lenvineg Cory

T

DL/CSE /TM04

\ 154 A — 2002

technical Mmemorandunm Daresbury Laboratory

ENVIRONMENT FOR RUNNING RTL/2 PROGRAMS
ON INTERDATA COMPUTERS

by

W H PURVIS, Daresbury Laboratory

MARCH, 1977

Science Research Council

Daresbury Laboratory

Daresbury, Warrington WA4 4AD

DL/CSE/TMo4

L. INTRODUCTION

This report describes the environment in which an RTL/2 program

executes and how to set it up for initial entry to a user's program.

When an RTL/2 program is running, it assumes that certain conven-
tions are obeyed, e¢.g. that some registers point at certain areas of
memory, and that these in turn contain information which will not be
violated behind the programs back. Entry to such a program will obviously
have to be performed via some code sequence not written in RTL/2 and not
therefore bound by these conventions. This report describes this environ;

ment for Interdata machines,

The basi¢ aim is to provide the reader with guide lines on how to
set up this environment under any operating system. Some comments on
other aspects of operating system interfacing have alsc been included and
two Appendices describe the 'CONTROL ROUTINES' and CODE section linkage

conventions.

This deocument should contain all the information a user needs in
order to run his own programs under a new operating system; it does not

tackle the problem of moving RTL/2 utilities as well.

The reader is assumed to be familiar with the Interdata machines

and the documents listed in the Bibliography.

The word CAL is used throughout this report to refer to the assembly

language for both 16 and 32 bit Interdata computers.

2. STACKS

2.1 Stack Usage

Any correct RTL/2 program manifests itself at run-time in the form

of nested control operations. This is most obvious in the case of pro—
cedure execution; it is only possible to enter a procedure at its head
and exit either by cbeying a BETURN or ENDPROC statement, which returns
control to the calling procedure, or to perform a GOTO to a LABEL
variable residing in a data brick, or passed to the procedure, i.e. one
that can only have been initialised by a procedure which has already exe-
cuted in part. The procedure call/return mechanism is explicitly nested
and is enforced by the syntax of the language, but the GOTO exit is only
verifiable dynamically and may fail since there 1s no guarantee that the

label has been set.

Textual nesting ¢an occur Within a procedure, for instance where
variables are declared in BLOCKs or FOR loops. These are of no concern

since in RTL/2 all stack manipulation is done on procedure entry and exit.

A 'STACK' (last-in first-out list) is used by the RTL/2 object code
to hold this nested information. In order to start up an RTL/2 program,
we must set up an embryo stack in the appropriate layout. Appendix B con-
tains a general discussicn of the object code and in particular describes

the stack. Some of that information is repeated below.

Figure 1 shows the layout of a section of stack as it would be
uwtilised by a single procedure. It contains all the regions which may or
must be created on procedure entry. The first executable instruction of
every procedure body is a call on a control routine which, using para-
meters embedded in the code, allocates space for local variables and work
space on the stack, on top of similar regions already created. On pro-
cedure exit this space is de-allocated, Thus as successive nested pro-
c¢edure calls are cbeyed, the stack grows. As exits are cbeyed, the stack

contracts.

The 'LINK CELL' contains all the information needed to control the

un-nesting cperation. It has twWo main elements:

{1} The address of the link call for the calling procedure, and

(1) The program cocunter value for resumption in the calling procedure.

Via element (i}, all current link cells are chained together., The
entry to this chain, 1.e. the address of the current head link cell is

held permanently in register 14, This register is also used to address

all local variables, parameters and temporary results used by the procedure.

The compiler can calculate the total space needed for these and this is
included in the cbject code to determine the amount of stack space to
allocate at procedure entry. If the procedure calls another procedure,
then the space needed for the link cell and parameters of the called pro-
cedure are also included in the space for this procedure, This is to

allow the parameters to be set up before any space checking is dene.

