development and services to
the STFC Science Programme

– Strong interest in Digital Curation of our science data

– Keep the results alive and available

– R&D Programme: CASPAR, SCAPE, APARSEN

• STFC Interest

– Keeping science data usable for long periods

– Specialised scientific analysis software

– Needs to be kept along with the data

– s/w preservation projects

Work on software preservation

• JISC projects (2007-09):
– Report on the Significant Properties of Software

– Tools & Guidelines for the preservation of software as a research output

• Software very large topic
– Diversity in:

• application of software

• software architecture

• scale of software

• provenance

• user interaction

• Project scoped to
– Scientific and mathematical software

– Limited commercial consideration

– Limit consideration of user interaction

Developed a framework for software preservation properties.

Software Preservation...

.... is worth doing
– There are good reasons for us to try to preserve software

.... is complex
– Software not easy to define.
– Software has lots of different components and dependencies
– Software operates in a complex environment

.... can be done in lots of different ways
– Preservation, emulation, migration, cultivation, hibernation ...
– Each strategy has different consequences and cost/benefits

How do we know:
– What to preserve ?
– Whether we have done it right ?

Example: ICAT

Software Preservation Steps

• What do we do when we preserve software?
– Identify a number of related digital artefacts to preserve

• What do we do when we want to use it again ?

– Find the right software artefacts to use

– Reconstruct them into a executable system.

– Replay the execution of the system

How do I judge now that what I have preserved is “enough” ?

Preserve Retrieval ReplayReconstruction

What we need to support retrieval?

• Gross functionality:
– Description of what the product does

– Major input and outputs

– Categorisation under a controlled
vocabulary (e.g. GAMS)

• Ownership and legal control, licensing

• Provenance

• General software architecture
principles

Software

Components

Data

Environment

What we need to support

reconstruction?
• Set of components and their

dependencies
– Including installation, configuration and

build as necessary

• Programming language details
– Compiler version if needed

• Specific operating system

• Specific hardware platform if needed
– Including any dependencies on

peripherals

• Specifics on required machine
performance
– RAM and disk space, processor speed,

screen resolution

• Auxiliary libraries

• Auxiliary tools (with version)

Compilation,

installation,

configuration

Software

Execution

Software

Components

May have versions and

variants for different

platforms

Environment

What we need to support replay?

• Detailed functional description
– Input formats, output formats,

API, error handling

• User Interaction model

• Programming languages

• Non-functional behaviour
– Response speed, data size,

security

• Usage documentation

Data

Software

Components

Compilation,

installation,

configuration

Data

Performance

Software

Execution

How do I judge now that what I

have preserved is “enough” ?

• Based on the NAA performance model for digital
preservation
– The test of the success of our preservation is the

performance of the data for the user

• The Replay information are the Significant
Properties
“those characteristics of digital objects that must be

preserved over time in order to ensure the continued
accessibility, usability, and meaning of the objects”

• Testing data performance to judge adequacy of
the software performance.

Adequacy of Software Preservation

A software package can be said to

perform adequately relative to a particular

“significant property”, if in a particular

performance it preserves those significant

properties to an acceptable tolerance.

• Significant properties are evaluable features of the performance

• After the recall and reconstruction phase

• Supply test cases to evaluate the adequacy against properties

• Assesses the value of the replay

• Can be generalised to any digital object

Example Test Cases

• So tests on relevant significant properties need to be
supplied
– “the system should calculate the Fast Fourier Transform”

– “the result must accurate to 8 decimal places”

– “the pagination has to remain the same”

– “the system should respond in 0.4- 0.8 seconds”

– “The user must be able to enter a 6 digit number
representing a parameter”

– “the user must be able to enter a 6 digit number
representing a parameter in a text box on the upper left of
the screen”

– “the output should distinguish roads and rivers”

– “rivers should be in blue (0000ff), roads in red (ff0000)”

• Need to supply test suites to prove that the preservation
should be adequate on replay.

Significant Properties Editing and

Querying for Software (SPEQS)

• Java-based Eclipse plug-in

• Enables capturing software preservation properties during its
development

• Demonstrates the concept of preservation tools that could be integrated
within existing software development systems

Preserving Legacy?

• Software repositories

– Managed with preservation in mind

– Provides capacity to capture relevant

metadata

– Encourage the right documentation

• PaNSoft

– Software repository for Photon and

Neutron data analysis software

Summary

• A framework for software preservation
– Conceptual model of software

– What components to preserve?

– Preservation properties of software

– Performance and adequacy

– Fits in a OAIS compatible preservation methodology

• Validated in some practical scenarios
– More validation and tools

– In a methodology – risks and benefits

– Integrated with a software repository.

• Ideally considered within a software engineering process
– Good version control

– Good documentation

– Testing and test cases key to assuring adequacy of preservation.

Good software engineering leads to good software

preservation.

http://sigsoft.dcc.rl.ac.uk/twiki/bin/view

http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-

software.html

Thank You

Questions?

brian.matthews@stfc.ac.uk

http://www.e-science.stfc.ac.uk

http://sigsoft.dcc.rl.ac.uk/twiki/bin/view
http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html
http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html
http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html
http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html
http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html
http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html
http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html
mailto:brian.matthews@stfc.ac.uk
http://www.e-science.stfc.ac.uk/
http://www.e-science.stfc.ac.uk/
http://www.e-science.stfc.ac.uk/
http://www.e-science.stfc.ac.uk/

