DL/CSE/TMC1.

(15 46 ~ 2002

|£echnical memorandum Daresbury Laboratory

DL/CSE/TMD_

SOME IDEAS ON WRITING EFFICIENT CODE IN PL/I
by

L. D. SMITH"
Daresbury Laboratory

*
I;resent address:

bepartment of Computer Sciences, University of Edinburgh

January, 1977

Science Research Council

Daresbury Laboratory

Daresbury, Warrington WA4 4AD

g

1. INTRODUCTION

The opinlons exprgssed in the following document are the result of
nearly two years of attempting to write PL/I. Some of the views expressed
will be controversial. In some caées I shall give evidence to support my
views, and in others no evidence at all. You are free to accept or reject
the lines I shall present - remember that they are personal views - but it

is to be hoped that they provoke some thought.

The PL/I language reference manual {(hereafter referred to as PLRM)
has a complete chapter devoted to 'Efficient Programming' which gives many
rules of thumb about how to write more efficient code. Unfortunately few
general principles are given. BAlso, most of the advice is about how to
make a particular construct execute most efficiently, rather than about
how to aveid intrinsically inefficient constructs. I shall attempt to
point to one or two areas that are intrinsically inefficient, and say why

(of necessity) they are so.

2. ASSUMPTIONS

It will be assumed that the reader has some familiarity with PL/I or
PL/I type languages {ALGOL, PASCAL, RTL2, etc). These languages are
characterised by features such as block structure, implicit data conver-
sion, many data types, powerful built-in and library functions, and being
in some sense general purpose. Much of the following discussion will be
equally applicable to other high level languages providing PL/I-like
facilities. Some familiarity with the machine architecture and concepts
of system-360 will also be assumed, but this will be at a failrly trivial

level.

I shall take it as axiomatiec that a major aim is to write well
structured source code that reflects the structure of the problem undexr
solution - a cpntroversial axiom, no doubt. I shall not be concernad
with any efficiency or inefficiency introduced by such structuring. I
shall only say that it is my personal experience that my well structured
programs are smaller, and compile into less code than my badly structured
ones, and alsc that the potential for a compiler to optimise a program
globally is increased if the program is well structured. In fact the

stricter the structuring the more optimisation that can be performed.

3. WHY BOTHER TO WRITE EFFICIENT CODE IN A HIGH-LEVEL LANGUAGE?

Why should we trouble ourselves with w;iting gocd code in a high
level language? Some schools of thought believe that as soon as we
abandon assembler language we are condemned to bad code anyway. However,
high level languages are quick and convenlent to write in, and programs
written in them are easier to maintain and debug, in general. This is.
not necessarily so - I have seen programs in PL/I that are almost incom-
prehensible, and assembler programs that read like plain English.

Writing good code is alsc an end in itself - bad c¢ode offends us and good

code 18 an art form.

It is my observation that, by uwsing systematic programming methods,
it is possible to effect a reduction in the size of abject code genetated-
from PL/I source code, of between 10% and 50%. The norm I use to measure
this reduction from is a hypothetical non-expert user of PL/I, but one
who 1s fairly fluent in some gandom subset of the language. It should be
noted that PL/I is a large and rich language and that there are often
geveral alternative ways to achieve a particular end {as stated in PLRM

Chapter 18, page 254 etc), so it is usunal for an individual to pick up

and use a fairly narrow subset of the language. &an example might be a
sandwich-course student who comes to Daresbury for a yearx, learns a subset
of PL/I in a couple of months, and proéeeds to write sizable programs -
for example the GRASS system. This random approach to coding will in
general lead to source code being larger and messier than is necessary,
anﬁ object code being considerably larger than is necessary. Size of
source code is, of course, an important consideration to those who have

to (try to} maintain a system. I speculate that reductions of between 5%

and 50% in source code size are in general possible with not too wmuch

effort. My experlence re-writing the GRASS system was that notwithstanding

removing trivially redundant and duplicated code, about 25% could be

saved.

4. HOW DO INEFFICIENCIES APFEAR IN CCODE GENERATED FROM

HIGH-LEVEL SOURCE?