2.2 Entering the User's Program

Having established the dynamics of stack utilisation we are now in a
position to describe the requirements for setting up the stack for entry
to the 'first' RTL/2 procedure of the program. All we need do is generate
sufficient of the standard procedure environment as is necessary to match
the specification of the procedure. The simplest case is a main procedure
with no parameters, where it might be adequate to simply call it by the
following sequence:

LDAT 10,STACK

ADDRESS OF STACK AREA

BAL 15, MAINPROG 'FIRST' PROCEDURE

The value Iin register 10 is the address at which the new link cell

is to be created, The called procedure then calls the 'control routine®

RRO1l to save registers and establish the new link cell as the current
link cell. The control routine will save registers 14 and 15 in the
link cell, The first link cell will therefore have an undefined value
in the field which should point to the previous link cell. This is un-
desirable as the control routine which interprets glcbal GOTO statements
{RROC3), has to have some way of determining whether the 'target' label
is in scope, which 1t does by scanning the chain of links backwards,
looking for a match on register 14. If the label has not been set, no
match will be found and it will career off all over core. Thus, a con—
vention has been made that the first link cell will have zero in the link
field and that all control routines should check for this when scanning
back through the link cell chain. A more suitable entry sequence would
therefore be:

SAR 14,14 CLEAR LINK POINTER
LDAI 10,STACK

ADDRESS QF STRCK

BAL 15 ,MAINPROG

RTL/2 standards require that the main procedure be of the following
specifications:

ENT PROC RRIOB() ;

2.3 Mul tiprogramming

The above code assumed that the start up code was part of the pro-

cess which was to execute the RTL/2 program, for by definition a stack

characterises a process. If some other process were toc be made responsible

for setting up RTL/2 stacks, for instance when creating processes dynami-
cally, the address of the stack would have to be picked up via some
external agency (e.g. a dynamic store allocator or a list of free stacks).

Any parameters would then have to be inserted into the appropriate core

locations and the initial value of register 10 copiled into the process
reglster dump area, wherever that might be. This is cbviously highly
dependent on the operating system. It is not generally possible to do
this in RTL/2 code even if the stack is declared as such in an RTL/2
module, since asslgnments to stacks are not defined in the language.

Named RTL/2 stacks may be accessed only by machine code sections.

The method of process parameterisation suggested above is not
generally satisfactory since, being local workspace, the parametexrs are
not accessible to other procedures run as part of the process unless they
are passed as parameters of each call, which is inefficient. In the next

section an alternative method, using SVC DATA bricks, will be described.

2.4 SVC DATA Bricks

An ordinary DATA brick appears only conce in core. It may be private
off-stack workspace for a particular procedure or group of procedures, or
it m;y act as a common commupication area between several processes. It
1s often necessary to have the aBility to create data bricks which, like
stacks, are private to and referenced by the same code in each process,
thereby preserving the re-entrancy of the code. In RTL/2 such areas are
known as SVC DATA bricks. The compller generates code to access SVC data
which is different to that used to access ordinary data. The latter is
normally accessed via a symbolic label which may be external., Whichever
applies the effect is to define some address which is to be used by all
tasks. In the case of SVC data areas, a symbolic label is again used,
always external, but in this case the value assigned to this label is not
a true address but an offset. BAll such references are indexed by register
8 which contains the address of the stack base for the current task.

Thus the actual address used will differ between tasks. Each task has

its own SVC data areas, held within the stack area. Since the SVC data
bricks are hel&iin the stack area, the total size of these bricks will be
needed, since register 14 will need to be initialised to point beyond
these areas. To facilitate this, a further external symbol has been
defined: SVCTOP. This symbol should be defined as the total length of
the SVC area. Since there is no method for automatically defining off-
sets for the SVC areas, 1t is necessary to provide a small section of CAL
code which defines the SVC brick names as being entry points, then con-
tains EQU statements to give these symbols appropria;e values. The

following gilves an example of such a piece of code:

ENTRY RRSIO,RRERR,SVCTCP
RRSIO EQU O
* pAS 1 N
* pas 1 ouT

RRERR EQU RREIOHADCHADC

* DAS 2 ERL
* DS 2 ERN
* DAS 1 ERP

SVCTOP EQU RRERR+ADCHADC+ADC+HADC (ERN ROUNDS UP TO ADC)

END

Care should be taken to ensure that the mappings are correct, in

particular, that padding is not ignored. Under normal circumstances, a

standard SVC definition module will be adequate for most purposes.

3. CONTROL ROUTINES

Control routines are CAL subroutines which support RTL/2 code at

run time. Since floating point operations are provided, either in hardware

6.

or by simulation in software, the functions to be provided are fairly

simple. They can be split into four groups:

(a) Procedure entry and exit controls.
(b) Array- bound checking.
{c) Variable shifts.

{d) Fixed-point to floating-point conwversion and vice-versa.

