
Technical Report

RAL-TR-2004-026

Council for the Central Laboratory of the Research Councils

October 2004

Jennifer A. Scott

MA42 ELEMENT - a state-of-the-art frontal

solver for finite-element applications



c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should be

addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the

use of information contained in any of their reports or in any communication about their tests or

investigations.



RAL-TR-2004-026

MA42 ELEMENT - a state-of-the-art frontal solver for

finite-element applications1,2

Jennifer A. Scott

Abstract

In recent years there have been a number of important developments in frontal algorithms for

solving the large sparse linear systems of equations that arise from finite-element problems.

We report on the design of a new fully portable and efficient frontal solver for large-scale real

and complex unsymmetric linear systems from finite-element problems that incorporates these

developments. The new package offers both a flexible reverse communication interface and a

simple to use all-in-one interface, which is designed to make the package more accessible to new

users. Other key features include automatic element ordering using a state-of-the-art hybrid

multilevel spectral algorithm, minimal main memory requirements, the use of high level BLAS,

and facilities to allow the solver to be used as part of a parallel multiple front solver. The

performance of the new solver, which is written in Fortran 95, is illustrated using a range of

problems from practical applications. The solver is available as package HSL MA42 ELEMENT within

the HSL mathematical software library and, for element problems, supersedes the well-known

MA42 package.

Keywords: large sparse linear systems, finite elements, frontal method, out-of-core, Fortran 95.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 This work was supported by the EPSRC grant GR/S42170.

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

October 2004.



1 Introduction

We are interested in the efficient solution of large sparse linear systems of equations

AX = B, (1.1)

where the system matrix A is of order n× n, B is an n× nrhs (nrhs ≥ 1) matrix of right-hand

sides and X is the n×nrhs solution matrix. Such systems arise in many areas of computational

science and engineering; our interest in this report is in the systems (1.1) that arise from finite

element applications. In this case, A is an elemental matrix, that is, A is a sum of finite-element

matrices

A =
nelt
∑

k=1

A(k), (1.2)

where each element matrix A(k) has nonzeros in a small number of rows and columns and

corresponds to the matrix from element k. In practice, each A(k) is held in packed form as

a small dense matrix together with a list of the variables that are associated with element k,

which identifies where the entries belong in A. Each A(k) is symmetrically structured (the list

of variables is both a list of column indices and a list of row indices) but, in the general case, is

numerically unsymmetric.

One possible method for solving systems of this form is the frontal method. Frontal schemes

have their origins in the early 1970s with the work of Irons (1970). At the time, there was a

need to solve finite element problems that were too large for the system matrix and the matrix

factors to be held in main memory, so that existing direct methods could not be used. The

frontal method was therefore designed to be a robust direct method that required only a small

amount of main memory (that is, the main memory needed was small compared with the order

n of the linear system). Today computers and their memories are much larger but so too are the

problems that computational scientists and engineers wish to solve. Thus methods that require

only limited main memory remain attractive.

The frontal method is a variant of Gaussian elimination and involves the matrix factorization

A = PLUQ, (1.3)

where P and Q are permutation matrices, and L and U are lower and upper triangular matrices,

respectively. The solution process is completed by performing the forward elimination

PLY = B, (1.4)

followed by the back-substitution

UQX = Y. (1.5)

The key feature of the method is that the contributions A(k) from the finite elements are assembled

one at a time and the storage of the entire assembled coefficient matrix A is avoided by interleaving

assembly and elimination operations. This allows the computation to be performed using a frontal

matrix that at each stage may be expressed in the form
(

FT FR

FC FU

)

, (1.6)

1



where the rows and columns of the r× r matrix FT are fully summed, that is, there are no other

entries in these rows and columns in the overall matrix, while the rows and columns of the s× s

matrix FU are not yet fully summed. In general, r << s and the frontsize r + s is much less than

n, the order of A. Provided stable pivots can be chosen from FT , the factorization FT = LT UT

is computed. Then FC and FR are updated as

FC ← FCU−1
T , (1.7)

FR ← L−1
T FR, (1.8)

and then Schur complement

FU ← FU − FCFR (1.9)

is formed. At the next stage, another element matrix is assembled with this Schur complement

to form another frontal matrix. As the rows and columns of the matrix factors are generated,

they are written to buffers (work arrays), which are held in main memory. This frees up space in

the frontal matrix, which can then be reused for further incoming elements. If a buffer becomes

full, its contents are written to a direct access file. The data in these files is read back into main

memory (one record at a time) during the forward elimination and back-substitution phases.