We will assume that some sort of optimising compiler is available
to perform a reasonable amount of optimisation on the generated code, so
we will NOT be concerned_witﬁ topics such as global register allocation,
common expression elimination, or moving of loop-invariant code.

Rightly these are problems for the compiler alone and should be no con-
cern .of the programmer. We are going to look at those program censtructs
that cannot be reascnably optimised by an automatic process, but that
could be spotted as potentially troublesome by a competent, though non-

expert, programmer.

4.1 Poor Implementation

There is nothing the programmer can do about poor implementation of

the compiler except grin and bear it. You could write to IBM but you are

not likely to get very far. BAn example of poor implementation might be
the independent implementation of stream and record I/Q in PL/I. Stream
I/0 could easily invoke record I/0 (as in RTL2) to read and write
records. Instead, separate modules are linked into the compiled program,
thus ilncreasing the load module size, and different modules are loaded
from the runtime libraries to perform transmitter functions, thus
increasing regiocn requirements. There are also separate error messages,
and separate chapters in the PL/I language reference manual. No doubt
this is cogvenient for IBM and good for sales of main memory and manuals,

but it leaves the newcomer to PL/I in a state of confusion.

Another example is the use of GETMAIN and FREEMAIN in PL/I (F) to
get and free dynamic storage areas on entry to and exit from a PROCEDURE
or BEGIN block. The overhead of this supervisor call, on all but the
most massive PL/I procedures, is very large, and is partly responsible

for the very poor performance of PL/I (F} compared with PL/I optimised.

If you are seriously worried by poor implementation then you

should find another language to write in or code in assembler.

4.2 Providing Constructs that do not easily map onto the Target

Machine

This 1is a major source of inefficiency in high level languages
which are not machine oriented languages (MOL's) or system implementa-
tion languages (SIL's). An example is the manipulation of bit strings.
PL/I defines bit strings of arbitrary length, beginning on an arbitrary
bit of a byte. These are the unaligned bit strings, and (arguably
unwisely!) this is the default for PL/I strings of all kinds (unaligned).
This information is actually given in the PLRM (chapter 18, 'Efficient

Programming'}, but it is hidden away as a subsection or & minor section

{page 256 article 10 I believe). Also there is no reference to the
colossal amount of code that will be executed by careless use of the

UNALIGNED attribute.

Consider the problem of comparing two bit étrings beginning at bits
2 and 5 of a byte respectively (see f£ig. 1). Rememher that the 370 has
no hardware support for bit addressing, so all access to arbiltrary bits
must be simulated using loading, shifting, and masking operations.
Clearly even the assembler programmer does badly here and the selution 1s

to avold the problem if at all possible.

To this end PL/I provides a second type of bit string, namely
ALIGNED bit strings. These commence on the first hit of a byte. Aligned
bit strings whoge léngths are a multiple of 8 may be handled as if they
were ch;racters, and the character manipulation instructions of the 370
may be used to handle them. For example, two equal length (< = 256 bytes}
strings may be compared in a single CLC (Compare Loglcal Characters)
instruction, whereas the same comparison for UNALIGNED data will take many
hundred instructions in a library routine. Thus the programmer must be
aware of the underlying hardware and not ask for impossibly inefficient
operations if he wants the compiler to generate efficient code. It 1s of
course arguable that high-level languages should protect the user from
such 'sillies' but then either all semblance of machine independence dis-
appears or arbitrary restrictions must be imposed. The best to hope for
is a warning from the compiler, and it is an indictment of PL/I that no
such warning is given, in this particular case. I suggest a message in

the form of:

IELxxxI W 'BAD CODE GENERATED'

As a general rule:
(a) DO NOT use bit strings.
(b} DO use aligned bit strings.
(c) DO make the length of bit strings a multiple of 8.

(d) DO NOT use variable length bit strings.

Bnother example in this area is data-conversion. Some machines
(e.g. ICL 1900 and 2900 series, MU5) have hardware assistance for fixed-
float-fixed point data comversion. On the 370 between 6 and 7 machine
instructions are required. However this is not necessarily disastrous
as, on some 360 series CPU's, fixed and floating peint operations are
overlapped. &gain the programmer must know his hardware in order to

assess the cost of a particular cperation.