Bccess to these routines is provided using a common base register
(register 9) which points to a list of branch instructions. The compiler
will generate an instruction of the following form:

BAL 13,x(9)

whenever 1t needs the assistance of a control routine. While the use of
the base register gives no advantage on the 16~bit machines, it does allow
the 32-bit machines to use the shorter RXl format instead of the RX3
format. The saving can be significant in programs of any complexity.
Register 13 is always used as the link register when calling control
routines as opposed to the normal linkage registex (register 15) which is
used for procedure calls. BArguments to the control routines are normally
passed in registers. For full detalls of the argquments required, see

Appendix A. \

The control routines are written in CAL and may be modified to suit
any specific needs. The error handling mechanism attempts to follow
system standards in that the procedure RRGEL is called for unrecoverable
errors, To prevent stack overflow from causing a loop in error recovery

the procedure RRGEL should bypass procedure entry checking by using:

OPTION (1) ND ;
This means that space must be reserved beyond the end of stack to

allow RRGEL to save the linkage registers without overwriting code or

data areas. This is allowed for by the compiler which adds space for

four address constants (2 byte for 16 bit, 4 byte for 32 bit) onto the

end of compiler generated stacks. As an example, the following RTL/2 code:
STACK MYSTK 100 ;

would generate the following CAL code:

MYSTK DAC .El
DAS 100 100 address words
.El Das 4 overflow area

4. INITIALISATION

4.1 The Base Program

The base program is responsible for establishing a suitable environ-
ment for the execution of an RTL/2 program. It has to perform three main

functions:

(1} stack initialisation and entry to the users program,
(11} the procedure RRGEL and default settings for the error label
ERL and the error procedure ERF in the SVC brick RRERR,

{iii) termination on return from the user program.

4.2 Startup Code

This sets up the RTL/2 working environment and enters the user's
main procedure. The stack must be initialised as described prewviously,
along with the registers 8, 9, 10, 14 and 15. When control returns from

the user procedure, the termination code should be entered.

4.3 Error Label
RTL/2 system standards require that the SVC data brick RRERR he

incorporated in all systems. It is declared:

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC(INT) ERP;

ENDDATA ;

In order that the user may be able to GOTO ERL without having to
forego whatever system error monitoring facilities are available, the
procedure :

PROC {INT) RRGEL;
will invoke the monitoring before exiting to ERL. The control routines
currently call RRGEL in the same manner as any other RTL/2 procedure.
RRGEL should normally be provided as part of the support package although
a user may wish to provide his own version for special applications.
Note that RRGEL may be called for stack overflow conditions, in which
case 1t must not use any local variables or call other procedures unless
some means of switching stacks is available. In addition, under these
conditions the procedure entry control routine must be bypassed, othex-

wise an infinite loop will result.

The base program should also initlalise ERL and ERP to suitable
values. The error label can be set to pass control directly to the
termination code if it is assumed that RRGEL has always output some error

diagnostics first.

ERP should alsc output an erxor message, then return control to

the caller.

4.4 Termination

On return from the user's wain procedure, or via ERL, the base

program should take some sensible action, such as returning control to
the operating system, or halting. If any resources have been allocated

dynamically to this task, they should be freed at this point.

4.5 Line Number Tracing

When error messages are being genexated, it is very useful if the
source line number corresponding to the position of the error can be
included in the mes#age. This may be achieved provided the address of
the calling routine is known. Each procedure has a prefix which contains
the name of the procedure and the offset of the line number table from

the start of that procedure. The format of the prefix is as follows:

Dc C'procname'’ 8 bytes
DC Z {LNTAB-PROC) offset to l.n. table
DC Z (STKSIZE) size needed on stack

PROC BALR 13,9 procedure entry routine

The procedure entry routine stores the value of register 13 in the
new link cell, thereby making it available to the diagnostic routines.
This can then be used to access the procedure name and the line number

table peointer. The line number table is in the following format:

INTAB DC Z (LNEND-LNTAR) length of table
DC Z{entxy) entries,

INEND EQU * end of table

Entries in the table are of two forms: line number definitions,
and statement offsets. Line number definitions consist of a negative
numher which corresponds to the current line number when complemented. A
statement offset is the positicn, relative to the start of the procedure,

of the first instruction corresponding to the next line number. Thus

10.

consecutive line numbers will be represented by statement offsets. Line
nunber definitions are only used when two adjacent statement offsets would
be the same. To determine the line numl-:er which corresponds to a given
address, fixst subtract the start address to get the offset. Then scan
sequentially down the table. The first eptry will always be a line number
definition. In this case and whenever line numher definitions are met,
set that line mmber to that value. For each statement offset, ccompare
the known offset with that value; if the offset is less than the current
value then the search is complete and the line number is known, otherwise
increment the line number and repeat the process with the next entry.