Since the original work of Irons (1970), the frontal method has been developed and generalised

by a number of authors, including Hood (1976) and Duff (1981, 1983, 1984). The frontal solver

MA42 of Duff and Scott (1993, 1996) for real unsymmetric systems and its counterpart ME42 for

complex systems have been part of the mathematical software library HSL (HSL, 2004) for a

decade. The code has been widely used to solve problems from a variety of different application

areas including fluid flow, structural analysis, and chemical process engineering. It has also been

used in the development of parallel frontal solvers for HSL (HSL MP42 and HSL MP43). Following

feedback and comments from users, and also as a result of our own experience of using MA42

and ME42, we have noted a number of ways in which the code might be improved, both in the

options offered to users and in its user interface as well as in its performance. The improvements

include integrating element ordering within the package, incorporating real and complex versions

within a single package, allowing greater use of dense linear algebra kernels, simplifying the use

of out-of-core factor storage, and providing facilities for preserving a partial factorization. We

therefore felt it was time to develop a new frontal code to supersede MA42 and ME42.

The package MA42 (and ME42) was primarily designed for finite-element problems, but by

offering the user the option of entering the matrix data by elements or by equations (rows), it can

be used to solve general sparse unsymmetric linear systems. We have found that including both

input options within a single package adds to the complexity of the code, the user interface and

user documentation. To assist with code maintenance and to make the code easy to use, an early

design decision for the new frontal package was to separate the element and equation versions. In

this report, we discuss the design and development of our new frontal solver HSL MA42 ELEMENT for

real and complex finite-element problems; our intention in the future is to develop a corresponding

package for unassembled unsymmetric systems that will adopt a similar user interface and offer

a similar range of options. We observe that having two separate codes is consistent with the

approach we have already adopted for the HSL parallel frontal solvers: HSL MP42 (Scott, 2001b)

2



and HSL MP43 (Scott, 2001a) are designed for finite-element problems and general unsymmetric

systems, respectively.

We end this section by listing the key features of our new frontal solver HSL MA42 ELEMENT, a

number of which will be discussed further in later sections, as indicated.

• The matrix A must be input by elements. Two interfaces are offered: a flexible reverse

communication interface and a simpler all-in-one interface that is designed to appeal in

particular to inexperienced users (see Section 2).

• Versions are included within the package for both real and complex systems. Single and

double precision versions are offered but we recommend that at least 8-byte arithmetic is

always used.

• The package is fully portable, threadsafe, and written in standard Fortran 95. HSL is a

library of Fortran packages; Fortran 95 was chosen for our new frontal solver not only for

its efficiency for scientific computation but also because it offers many more features than

Fortran 77. The package makes extensive use of dynamic memory allocation, which allows a

much cleaner user interface and enables the computation to continue if the initial allocation

of workspace is not sufficient.

• Through the use of both control parameters and optional arguments, a wide range of options

is available to the user. Key parameters are discussed in Section 2.3 and full details are

given in the user documentation.

• A number of state-of-the-art element ordering algorithms are incorporated within the

package (see Section 5).

• If there is insufficient main memory to hold the matrix factors they are held in direct access

files. During the factorization, data is put into explicitly held buffers and, whenever a buffer

is full, it is written to a direct access file. The length of the records in each of the direct

access files (which is equal to length of the associated buffer) is chosen either automatically

by the code or by the user. Further details are given in Section 2.3.

• Efficient use is made of level 3 BLAS by allowing the user to choose the minimum pivot

block size (see Section 3).

• To try and avoid unnecessary operations with zeros, the code follows the work of Scott

(1997) and exploits zeros in the frontal matrix (see Section 4).

• A number of features are offered that allow the code to be used within an implementation

of the multiple front algorithm; this is discussed in Section 6.

Finally, we note that the naming convention adopted within HSL is for all Fortran 90 or

95 packages to have a name starting with HSL (which distinguishes them from the Fortran 77

codes). Throughout the remainder of this report, we abbreviate the full name HSL MA42 ELEMENT

of our new frontal solver to MA42 ELEMENT.