Well, that seems to be enough about bullt-in and library functions.
String manipulation, data-conversion, and I/O furnish many more examples
of 'nice' high-level functions that have to be implemented in a clumsy
way because of the hardware, so I shall say no more but refer the reader
to PLRM {chapter 18, page 258 'Data Convercion') for many more examples.
Let us look at another more fundamental difficulty occurring in all bleck

structured languages. Let us lock at how PL/I addresses its variables.

PL/I supports two major storage classes and several of lesser

importance,

i) STATIC storage
This 1s used to contain program address constants, numeric con-
stants, array, structure and string descriptors, etc. and all STATIC

variables. Most of these, and all STATIC INITIAL variables, have initial

values set up at compile time.

ii) AUTOMATIC storage

This is allocated at runtime from a stack (the Initiél Storage Area
or ISA). If the stack is not large enough PL/I attempts tc obtain another
seqgment from the user's region by issuing a ﬁETHAIﬁ. Although performance
will never become as poor as that of PL/I (F), it is a good rule to ensure
that the stack is as large as will be required, The runtime parameter
ISA {nK} can be used to set the initial stack size, and the REPORT
parameter can be used to find the size of stack needed. Otherwise the

program may spend a lot of time thrashing through GETMAIN and FREEMAIN,

The use of AUTOMATIC storage allows space for compller generated
and user temporary variables to be reused by cother procedures (see fig, 2).
This can be & very significant saving of core requirements i1f the tem-
poraries are large arrays. Note however that there are pitfalls. The
use of AUTOMATIC INITIAL variables (implied by INITIAL) should be avoided
as, in order to have an AUTOMATIC INITIAL variable, the compiler must
store the value in STATIC and generate code to move the value into the
automatic storage area at runtime (prologue code}. All initialised
variables should be declared as STATIC, unless it 1s gepuinely required
to re-initialise the variables upeon each invocation of the procedure (or
begin-block). It is arguable that the correct default for initialised
variables should be STATIC, or at least that the campiler should issue a
warning that it is about to generate bad code. However PL/I does neither

of these things.

Now, each external procedure has its own STATIC area, addressed by
a dedicated register (R8), so addressing STATIC variables is quite
efficient. Note that internal procedures share the STATIC area of the

outermost containing procedure.

Each invocation of a procedure also has its own automatic area,
called a Dynamic Save Area, or DSA. This is used for the {guess what!)
Register Save Area, for temporary variables, and for automatic variables.
This is also addressed by a dedicated register (R13) so addressing of

AUTOMATIC wvarlables is also efficient.

Now, what if we wish to address the AUTOMATIC area of a calling
procedure? So loné as this is also a containing procedure, then the scope
rules of PL/I allew this. Note that PL/I is not alone in this, and that
the scope rules of almost all block structured languages allow access to
variables declared in containing procedures (see fig. 3). Clearly a cer-
tain amount of work is required to calculate the address of a variable
declared in a containing procedure. It is possible to construct patha-
logical examples where access would be very inefficient, and certain
architectures {(e.g. 2900 series, MU5) have hardware support for stack
addressing., 2900's support top-of-stack and segment before top-of-stack
addressing which according to measurements made by Manchester University
covers a very large percentage of all references. Manchester find that
70% of all references are to the top of stack, and a large proportion of
the remainder are to global variables. The Burroughs higher-level-~
language machine has hardware addressing support for an incredible 20

stack levels, however.

It is recammended that certain simple rules are followed:
{a) make all global and initialised variables STATIC;
(b) make all local and temporary variables AUTOMATIC;

{¢} avold unnecessary back references to AUTOMATIC variables.

PLRM (chapter 18, page 255.9 f, g) gives the rules but does not explain

why.