Note that the table is always present but will have no entries unless

the TR option was specified during compilation of that procedure. In this
case the length of the table will be set to 2. If the end of the table
is reached without the condition above being met then either the TR option
was not specified or the error occurred in the last statement of the pro-

cedure and the line number reached may be used.

5.. STANDARDS

The implementor should always make an attempt to provide facilities
in his package which conform to the RTL/2 recommended standards. The
stream I/0 library is written in RTL/2 and can be implemented very

quickly provided procedures can be provided to match IN and OUT.

Certain systems will not require these facilities but the error
handling conventions should be followed closely. Deviations from these

standards may cause problems with later releases of the software.

(i}

(ii)

(11i)

{iv)

(v}

{vi)

6. BIBLIOGRAPHY

RTL/2 language specification, June 1974

RTL/2 reference 1 version 2

This document is the authoritative definition of the RTL/2

language.

Standards for RTL/2 Systems, May 1973 .
RTL/2 reference 4 version 2

This defines non-I0 RTL/2 standards.

Standard Stream IO for RTL/2 Systems, May 1973
RTL/2 reference 5 version 2

The companion of {(ii).

Interdata Users Manual, February 1973
Publication number 29-2G1ROL

Description of Interdata 16-bit machines.

Interdata 32 Bit Series Reference Manual, June 1974
Publication number 29-365RO1

Description of Interdata 32 bit machines.

Common Assembler Language (CAL)} User's Manual

Publication number 29-375R03J

Describes the Common Assembler Language used for both 16 and

32 bit machines.

APPENDIX A

CONTROL ROUTINE SPECIFICATIONS

Al Introducticn

These routines are c¢oded using CAL an& conforﬁ to the following con-
ventions:

Entry is by means of a branch-and-link instruction using R13 as the
link register. Arguments may be passed in registers or as in-line con-
stants immediately following the call, In the latter case the control
routine will return to the first executable instruction following the con-
stant. Entry points are defined as offsets in an entry vector addressed
by register 9. Regilster 9 must therefore be preserved intact throughout

the program.

A2 RROL - Procedure Entry Housekeeping

Called at the head of an RTL/2 procedure, i.e. immediately on entry.

Establishes the new link cell, and adjusts R14 to point at it. It is

assumed that procedures are always called with the following code sequence:

set up parameters (if any)
LDAI 10,new stack frame
BAL 15, proc (or BALR 15,11)

where 'mew stack frame® is the position of the new link cell on the stack
and will be of the form ' n(l4) ' where 'n' is some integer, and 'proc' is
the name of the procedure being called. The control routine is called by

the first instruction of the called procedure as follows:

pc C'procname" 8 byte name of called proc

DC Z(1toff)

DC Z (stksz) space needed on stack
PROC BALR 13,9 call rrOl

start of procedure code

13.

Registers 13, 14 and 15 are saved in the new link cell addressed by
register 10, then the space needed on the stack is checked. If insuffi-
cient space is available, RRGEL{l) is invoked. Otherwise register 14 is

made to point at the new link cell and control is returned via register 13:

A3 RRO2 - Procedure Exit

Although the compiler generates a branch and link to this routine,
the return address is ignored. Registers 13, 14 and 15 are restored from
the current link cell and control is passed back to the user by means of a
BR 15 instrucﬁion. Since register 15 has just been restored from the
stack, control will pass to the procedure that invoked the calling

procedure.

Any results to be returned will be in registers O, 1'or FO and none

of these registers are modified in any way.

a4 RRO3 — Variable GOTO

Whenever a GOTO statement specifies a LABEL variable or expression,
the LABEL value is loaded into registers O and 1 and RRO3 is invoked. This
routine begins a search, starting with the current link cell, and termi-
nating when the head of the link cell chain 1s reached. At each level,
the stack level of the label is compared with the address of the current
link cell. If a match is found, then it is assumed that the label was
set by the corresponding procedure, register l4 is set to that stack level
and a branch taken to the label address. If no match is found before the
head of the chain is encountered, then an error has occcurred and RRGEL(2)
1s invcked. An additicnal check which could be added is to check that the
label address lies between the procedure start address {(register 13 in the
current link cell) and the line number table for that procedure (which may

be accessed via register 13 as described in the section on line numbers).

14.

This will prevent errors passing undetected if a procedure call results in
a stack frame starting at the same address as a different procedure which

set an error label.