3



2 User interface

In common with other sparse direct methods, the frontal method can be split into a number of

distinct phases as follows:

1. An ordering phase that determines a suitable order for assembling the elements. For

efficiency in terms of both storage and arithmetic operations, it is essential that the elements

are assembled in an order that keeps the size of the frontal matrix as small. That is, once

a variable has entered the front, it needs to become fully summed as quickly as possible.

2. An analyse phase that takes the index lists for each of the elements in turn and determines

a potential pivot sequence.

3. A factorization phase that uses the pivot sequence (modified if necessary to maintain

numerical stability) to factorize the matrix.

4. A solve phase that performs forward elimination followed by back substitution using the

stored factors.

MA42 ELEMENT offers the user two different interfaces: a reverse communication interface that

requires separate calls to each of the different phases and a simpler (but slightly less flexible)

all-in-one interface. Both make use of control parameters. These are parameters that, as their

name implies, control the action within the package. They are given default values by a call

to the initialisation routine MA42 ELEMENT START. The defaults have been chosen on the basis of

our numerical experiments on a range of problems and computer platforms and are likely to be

appropriate for most users. However, for maximum flexibility, these parameters may be reset by

the user after the call to MA42 ELEMENT START. The controls include parameters that determine

the level of diagnostic printing, the choice of element ordering algorithm, the pivoting, and the

action taken if A is found to be singular. Full details of all the control parameters is provided in

the user documentation.

In the remainder of this section, we describe the two interfaces and then look at the greater

flexibility that is offered by the reverse communication interface.

2.1 Reverse communication

The key idea of the reverse communication interface is to keep main memory requirements for

the matrix data to a minimum by requiring the user to supply the element matrices one at a time

as they are needed. This gives the user maximum freedom as to how the element matrices are

held; if convenient, the user may choose to generate the element data only as it is required. The

ordering and analyse phase are optionally combined and, if the right-hand sides B are available

in unassembled form, that is, B =
∑nelt

k=1 B(k), they may be passed with the element matrices A(k)

to the factorization phase. In this case, forward substitution is performed at the same time as

the matrix factorization and, once the factorization is complete, back-substitution is performed

to complete the solution.

There are three main routines that comprise the reverse communication interface:

MA42 ELEMENT ANALYSE: must be called for each element in turn to specify which variables are

associated with it. The calls may be made in any order. An element assembly order may be

4



supplied by the user, otherwise an ordering is automatically generated. This is discussed further

in Section 5. The output from the final call to MA42 ELEMENT ANALYSE is the element assembly

order for the factorisation phase. In addition, the analyse phase determines when each variable

becomes fully summed (that is, it determines a tentative pivot sequence) and computes estimates

of the maximum frontsize and of the storage required for the matrix factors.

MA42 ELEMENT FACTORIZE: must be called for each element to specify the entries of A(k) and,

optionally, B(k). The calls must be made in the order determined by the analyse phase (no calls

may be made until the analyse phase is complete). Data from MA42 ELEMENT ANALYSE is used

to factorize the matrix and, if B(k) are specified, the equations AX = B with right-hand side(s)

B =
∑nelt

k=1 B(k) are solved after the call for the last element. Note that more than one finite-

element problem having elements with the same variable lists (but different numerical values)

may be factorized and solved following a single set of calls to MA42 ELEMENT ANALYSE.

MA42 ELEMENT SOLVE: uses the computed factors to rapidly solve either further systems of the

form AX = B or systems of the form AT X = B (or AHX = B, where AH is the complex

conjugate transpose of A), with the right-hand side vectors B input in assembled form. Any

number of calls to MA42 ELEMENT SOLVE may follow the final call to MA42 ELEMENT FACTORIZE.

In addition to the above routines, MA42 ELEMENT RESIDUAL may be called for each element after

the final call to MA42 ELEMENT FACTORIZE, or after a call to MA42 ELEMENT SOLVE, to compute

the residual matrix RES = B − AX (or RES = B −AT X or RES = B − AHX). This routine

also optionally computes the infinity norm of the system matrix, allowing the user to compute

the infinity norm of the scaled residuals

‖resj‖∞
‖A‖∞‖xj‖∞ + ‖bj‖∞

(2.10)

where bj is the jth right-hand side and xj and resj are the corresponding solution and residual

vector, respectively. If the residual is found to be too large, the user can perform iterative

refinement by calling MA42 ELEMENT SOLVE with the right-hand side set to RES.