Access to STATIC EXTERNAL (FORTRAN COMMON) or CONTROLLED variables
is less efficient still due to the extra addressing required: firstly the
address of the external area must be loaded from STATIC (see fig. 4) or in
the case of CONTROLLED vgriables, the address of the variable must be
loaded from the Pseudo Register Vector (FRV) whose address is at a known
offset in the Task Communications Area (TCA) addressed by dedicated
register R12 (see fig. 5)}. PL/I will of course attempt to optimise the
use of registers in this addressing, but 1f several EXTERNAL or CGNTRCLLED
variables are to be accessed in a couple of statements, then PL/I runs out
of registers to use and generates quite a lot of addressing code. PL/IL
also seems to miss quite obvious chances for optimisation as soon as
things begin to get complicated, however I present no evidence for this

claim.

BASED varlables involve the same overhead as STATIC EXTERHAL {1f the
pointer is immediately accessible in STATIC or the DSA}, but are often
extremely convenient. In many cases PL/I handles chains of POINTERS almost
as well as an assembler programmer might do, but of course fails to hold

the most used values in registers as well as a programmer might do.

4.3 Tools for Program Checkout and Debugging

There are many features of PL/I that are useful for program checkout.

We shall consider three of them.

1) DATA-directed I/O;
ii) ON-units;

1ii) The statement number table.

Note also enabled check conditions, subscript range, string range,

etc. These can easily be turned on and off without affecting program

logic so I have not included them as ineffiecient. Note however that
library modules are always enabled for these conditions, so that choosing
program constructs that are handled in-line will provide a worthwhile
increase in speed. PLRM (chapter 18, page 257, article 11} mentions

this point.

It is my perscnal view that once a program 1s debugged, all de~
bugging aids shouid be removed from it. The‘main line program ltself
should detect all invalid data passed to it and initiate recover/abort
procedures ;ather than relying on the runtime environment to trap silly
data after it has caused a program crunch. PL/I's attempt to provide
comprehensive runtime traps {ON-units) causes a significant loss of

optimisation, compared with, say, FORTRAN-H.

DATA-directed I/0 should be avolded in production programs as the

I/0 modules are bulky and the compller must include a symbol table into
the compiled program, which is also bulky. Likewise the statement
number table which is a table of PL/I source statement nmumbers versus
program code offsets which is held in the static area and used by the
error monitor to associate a line number with the offset of a program
interruption. If this table is deleted, between 5% and 25% of the total
MODULE size can be saved, but the error wonitor will then only give the
offset of an interruption. However, the offset can very easily be
assoclated with a statement number by specifying the compiler OFFSET
option and having the statement number table printed but as part of the
compilation listing. Use the NOGONUMBER (NGN) and NOGOSTMNT (NGS)
options to inhibit inclusion of the statement number table into the cowm-
plled pregram. I have found that an average of 15% of program size may

be saved in this way.

10.

Finally avoid the use of ON-units for trapping hardware conditions
such as underflow, overflow, zero divide, if these conditions are likely
to occur frequently. The overhead of éhe ON-unit and its associated
supervisor interxuption is quite large (order of milliseconds) so it is
better to check for very large, very small and zero values in your pro-
gram, and make the patch-up code part of the wainstream program rather
than part of an ON—ﬁnit. Other ON-conditions - e.g. ENDFILE, ENDPAGE -
are software detected by the PL/I library modules, énd do not cause a
supervisor interruption, so are less inefficient. Often they are the
only reasconable means to an end (e.g. use of ENDFILE) and are thus
acceptable. See also the PLRM (chapter 18, 'Efficient Programming'} for

a detailed discussion of exactly how and why ON-units inhibit optimisation.

5. RECAP AND MISCELLANY

S0 far this discussion has been guite technical and possibly even
confusing. Let ws recap a bit. Many of the features of PL/I that make it
s¢ useful - block structure, powerful built-in and library functions, fewer
restrictions on language constructs - are precisely those features that,
at first sight, lead the compiler to behave like a cretin. The programmer
should be aware that asking for features not supported directly by the
hardware (e.g. stack addressing, bit addressing) are likely to be expen-
sive. It should be noted that part of the reason why FORTRAN is so effec-
tively optimised is that it is so limited and has so many arbitrary res-

trictions on it.