A5 RRO4 - Switch Processing

When a switch statement is encountered, the compiler generates code
to evaluate the expressicn then invokes RRO4 to decide where the switch is
to go. The branch—-and-link instruction is followed by a halfword constant
whose value is the number of labels present in the switch list. This is
followed by a list of offsets to the labels. The offsets are from the
first constant, since the address of this is passed in register 13 by the
BAL instructicon. The control routine first checks that the value glven is
in the range 1 - N where N is the number of labels. If this.is the case,
then the value is doubled and used as index into the list of offsets. The
offget is loaded and used in an indexed branch to the selected label. If
the value is not in range, the address of the first instruction following
the list is calculated and this is branched to instead., This is to con-
form to the RTL/2 specification whereby a switch statement with expression

out of range is to be ignored.

a6 RROS, RRO6, RRO7, RROH, RRO9 - Array Checking

The following set of routines are very similar and will be dealt with
together. Their functicn is to check a subscript in register 11 against
the length field of an array whose address is passed in register 4. If
the subscript is not positive or is greater than the length of the array,
then RRGEL{3) is invoked. If not, the base address is added to the sub-
script and is returned in register 11 to be used to access the array ele-
ment. In the case of RRO9, which is used for arrays of records, the

length of the record structure is passed as a halfword constant, coded

15.

in line following the BAL instructlon. The subscript 1s already aligned
in preparation for the accessing and so the length muat also be aligned

before compariscn may be made.

A7 RR10 - Logical Left Shift

This instruction expects an integer in register 1 and shifts it left
by the number of places specified in register 11. If the value in register

11 is greater than 15 then the result will be zero.

A8 RR11l - Logical Right Shift

This routine expects an integer in register 1 and shifts it right
by the number of places specified in register 11. If the value in register

11 exceeds 15 then the result will be zero.

A9 RR12 — Logical General Shift

This routine takes the integer passed in register 1 and-shifts it
left if register 1l is positive and right if register 1ll is negative. If
the absolute value of register 1l is greater than 15, the result will be
zero. This routine branches to RRIC or RR1l depending on the sign of

register 11l.

AlC RR13 - Arithmetic Left Shift

This routine expects a Gouble length integer in registers O and 1
for 16 bit machines, or register 1 for 32 bit machines. This value is
shifted left by the number of places specified in register 11. If

reglster 1l exceeds 31 then the result will be zero.

All RR14 - Arithmetic Right Shift

This routine expects a double length integer as in RR13 and shifts
it to the right by the number of places specified in register 11. If the

value in register 11 exceeds 31, the result will be elither zero if the

16.

initial value was positive, or -1 if the value was negative.

Al2 RR15 - Arjthmetic General Shift

This routine tests the sign of register 11. If positive or zero, it

branches to RR13, otherwlse it branches to RR14.

Al3 RR16 - Arjthmetic General Shift - Single Length

This routine tests the sign of register 1l. If it is positive, then
it branches to RR10O to perform a single length left shift. Otherwise, the
value in register 1l is complemented and used to shift register 1 right by
up to 15 places. If the complemented value exceeds 15, register 1 is
shifted right by 15 places, thereby giving a result of O or -1 depending

on the initial sign of register 1.

Al4 RR17 - Fixed-point to Floating-point Conversion

This routine is only required for the l6-bit machines since the
hardware of the 32-bit machines provides an instruction for the conversion.
The input to this routine is a double length integer in registers O and 1.
This should be converted to a floating point value and returned in float-
ing point register 0. This routine 1s used for single length conversions

also by expanding the single length value to double length.

Al5 - RR1B - Floating-pecint to Fixed-point Conversion

This routine is needed for both 32 and 16-bit machines. The con-
tents of floating point register O should be converted to an integer and
returned in reglster 1. Scaling for fractions 1s performed before this
routine is invoked. WNote that the value should be rounded to the nearest

integer value.

17.

APPENDIX B

CODE CONVENTIONS AND CODE STATEMENTS

Bl Introduction
This section summarises some important conventions of the CAL code

used on the Interdata - both compiler generated and hand-written code so

that a user may understand the compiled code of his system, where necessary,

and may write CODE statements in RTL/2 modules when this is necessary, in
order, for example, to access peripheral devices. Within this appendix
we use the teim ‘word' to mean elther a half-word if the target machine
is a 16-bit machine, or a full-word if the target is a 32-bit machine.
The terms 'full-word' and 'half-word' are used to mean 32-bit and l6-bit

entities respectively.

We start by describing, in some detall, the laycut of the stack at

run-time.