2.2 All-in-one interface

Our old packages MA42 and ME42 offered only a reverse communication interface. As part of

our attempt to make the new package more user friendly, MA42 ELEMENT has a simpler all-in-one

interface. In this case, the user must make a single call to routine MA42 ELEMENT AFS to perform

the analyse, factorize, and (optionally) solve phases. MA42 ELEMENT SOLVE may be called to

solve for further right-hand sides or to solve transpose (or complex conjugate transpose) systems.

MA42 ELEMENT RESIDUAL may also be called to compute the residual matrix.

When calling MA42 ELEMENT AFS, the user must supply the lists of the variables for all the

elements in a single integer array. The entries of the element matrices may be supplied using either

an array or a direct access file (with a further array or file for element right-hand sides). Using files

reduces the main memory requirements and will generally be needed for large problems (without

this option, the important advantage that frontal solvers have of needing only a small amount of

main memory is lost). Each record in the element data file must contain the entries for a single

5



element matrix, with the elements held in the same order as in the array of element variable lists.

Direct access (and not sequential) files are needed so that, during the factorization, the code can

read the elements in the order generated by the automatic element ordering algorithm.

2.3 Factorize options and flexibility

As well as offering the user greater flexibility in how to store or generate the element data,

MA42 ELEMENT FACTORIZE includes a number of options that are not available in the all-in-one

interface. In particular, there are options to supply the lengths of the buffers (work arrays)

used by the factorization and the maximum order of the frontal matrix. The latter must be

at least as large as the estimate returned by the analyse phase. Because a dense matrix of

order the maximum frontsize is needed, if memory restrictions are likely to be an issue, the user

should not choose a maximum frontsize that is very large compared with the analyse estimate;

a value larger than the analyse estimate is recommended to allow for possible increases to the

frontsize because of delayed pivots. The analyse phase assumes that whenever there are at least

pivot size fully summed variables, they can be eliminated (pivot size is a control parameter

that is discussed further in Section 3). During the factorization, a potential pivot can only be

used if it satisfies a numerical stability test. Specifically, a fully summed entry of the frontal

matrix is only considered suitable for use as a pivot if it is of absolute value at least as large as

alpha times the entry of largest absolute value in its column. The threshold parameter alpha

(0 < alpha < 1) is a control parameter with default value of 0.01. If a potential pivot does not

satisfy this condition, it is delayed and will be retested after further element assemblies. Values of

alpha close to zero will generally result in a faster factorization with fewer entries in the factors

but values close to 1 are more likely to result in a stable factorization; the default of 0.01 is a

compromise between stability and sparsity. If the user does not supply the maximum frontsize

when calling MA42 ELEMENT FACTORIZE, a maximum frontsize of 110% of the estimate from the

analyse phase is used. Should a user have prior knowledge of his or her problem and know that a

large number of pivots will be delayed, causing the maximum frontsize to increase substantially

beyond that predicted by the analyse phase, the user can overwrite the automatically selected

maximum frontsize with his or her own choice.

The earlier Fortan 77 code MA42 was unable to continue if the user-supplied frontsize was not

large enough but using Fortran 95 allows MA42 ELEMENT FACTORIZE to continue the computation

by allocating a new larger frontal matrix. The action taken when the frontsize is too small

depends upon the control parameter front multiple. If this is less than or equal to 1, the

computation terminates with an error message as soon as the frontsize is found to be too small.

The user may then increase the maximum frontsize and restart the factorization (there is no

need to repeat the analyse phase). If front multiple is greater than 1 (the default is 1.1), the

computation will continue. In this case, the contents of the internal arrays of size that depends on

the maximum frontsize are written to scratch files, the arrays are deallocated and then reallocated

with sizes sufficient to continue the computation. The data in the files is read back into these

arrays, the scratch files are closed (and thus deleted), and the computation continues. Note that

increasing the size of internal arrays will add to the factorization cost and may be done more

than once during the factorization of a particular problem. At the end of the factorization details

of the maximum frontsize used is returned to the user. If the user needs to factorize more than

one matrix having the same sparsity pattern, for efficiency advantage should be taken of this

6



maximum frontsize when calling MA42 ELEMENT FACTORIZE for subsequent matrices.