6. MISCELLANEOUS FRCTORS INHIBITING OPTIMISATION

The availability of ON-units seriously inhibits global optimisation,

11.

especially as the scope of an on-unit can be inherited by an external pro-
cedure at run time, thus preventing the compiler making any assumptions
about whether or not a particular procedure will use on-units. ON-units
inhibit optimisation of register usage by rxequiring that up to date
values of variables are available in core for asynchronoug inspection.
Specifying the REORDER option on a procedure goes some way towards
reducing the inhibiticn but global optimisation is still reduced.
Statement labels also inhibit optimisation due to the possibility of a
branch label by a called procedure (GO TC out of block). A label marks a
discontinuity in the program graph, and no assumptions about register
values may be made following the label, as it is not clear that the branch
is from the same block even. Again 1t is arguable that GO TO out of
block should be illegal, as it is at best an unstructured and messy con-—
struct, and has to be implemented by means of interpretive code. Note
that labels inhibit optimisation even without GO TO out of block, as it
i= not clear where control may have come from when control is passed to a
label. At least the compiler is undble to determine this. It is to be
regretted that PL/I has no CASE statement, as the combination of CASE and
IF-THEN-ELSE removes much of the need for LABEL variables, and would per-

haps enable more effective optimisation to be performed.

To end with we will look at a few (mainly futile) entertaining
examples of how the optimising compiler handles certain trivial programs.

In each case the code generated is horrendous.

Figure 6(a) demonstrates the prologue code generated (24 bytes) to
initialise an array of two AUTOMATIC LABEL variables. Figure 6{b)} shows
the languwage restriction that LABEL variables may not be STATIC INITIAL

(because a LABEL 1s a pair of values, (address (label), address (DSA)),

12.

and address (DSA) is not known at compile time). Other AUTOMATIC INITTAL

variables incur similar overheads.

Figure 7(a) shows the (failed) attempt to ALLOCATE a variable
length cbject in an AREA. Figure 7{b) shows how this may be done success~
fully by making the object 'self defining;. This provides no more actual
security against FREEing the wrong length in the AREA, as LENGTH may be
overwritten at will after allocation of the structure. DNote that
structure mapping is invoked to perform a triwvial mapping, and that this
includes 1.8k bytes of extra code into the program.unnecessarily. This
can be overcome by calling AREA management directly from a trivial

assembly program,

Figure 8 shows a multiple entry-point, multiple exit-point pro-
cedure. At each textual exit (PL/I RETURN statement) an exit-code
gequence 1ls generated for each entry point. In this example 64 (8 x 8)
exits are generated, together with code that ensures that only B of the
64 can ever be taken! In general, though not in this example, it would
be possible feor contrel to pass from any entry to any exit, depending on
variable values supplied at run-time, so the compller must generate code
to cope with this, or allow the possibility of returning a value with the
wrong attributes. Agailn, no warning message 1s given, and in this

example 3470 bytes of code are generated.

13.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Fig. B

FIGURE CAPTIONS

Use of UNALIGNED bit strings.

Re-use of AUTOMATIC storage.

Addressing AUTOMATIC variables in a contalning procedure.
Access to STATIC EXTERNAL.

Addressing CONTROLLED variables.

Examplé with LABEL variables.

Example with ALLOCATE.

Multiple entry-point, multiple exit-point procedure.

14,

Byte 0O, Bit 2

s s _

|

Both strings length 30 bits

Hllnl;ggﬁct-il!nI!|100§|||
Ll [T ST Lhl IIIII

A

Byte O, Bit 5

Strings identical.

How do we compare these?