B2 The Stack Mechanism

Program workspace is allocated in the stack area starting f£rom the -
low addressed end and working upwards as procedure calls are nested. The
stack data for a given procedure is arranged above a LINKCELL as shown in
fig. 1. The link cell contains three words which are used to save
registers 13, 14 and 15 at procedure entry and from which these registers
are retrieved on procedure exit. These registers contain the following

values:

Register 13 contains the return address given by the BALR 13,9
instruction which invoked the control routine RRCl. This can be used to

determine the address of the procedure for diagnostic purposes.

18.

Register 14 is used to point at the current linkcell. On procedure
entry, however, it is still pointing at the linkcell of the calling pro-
Eedure. RRO! will modify it to point at.the new linkcell as soon as the
registers have been saved in the new linkcell and the space checking has
been done. There will be, therefore, a chain of linkcells, running from
the current cell, back through all nested calls, to the base program that

initiated execution of the users program.

Register 15 is set by the BAL instruction in the calling procedure
to the return address. Therefore, procedure exit can return to the point

of invocation using this value.

Above the linkcell are stored the paramsters {if any) of the current
procedure. These are stored in place by the calling procedure before
passing control to the current procedure. They may be accessed by the

current procedure using an offset indexed by register 14.

Adjacent to the parameters §nd accessible in the same way are the
local variables declared in this procedure. These include variables which
are declared within inner blocks and FOR-loop control variables. Note
that variables within disjoint blocks will share the same space in this

area.

Finally, there is a general work area, containing space for temporary
results generated during expression evaluaticn, and also space for link-
cells and parameters of procedures which may be called by the current pro-
cedure. This space must be included in the current stack frame to allow
procedure calls to be set up without additional checks. This area will

overlap with stack frames of called procedures to utilise space efficiently.

19,

Note that although the effect is similar to a push-down stack, the
stack pointer (register 14} only changes at procedure entry and exit, all
internal stacking being simulated within the compiler which produces

references to locations at fixed offsets from this register.

The effects of successive procedure calls and exits is illustrated in
fig. 2. Note that a procedure that calls itself recursively will behawve
in exactly the same.fashion, each invocation acquiring the same amount of

space on the stack.

It is important that the user be able to estimate stack size cor—
rectly. Too little stack space will cause task failure which may happen
in unusual and untested circumstances when the procedures in the task are
nested to a greater depth than usual. Too much stack is wasteful of core

space.

Two techniques may be used:
(i} initial Over-estimate.

The task may be run initially with an over-large stack. After several
tést runs the amount of stack space used may be taken as an estimate of
the space needed. The runs should include conditions which will cause the
program to reach its expected maximum stack depth. If it is not possible
to ensure this condition then some excess should be allowed for such a
condition to arise during normal running. Note that recursive procedures

can use large amounts of stack space under certain conditions.

The amount of space used can be monitored in several ways, the best
prcbably being to extend the procedure entry contrel routine to keep a
check on the maximm amount of space used. Termination may print out

this valve before stopping. The walue should be kept in an 5VC brick so

20.

that multitask systems can cperate correctly.

An alternative method is to preset_all of the stack to some unlikely
value. At termipation the stack is scanned, from the top, until a word
is found that does not contain this value. This is likely to be the high-
est point reached on the stack. It is advisable to allow a few extra
words beyond this since space may have been allocated to a procedure, but

not used.

{ii) Accurate Calculation

It is possible to calculate the displacement between sSuccessive link
¢ells by inspection of the compiled code, and thereby to calculate (by
inspection of all possible routes) the longest stack usage. This is
tedious and is not recomended. The method is as follows. Inspect the
code generated for each procedure. Wwhere the procedure invokes another
procedure, a LHI 10,x(14) instruction will be found preceding the BAL or
BALR. The value of ¥ 1s the distance from the current link cell to the
new link cell. These values should be added for each nesting path. In
addition, the value given for the stack space needed, in the prefix of the
fipal procedure in the path, should be added. The largest of these totals
is the maximum amount of space needed. For recursive calls of procedures,
the distance between link cells should be multiplied by the number of

times the procedurxe recurses (if known).

Note that the space occupied by SVC data bricks is also in the

stack area and so must be added to the final result.

B3 Register Conventions

The standard usage of the registers in compiled@ RTL/2 is:
RO is used to hold the most significant half of double length results

(16 bit only). It is also used to hold the stack pointer in label

21.