Following the design of MA42, three direct-access files are optionally used by MA42 ELEMENT:

one for the UQ factor (which is held with the corresponding right-hand sides), one for the PL

factor, and one for the row and column indices of the variables in the factors. However, we have

greatly simplified the use of files for the user. One of the complications of using MA42 was that

the user had to provide data on both the sizes of the buffers to be used and the amount of storage

required by the factors. Clearly, for a new problem or application area, this could be difficult.

Estimates of the factor storage needed based on the assumption that no pivots are not delayed

was returned by the analyse phase but, if numerical considerations caused a number of pivots to

be delayed, the factorization could terminate before completion and would have to be completely

restarted with increased parameter values. MA42 ELEMENT simplifies the use of direct access files

and minimises the input required from the user. For the all-in-one interface the user is not asked

for any input relating to the buffers and files. In this case, buffer lengths of 216 are used. For

large problems, files will be required to hold the factors. The code chooses appropriate units on

which to open files and these files are given the status SCRATCH. At the end of the computation,

these files are closed (and hence lost). The only way the user will be aware that files have been

used will be through the receipt a warning flag.

However, this simple use of buffers and files may not be suitable for all users. In particular,

the user may wish to use named direct access files that can be saved at the end of the computation

for possible further solves in the future. The reverse communication interface to MA42 ELEMENT

offers a number of options aimed at more experienced users. The user can choose to supply the

buffer lengths; if these are sufficiently large, using files may be avoided. The user’s choice will

normally depend upon the problem size and memory available. If the user does not supply buffer

lengths then default values of 216 are again used. The user may also optionally supply the names

of the direct access files. If names are supplied, at the end of the computation the files are closed

but not deleted.

We note that the L factor only needs to be stored during the factorization if the user wishes

to call MA42 ELEMENT SOLVE after the final call to MA42 ELEMENT FACTORIZE (or after a call to

MA42 ELEMENT AFS). Not storing the L factor will clearly result in a substantial storage saving.

3 Minimum pivot block

At each stage of the elimination process, once pivots have been chosen, it is essential to the overall

efficiency of the frontal solver that the Schur complement (1.9) is formed as efficiently as possible.

The frontal matrix is held as a dense matrix and so dense linear algebra kernels (in particular,

the BLAS) may be used. If the frontal solver picks a single pivot at a time then it is only possible

to use Level 2 BLAS but if r > 1 pivots are chosen, FR may be updated using the Level 3 BLAS

routine TRSM and then the Schur complement (1.9) computed using the Level 3 BLAS routine

GEMM with interior dimension r. Our experience with MA42 was that, for some problems (notably

those with only one variable per finite-element node), r can be small and there is then little

advantage gained by using Level 3 BLAS. This prompted Cliffe, Duff and Scott (1998) to look

at enhancing the use of the BLAS by delaying updating the frontal matrix until the number of

pivot candidates is at least some prescribed minimum, say pivot size. Suppose, at some stage,

that the number of fully summed variables is k, then the maximum number of pivots which we

7



can choose is k. If k < pivot size and not all the elements have been assembled, we do not

look for pivots but assemble another element into the frontal matrix until the number of fully

summed variables is at least pivot size.

In MA42 ELEMENT, the minimum pivot block size pivot size is a control parameter with

default value 16. The best value to use is both problem and machine dependent. Increasing the

minimum pivot block size in general increases the number of floating-point operations and real

storage requirements but reduces integer storage and, most importantly, can reduce the CPU

time required by both the factorization and solve phases. Results illustrating this are given in

Cliffe et al. (1998). We note that pivot size is used in both the analyse and the factorize

phases. In particular, the estimates of the maximum frontsize and factor storage returned

by MA42 ELEMENT ANALYSE are dependent on pivot size. Since the analyse phase is much

less expensive than the factorization phase (especially as element reordering only needs to be

performed on the first run of the analyse phase for a particular problem), the user can investigate

the effect of varying pivot size before factorizing the matrix.