Fig. 1

— MAIN: PROC: STACK

DSA

for

DSA

" for

. N
CALL B; DSA

for

— END MAIN;

Fig. 2

SPACE RQD

= DSA(MAIN}+
MRX {DSA (A} ,DSA(B))

<
DSA (MAIN) +
DSA{A) +

DSA{B)

(As in FORTRAN)

ISa
IN: —
MAIN: PROC DSA (MAIN)
DECLARE X;
x I
CALL A; 7
- DSA (A) -
BL: PROC;— DYNAMIC
BACKCHAIN
CALL B; -
DSA(B)
Bi PROC;— ST'ATIC
BACKCHATN
CALL C; |
DsA(C)
END B; v
C: PROC;— dddressing X fram
C
DEC ¥; takes 2 steps
along the static
backchain oxr 3
- ; aleng the
dynamic backchain.
——— END C;
END A;

END MAIN;—

MAIN CALLS A CALLS B CALLS C;
C EXECUTES ¥ = ¥ + X;

Fig. 3

~— B:PROC;——

1

— END

AREA STATIC EXTERNAL,
X,
Yl
Z;
1.0EO;
becomes
A;—
L n,& (3)-
LE x,dz(3)
STE x,d5(n)

R3 —>
STATIC
CSECT
1 BREA 1
X
Y
z

d, is offset of @ARER in STATIC
dy; is offset of 1.0EQ in STATIC
d; is offset of 2 in AREA

dyr Qg d5 known at compile time
@AREA calculated by Linkage Editor

Fig. 4

R12

\r

FPRV

S I

CONTROLLED
VARIABLE

4q, offset of pointer to PRV known to compiler
d, offset of pointer to CONTROLLED VARIABLE known to compller

PPRV filled in by PL/I initialisation

PCv filled in when variable is allocated.

L n,d {12)

TYPICALLY 1 ma (n)

v = 1.080; —5 (G in
BECOMES LE x,d (3)

STE x,0(m)

Fig. 5

'PL/I OPTIMIZING COMFILER

T:PROC{I)

SOURCE LISTING

PL/T OPTIMIZING COMPILER T:PRUC(I)

SOUPCE LISTING

NUMBER LEV NT

10 O T:PROC(I):
20 1 o]
L{2} LABEL

60 1 O GOTO L({I};
70 1 ¢ Ll:

STOP;
90 1 o L2:

RETURN ¢

120 1 0O ENT T;

PROLOGUE BASE

INITIALIZATION CODE FOR L

0006C 50 DO D COBC
00070 41 70 3 028
00074 50 70 D OBRS8
00078 50 DO D OC4
ooo7C 41 70 3 030
0COoB0 50 70 D OCO

END OF INITIALIZATION CODE FOR L

00084 05 20
PROCEDURE BASE

STATEMENT NUMBER

. 00086 58 70 D oODO
OQ0BA 48 FO 7 000
QOCBE 88 FO © 003
00092 58 4F D 080
L0096 58 20 4 004
COO2A 58 40 4 OO0
OJ0%E 07 F4
STATEMENT NUMBER
STATEMENT LABEL Ll
O00RO 41 1o 3 o024
Q0044 58 PO C 078
O0OA8 05 BF

STATEMENT NUMBER
*STATEMENT LABEL L2
OCOCOMRA 18 OD

OCOOOAC 58 DO D 004
ooD0O80 58 50 D 0OC
000034 98 2 D 0IC

000089 05 18
*STATEMENT NUMBER

*FRO PROCEDURE
o0008A 07 ©7

* END PROGRAM

60

70

120

ETE

LR

BEFTL

LR

NOPP

"AUTOMATIC'

BCL VARIABLE
I FIKED BIN(15}, / :

INIT(Ll,L2):

24 bytes of prologue
code to initialise 'L’

13,v0..L+12
7,40(0,3)
7,V0..L+8
13,vO..L+20
7,48(0,3)
7,V0..L+16

2,0

7,208(0,13)
15,1

15,3
4,v0..L(15)
2,4{0,4}
4,0(0,4}

4

1,36(0,3}
15,120(0,12)
14,15

0,13
13,4(0,13)
14,12(0,13)
2,12,28(13)
1,14

Fig. 6(a)