R1

R2

R3

R4

RS

R6

R7

RB

R9

values. It is used in the MOD operator as the remainder of a

divide instruction.

is the general purpose register. Normal integer and fraction
arithmetic takes place in Rl. The address part of label values is

normally in RI1.

is occasionally used as a temporary work register when non-

commutative operations are to be performed.

acts as the base for REF variables. The address is loaded into R3

and references are made using 0(3) as the operand.

is used in array and record accessing. Record addresses are loaded

into R4 and accessing is by "x{4)" where "x" is the offset within

the record of the selected component. During subscripting cperations

the array base address is often loaded into R4. If subscript

checking is done then R4 will always contain the array base address.

is not used at present.

is not used at present.

is used as the hase for EXT or 5VC data. The address of the data

brick is loaded into R7 so that the element within the brick may be
accessed using "x(7)" as the operand. In the case of SVC data the
address is set up using "LDAI 7,name(8)" since the name is only an

offset within the stack.

is used as stack base pointer. This value should never change

during normal execution of an RTL/2 task.

is used to address the entry wvector for the control routines.

22.

Again, this register should never change in value. BYTE
R10 iIs used to pass the address of a new stack frame to a called pro—
cedure. It may also be changed as a result of oi:erations on the INT
subscript register R11 (16 bit only).
Rl1l acts as the subscript register. Where possible the subscript value FRAC
is ctalculated directly in R1l. Complicated expressions will result
in the value being calculated in Rl and then being moved to R1L.
R1l is also used to hold the address of a procedure in calls on
REAL
procedure variables.
R12 is not used in any way.
R13 is used as link address in control routine calls.
Rl4 is the current stack frame base register. It is used as base
address in accessing parameters, local variables and temporaries.
R15 is used as link register in procedure calls.
N.B. Procedure calls preserve only registers 8, 9, 12 and 14. all
other registers can be assumed to change over a procedure call. Control)
REF
routines follow the same convention. Registers 8, 9, and 12 are pre- P ;
ROC
served anly in the sense that they will not be explicitly changed.)
STACK)
Register 14 is held on the stack and is restored immediately before
return. LABEL
B4 RTL/2 Data Formats
Standard RTL/2 data types are implemented on an Interdata machine
as follows: BIG INT

23.

An RTL/2 byte is represented by a single byte. When in a

register, the remainder of the register is set to zero.

An RTL/2 integer is always 16 bits in length and is held in

standard two's complement form,

An RTL/2 fraction is a 16-bit halfword. The binary point is

agsumed to beé immediately to the right of the sign bit. Thus

the value 0.5BO is HEX 4000 and -1.0BO 1f HEX 8000.

RTL/2 xeal values are held in standard Interdatsa floating-
polnt format. The 32 bits are as follows:

1 sign bit (1 if negative)

2-8 hexadecimal exponent {offset by 64}
9-32 maptissa (normalised, always positive)

Note that the mantissa must always be normalised, the hard-
ware giving very odd results if this is pot the case. The
exponent represents the power of sixteen by which the mantissa;
should be multiplied. Changing the sign of a floating point

numher is done by simply inverting the sign bit.

are all represented by an addxesé 'word'. Byte addressing

is used throughout.

Two 'word's are used, the first containing the address of the
stack frame current when the label is set, the second con-

talning the address of the label in the code.

In the case of the 16 bit machines, regigstexs O and 1 are
used to hold double length results, On the 32 bit machines,

a single register is sufficient.

24.

FINE INT)
)

BIG FRAC) as for BIG INT.
}
}

FINE FRAC

RECORDS RTL/2 records are laid out as a succession of components,
each with their own format as defined above and below., The
record itself has no extra structure except that padding may
be inserted to align the components to the boundaries
required by the hardware. Records are always aligned

according to the requirements of the longest components.

ARRAYS Arrays are represented by successive elements, prefixed by a
halfword length fleld. The address of an array is the
address of a fictitious element zero. This address corres-
ponds to the address of the length fleld only for arrays of
16-bit elements. For longer element lengths, the address

will be a number of bytes preceding the length.

Multidimensional arrays are compiled in the satandard RTL/2

style, as arrays of REF arrays as many times as necessary.

BS RTL/2 Brick Layout

RTL/2 bricks are complled as follows:
FROC brilck:

An RTL/2 PROC consists of three parts: a prefix, the main c¢ode area
and the line number table. The prefix conaists of an eight character
field containing the name of the procedure followed by two halfword con-
stants. These define the amount of space needed on the stack and the
length of the code area. The latter value is used to calculate the

position of the line number table.

25.

The code area then follows. The entry point to the procedure is at
the beginning of this area and the first instruction is a BALR 13,9 to
entex the procedure entry control routine. This is then followed by code

for the first executable statements of the procedure.