4 Zeros in the front

During the factorization, the frontal matrix may contain some zero entries. Treating the frontal

matrix as a dense matrix results in unnecessary operations being performed with these zeros

and potentially a large number of explicit zeros being stored in the factors. Because level 3

BLAS are used to perform the factorization operations, the cost of the operations with zeros

may not be prohibitive but if the frontal matrix contains a significant number of zeros, Scott

(1997) found that it can be advantageous to exploit these zeros. To see how this can be done,

suppose the frontal matrix has been permuted to the form (1.6) and that k is the number of fully

summed variables. By performing further row and column permutations, the frontal matrix can

be expressed in the form

F =







FT FR1
01

FC1
FUT

FUR

02 FUC
FUU






, (4.11)

where 01 and 02 are zero matrices of order k× k1 and k2 × k, respectively. Assuming the current

frontal matrix is of order l × l, k1 and k2 satisfy 0 ≤ k1 ≤ l − k and 0 ≤ k2 ≤ l − k.

In place of (1.8) and (1.9), we now need only perform the updates

FR1
← L−1

T FR1
(4.12)

and

FUT
← FUT

− FC1
FR1

. (4.13)

When writing to the buffers, FR1
and FC1

, rather than FR and FC , are stored, resulting in savings

in both the real and integer factor storage.

If more than one pivot is chosen, the updated matrices FR1
and FC1

may still contain some

zeros. However, experiments reported by Scott (1997) indicated that, in general, the number of

zeros remaining in the factors is small (typically less than 10 per cent of the total number of

entries in the factors). We do not, therefore, attempt to exploit zeros within FR1
and FC1

.

8



5 Element ordering

The efficiency of the frontal method, in terms of both storage and arithmetic operations, is

dependent upon assembling the elements in an order that keeps the size of the frontal matrix,

known as the wavefront, as small as possible. In other words, the elements need to be ordered so

that partially summed variables become fully summed as soon as possible. MA42 relied on the user

to preorder the elements; no automatic element ordering routines were included in the package.

Instead, HSL offered a separate package, MC63 (Scott, 1999), that could be used to generate an

element assembly order. An important design decision for MA42 ELEMENT was to simplify things

for the user by offering a number of element ordering routines within the package, while also

allowing the user to supply his or her own ordering. Allowing the user to specify an ordering is

particularly important if a number of matrices with the same (or similar) sparsity patterns are

to be factorised. In this case, the reordering (which may add a significant CPU overhead to the

analyse phase) need only be performed for the first matrix.

In a recent article, Scott (2004) reported on the use of multilevel element ordering algorithms

and compared their performance with a number of variants of Sloan’s algorithm (Sloan, 1986).

Scott considered both direct and indirect versions of the multilevel algorithm (an algorithm is

referred to as a direct algorithm if it orders the elements directly and as an indirect algorithm

if the variables are first resequenced and the new variable numbers then used to reorder the

elements). Scott also used these variants in combination with spectral orderings to give so-

called hybrid orderings. Numerical experimentation on a range of large problems from practical

applications showed that, in general, the best orderings are obtained using the indirect hybrid

spectral-Sloan algorithm and so this has been chosen as the default element ordering algorithm

within MA42 ELEMENT. The code calls the multilevel Fiedler code HSL MC73 of Hu and Scott (2003)

to compute the spectral ordering and then a modified version of MC63 is used to obtain the hybrid

ordering.

Because Sloan orderings can be computed cheaply using MC63 and because they are generally

of a similar quality to the hybrid spectral-Sloan orderings for relatively small problems,

MA42 ELEMENT includes an option to reorder using MC63. The code also offers an option for

computing both the direct and indirect orderings; the best ordering (in terms of the root mean

squared wavefront) is then automatically selected and returned from the analyse phase. How

much time the user wishes to spend on element ordering will generally depend on whether

memory restrictions make it important that the maximum frontsize is as small as possible or

on the number of matrices with the same (or similar) sparsity patterns that are to be factorized.

Clearly, if a large number of factorizations (or large number of solves following a factorization)

are to be performed, it may well be worthwhile to experiment with a number of different ordering

algorithms so that sparse factors are computed as rapidly as possible; MA42 ELEMENT has been

designed to make this straightforward for the user to do.

6 Features designed for a multiple front algorithm

One of the main deficiencies of the frontal solution scheme is that there is little scope for

parallelism other than that which can be obtained within the high level BLAS. One way of

attempting to overcome this is to extend the basic frontal algorithm to use multiple fronts.