NUMBER LEV NT

1o 15 T:PROC{I):
20 1 o -DCL
T FIXED BIN(15),
2} LABEL STATIC INIT(LL,L2)%
60 1 o GOTO L{l},
70 1 0 Ll:
STOP)
90 1 o L2:
RETURN)
120 1 © END T;
PROLOGUE BASE
" O00O6C 05 20 BALR 2,0
—
PROCEDURE BASE
STRTEMENT NUMBER 60
OOCOGE 58 70 D OCO L 7,192(0,13;
000072 48 FO 7 00D LE 15,1
000076 8B FO O 003 SLA 15,3
0OOOTA 58 4F 3 030 L 4,V0, .L(15)
CQOOYE 58 20 4 004 L 2,4(0,4)
0000B2 58 40 4 OO0 L 4,0(0,4)
000086 07 F4 BR 4
STATEMENT NUMBER 70
STATEMENT LABEL Ll
ooooBs 41 10 3 024 LA 1,36(0,3)
000OBC S8 FO C 078 L 15,120(0,12)
0000%Q 05 EF BALR 14,15
STATEMENT NUMRER 90
STATEMENT LAREL L2
oooo92 18 ©OD LR 0,13
000094 S8 DO D O04 L 13,410,13)
000098 S8 FO D 0OC L 14,12{0,13)
0000%C 98 2¢ D OLC M 2,12,28(13)
DOOORC OS5 1E BAIR 1,14
PL/I OPTIMIZING COMPILER T:PROC (I}

COMPILER DIAGNOSTIC MESSAGES
ERROR ID L NUMBER MESSAGE DESCRIPTION

SEVERE AND ERROR DIAGNOSTIC MESSAGES

COMPEILER INFORMATORY MESSAGES

IELO4I0I I 10 NO 'MAIN' OPTION ON PROCEDURE
'ORDER' MAY INHIBIT OPTIMIZATION

TELOS41I I 10
END OF COMPILER DIAGNOSTIC MESSAGES

COMPILE TIME ©0.00 MINS SPILL FILE:

Fig. 6(b)

ATTEMPT TO GIVE STATIC
VRLUE FAILS,

NOTE: NO PROLOGUE CODE

'L' IS TN FACT UNINITIALISED

but compilation fails

INVALID INITIALIZATION FOR 'STATIC' LABEL 'L'.

O RECORDS, SIZE 4051

PL/I OPTIMIZING COMPILER ALLOCAT:PROC (P,L);

SQURCE LISTING

Attempt to allocate a variable

NUMBER LEV NT length extent within an 'AREA'

10 0 ALLOCAT:PROC(P,L);:

20 1 c DCL
WSPACE STATIC EXTERNAL AREA(8192),
P POINTER,

L FIXED BIN(15),
SPACE CHAR (L)} BASED(P};

8o 1 O ALLOCATE SPACE IN(WSPACE] SET(P);
90 1 0 RETURN;

110 1 O REPLACE:ENTRY(P,L})

120 1 © FREE SPACE IN(WSPACE);

130 1 © RETURN;

150 1 O END ALLOCAT;

PL/I OPTIMIZING COMPILER ALLOCAT: PROC (P,L}
COMPILER DIAGNOSTIC MESSRGES

ERROR ID L NUMBER MESSAGE DESCRIPTION

SEVERE AND ERROR DIAGHOSTIC MESSAGES

COMPILATICN ERROR
ADJUSTABLE EXTENT INVALID FOR BASED 'SPACE'

COMPILER INFORMATCRY MESSAGES

IEL4501 I 10 NO 'MAIN' OPTION (N PROCEDURE

END CF COMPILER DIAGNOSTIC MESSAGES

COMPILE TIME C.00 MINS SPILL FILE: 0 RECORDS, SIZE 4051

COMPILATION ENDED BY 'NOCOMPILE' OPTION

Fig, 7(al

PL/1 OPTIMIZING COMPILER RLIUOCATPPOC{P,L};
SOURCE LISTING

NUMBER LEV NT

10 O ALLOCAT:PROC(P,L);

20 1 o ocL
WSPACE STATIC EXTERMAL AREA(8192),
P POINTER

L FIXED BIN(15),

1 SPHCE BASED (P)

2 LENGTH FIXED BIN{15),

2 FILLER CHAR(L REFER (LENGTH) s

100 1 O ALLOCATE SPACE IN(WSPACE) SET (P},
110 1 O RETURN;

130 1 O REPLACE:ENTRY(P,L):

140 1 O FREE SPACE 1IN (WSPACE);

150 1 O RETURN:

170 1 O END ALLOCAT}

Slightly alteresd program.
Sclf-defining structure
allows wvariable length
extent to be allocated.