The line numbery table appears immediately following the last instruc-
tion of the procedure and consists of a halfword length field followed by
a list of halfword entries. If line number trace has not been requested
only the length field exists, containing the value 2. Entries in the
table consist of lipe number definitions (values less than zéro) a'nd
statement offsets (positive values). Determination of the line number is
by scanning the table with the offset of the instruction (P). If a nega-
tive entry is found then the line number (L} is set to the two's comple~
ment of that entry. Otherwise, the value of the entry is compared with P.
If the value is less than P the L is incremented. If not,-or the end of
the table is reached, then the value of L corresponds tc the line number

needed.

DATA brick:
An RTL/2 DATA brick is compiled with the data laid out in the same
order as defined in the RTL/2 text. Bytes may be inserted to ensure cox-

rect alignment of items that require halfword or fullword alignment.

SVC and EXT data bricks do not generate any code since they are
effectively definitions of data areas not contained within the curxent
module. The pesitions of ltems within these bricks is however determined

in the same manner as for other DATA brichks.

STACK bricks:
An RTL/2 STACK brick is compiled as an uninitialised area of space

with a polnter in the first word to the end of the stack area. Space is

26.

left at the end of the stack for four words to allow RRGEL to be called
after a stack overflow. The number Ln the stack definition determines
the number of ‘'words' of space in the stack. Thus STACK FRED 100 will
create a stack of two hundred bytes for a 16 bit machine and four hundred

bytes for a 32 bit machine.

SVC PROC bricks:

There is no RTL/2 means of compiling SVC procesures, The code
generated by references to SYC procedures is identical to that generated
for normal procedures.

.
B6 Code Statements

This section summarises the main features to be considered when
writing code statements in RTL/2 modules designed for Interdata machines-
It is assumed that the user is familiar with CAL assembly language in

which the statements are written.

Code statements or "code sequence” have syntax which follows the

overall standard as described in the RTL/2 Specification Manual thus:

codeseq ::= codeheading codeitem
codeheading ::= digitlist , digitlist ;
codeltem ::= ISO7-character-other-than-@-or-/

| @ letitem / name

letitem ::= name | number | string | comment | separator

Thus on the Interdata implementation the characters 'tripl' and
"trip2' of the specification manual are @ and / respectively. The trip
characters are used to gain access to the RTL/2 variables of LET names

etc. defined in the RTL/2 section of the program, from within the code

sequence.

27.

A code statement is, as far as the RTL/2 compiler is concerned,
similar in nature to other statements. When it is entered during the exe-
cution of a procedure the registers O to 7 may be used freely as the com
piler assumes that the values ;ontained in these registers will no longer
be valid after the code sequence has been executed. Space on the stack
will have been reserved but there is no means of determining where this
starts. As a result, the recommended techniqqe is to define local wvari-
ables to be used as temporary work space in the block containing the code
sequence. The first number in the codeheading is ignored by the compiler
and zero may be used for its value. The second numbér is used to specify
the amount of space needed on the stack. Because of the problem mentioned

above, this value will also ke zero in most cases.

The code within the code sequence should consist of standard CAL
statements, typed one to a line, terminated by @RTL. Access to RTL/2

names etc. may be cbtained using the trip characters @ AND / as follows.

Local variables may be accessed using @name{i4) since the Ename is
replaced by the offset of the variable from the start of the current
stack frame. Register 14 always points to the start of the current frame

and should normally be used as a base register.

Glcbal variables may be accessed by @name/brick where brick is the
name of the data brick containing the variable. This is replaced by a CAL
expression consisting of 'brickname'+'offset’ where 'brickname' is the
name of the data brick and 'offset' is the position of the variable within

that brick.

Elements of recoxds may be accessed in two ways depending on the

record. @pame/mode will produce the offset of the element from the start

28.

of the record and this may be used elther t¢ add to a CAL expression FIGURE CAPTIONS
defining the record if directly addressable cor in conjunction with a

: Fig. 1 Layout of a section of stack.
record address held in a register, e.g. @COMP/MODE (4) where COMP is the

name of the element and register 4 contains the address of the record. Fig., 2 The effects of successive procedure calls and exits.

29, i 30.

Ri4 =~

Local Workspace

Local Variables

Parameters

Link Cell

Fig. 1

R14 =~

Stack -
Base

space for Link Cell D

locals for C

Link Cell C

locals for B

Link Cell B

ﬁ

Locals for A

Link Cell 2

Fig. 2

A calls B
B calls C

C may call D

ek YNIN