9



While MA42 ELEMENT is not a multiple front code, it has been designed to include a number of

options that will allow it to be used in a straightforward way within a multiple front code. These

are discussed briefly in this section.

In a multiple front approach, the underlying finite-element domain Ω is first partitioned into

non-overlapping subdomains Ωi. This is equivalent to ordering the matrix A to doubly-bordered

block diagonal form
















A11 C1

A22 C2

... .

ANN CN

C̃1 C̃2 ... C̃N

∑N
i=1 Ei

















, (6.14)

where the diagonal blocks Aii are ni × ni and the border blocks Ci and C̃i are ni × l and l × ni,

respectively, with l� ni. A partial frontal decomposition is performed on each of the matrices

(

Aii Ci

C̃i Ei

)

. (6.15)

This can be done in parallel. At the end of the assembly and elimination processes for each

subdomain Ωi, there will remain 1 ≤ li ≤ l interface variables. These variables cannot be

eliminated since they are shared by more than one subdomain. Variables that have not been

eliminated within the subdomain because of efficiency or stability considerations will also remain.

These variables are added to the border and l is increased. If Fi holds the frontal matrix that

remains when all possible eliminations on subdomain Ωi have been performed, once each of the

subdomains has been dealt with formally we have

A = P

















L1

L2

... .

LN

L̃1 L̃2 ... L̃N I

































U1 Ũ1

U2 Ũ2

... .

UN ŨN

... F

















Q, (6.16)

where P and Q are permutation matrices and the l × l matrix F is a sum of the Fi’s and is

termed the interface matrix. It may also be factorized using the frontal method. Once the

interface variables have been computed, the rest of the block back-substitution can be performed

in parallel.

When applying a frontal solver to a subdomain, elimination of the interface variables (which

are not fully summed within the subdomain) must be prevented. A simple way of doing this is

by introducing an extra element for each subdomain that contains only the interface variables

for that subdomain. The extra element, which is called a guard element (see Duff and Scott,

1996 and Scott, 2001b), is passed as the last element to the analyse phase but is not passed to

the factorise phase. Since the factorise phase is not called for the guard element, variables in

the guard element (that is, the interface variables) do not become fully summed but remain in

the front after the assembly and elimination operations for the final element in Ωi are complete.

Thus if MA42 ELEMENT is to be used as part of a multiple front solver it needs to offer a means

of extracting the remaining frontal matrix Fi from its internal structures. To do this, we have

included within the package a separate subroutine MA42 ELEMENT PARTIAL, which may be called

10



by the user after one or more elements has been passed to the factorization phase to preserve

the partial factorization. It writes the data remaining in the buffers to the direct access files and

saves the data remaining in the frontal matrix and corresponding frontal right-hand side matrix in

user-supplied arrays. In addition, we have included within the solve routine MA42 ELEMENT SOLVE

options for performing the forward eliminations and back-substitutions on separate calls. This

feature is needed by the solve phase of the multiple front algorithm.

7 Numerical experiments

In this section, we report on using MA42 ELEMENT to solve a number of problems from practical

applications. Comparisons are made with MA42. The test problems are listed in Table 7.1. They

range in size from fewer than 1000 elements to more than 70,000 elements with almost 225,000

degrees of freedom. If only the sparsity pattern is available, numerical values for the matrix

entries are generated using the HSL pseudo-random number generator FA14. Our experiments

Table 7.1: The test problems. n and nelt denote the number of variables and elements,

respectively. ∗ indicates only pattern available.

Identifier n nelt Description/discipline

cham∗ 12834 11070 Part of an engine cylinder

crplat2∗ 18010 3152 Corrugated plate field

fcondp2∗ 201822 35836 Oil production platform

fullb∗ 199187 59738 Full-breadth barge

halfb∗ 224617 70211 Half-breadth barge

inv-ext-2∗ 78142 7193 Fluid flow

mt1∗ 97578 5328 Tubular joint

opt1∗ 15449 977 Part of condeep cylinder

ship 001 34920 3431 Ship structure - predesign

ship 003 121728 45464 Ship structure - production

shipsec1∗ 140874 41037 Section of a ship

shipsec5 179860 52272 Section of a ship

shipsec8 114919 32580 Section of a ship

srb1∗ 54924 9240 Space shuttle rocket booster

thread∗ 29736 2176 Threaded connector

trdheim∗ 22098 813 CFD simulation; mesh of Trondheim fjord

troll∗ 213453 41084 Structural analysis

tsyl201∗ 20685 960 Part of condeep cylinder

tubu∗ 26573 23446 Engine cylinder model

x104 108384 26019 Beam joint

are performed on a single Xeon 3.06 GHz processor of a Dell Precision Workstation 650 with 4