‘'Length' ls set to 'L' after
the allocation is performed.

* PROCEDURE BASE

NOTE CALL TO STRUCTURE
MAPPING ROUTINE

r > ca[! |hnsh|
14,15 mc;:m

* STATEMENT NUMBER 100

OOOOBC CL.3 EQU -

OOCOBC D2 OB D ODB 3 03¢ MvC 216(12,13) ,60(3)
©ooOcZ 58 70 D OC4 L 7,19610,13}
oo0OCE 48 €0 7 OO LE 6,L

OOOOCA 40 60 D 08O STH 6,224(0,13)
OODOCE 53 B0 3 048 L 8,72(0,3)
000OD2 50 8D D OF4 ST 8,228(0,13)
000006 41 40 D COF4 LA 4,228(0,13)
0000DA 50 40 3 068 5T 4,104(0,3)
OCCODE 41 FOo © 008 LA 15,216 (0,13)
CO0OFZ 50 FO 3 0&C ST 15,408(0, 3)
OJ0OF6 41 10 3 068 h 1,104(0,)
COOOTA 58 FO 3 018 L 15,A. . IBMBAMME
OOOOFE 05 EF BARLR 14,15

OCOOFD 58 40 D OCO L 4,192(0,13)
QOOOF4 SO 40 3 073 ST 4,120{0,3)
OOOOFB 41 FO D OF4) 15,228{0,13)
DOOQFC 50 FO 3 ©O7C ST 15,124(0,3)
000100 41 10 3 O LA 1,116(0,3)
000104 58 FO 3 0IC L 15,A. . IBMBPAMA
000108 17 B4 LR 8,4

OOO1OA OS5 EF BALR

* INITIALIZATION CODE FOR LENGTH

Qooloc 58 BO 4 000 L a,p

6o0Ll0 48 GO 7 00D 1H 6,L

o004 40 60 P OO0 STH 6, SPACE . LENGTE

* END OF TNITIALLZATION CODE FOR LENGTH

* STATEMENT NUMBER 110

000118 18 op LR 0,13
QO0ltA 58 DO D 004 L 13,410,130
OQ0l1E 58 FO D OOC L 14,12{(0,13
000122 98 22 D Ol LM 2,12,28(13)

Fig. 7(b)

PL/I OPTIMIZING COMPILER ' ONE:PROC RETURNS (CHAR(1}) ;
SOURCE LISTING

NUMBER LEV NT

10 O ONE:PROC RETURNS (CHAR(1)):;
20 1 0 DCL

Al CHAR(l) STATIC,

A2 CHAR(2) STATIC,

A3 CHAR(3) STATIC,

A4 CHAR({4) STATIC,

A5 CHAR(5) STATIC,

A6 CHAR({6) STATIC,

A7 CHAR(7) STATIC,

AB CHAR(8) STATIC;

110 1 O RETURN(ALl):

120 1 ©O TWO: ENTRY RETURNS(CHAR (2));
130 1 O RETURN(AZ2):

140 1 © THREE:ENTRY RETURNS (CHARR(3));
150 1 O RETURN(A3):

160 1 O FOUR:ENTRY RETURNS (CHAR(4));
170 1 o} RETURN (34) ;

180 1 © FIVE:ENTRY RETURNS (CHAR(5))};
190 1 O RETURN(AS);

200 1 o0 SIK:ENTRY RETURNS (CHAR (6));
210 1 O RETURN(26);

220 1 O SEVEN:ENTRY RETURNS (CBAR(7));
230 1 ©O RETURN(A7);

240 1 O EIGHET:ENTRY RETURNS (CBAR(B});
250 1l O RETURN(AB8);

260 1 O END ONE:

Fig. 8

NINA 43