GBytes of RAM under the Fedora Core 1 Linux operating system. The NAG Fortran 95 compiler

is used with the compiler optimization flag -O. All reported timings are CPU times, measured

using the Fortran 95 routine cpu time and are given in seconds. In all our tests, the scaled

residual (2.10) was computed; in each case, this was found to be less than 10−12.

11



MA42 (Version 1.0.0) is run with all its control parameters set to their default values. Note that

this means that the minimum pivot block size is 1 and zeros in the front are not exploited. The

finite elements are preordered for MA42 using MC63 (both the indirect and direct algorithms are

run and the best one selected). The time needed by MC63 to reorder the elements is added to the

time for the analyse phase of MA42. The buffers sizes are chosen to be the same as those used by

MA42 ELEMENT (that is, 216). MA42 ELEMENT is also run with its default control parameters. CPU

timings for the analyse, factorize, and solve phases (for a single right-hand side) are reported in

Table 7.2. We see that the analyse phase of MA42 ELEMENT is more expensive than that of MA42.

Table 7.2: Timings (in seconds) for MA42 and MA42 ELEMENT.

Identifier Analyse Factorize Solve

MA42 MA42 MA42 MA42 MA42 MA42

ELEMENT ELEMENT ELEMENT

cham 0.09 0.20 8.9 2.8 0.38 0.23

crplat2 0.01 0.03 4.9 2.3 0.33 0.24

fcondp2 0.24 0.39 3299 692 36.3 21.6

fullb 0.50 0.51 1806 783 28.8 25.9

halfb 0.52 0.52 1345 507 26.0 19.5

inv-ext-2 0.25 0.55 1152 448 15.9 9.8

mt1 0.10 0.22 243 172 6.4 6.1

opt1 0.02 0.07 7.6 7.8 0.40 0.41

ship 001 0.06 0.10 16 13 0.86 0.84

ship 003 0.37 0.35 1279 399 13.0 9.2

shipsec1 0.34 0.34 1916 342 23.9 11.1

shipsec5 0.44 0.43 3361 1311 25.6 19.2

shipsec8 0.34 0.29 4684 1680 21.8 15.1

srb1 0.05 0.08 14 11 0.99 0.97

thread 0.06 0.22 170 53 2.9 1.6

trdheim 0.02 0.03 1.0 0.9 0.23 0.12

troll 0.39 0.73 8060 3408 62 47

tsyl201 0.01 0.03 9.2 13 0.54 0.58

tubu 0.27 0.42 29 10 0.90 0.61

x104 0.08 0.20 1453 1031 9.1 7.1

This is because it implements the hybrid spectral-Sloan algorithm, which is more expensive than

the Sloan algorithms used by MC63 (see Scott, 2004). However, for large problems the analyse cost

is clearly a very small proportion of the total cost. In almost every example, the factorization and

solve times are significantly less for the new code. The reasons for this are the better ordering,

the use of a minimum pivot block greater than 1, and the exploitation of zeros in the front

(although closer examination reveals that, once we have a good ordering, the reductions achieved

by exploiting zeros in the front are small compared with the total factorization time).

In Table 7.3 we compare running MA42 ELEMENT with a minimum pivot block pivot size of 1

with using pivot size = 16 and 32. The reported times are for analyse plus factorize plus solve

for one right-hand side (AFS). The “flop” counts are the number of floating-point operations in

the inner-most loop of the factorization. For many problems, including halfb, shipsec1 and

troll, there are substantial savings in time if pivot size is greater than 1. The increases in the

number of entries in the factors and the number of flops are generally small (typically less than

12



3%). On our test machine there is no consistent advantage is using pivot size = 32 rather than

Table 7.3: Timings (in seconds), the number of entries in the factors (∗106) and flop counts (∗109)

for MA42 ELEMENT for different pivot block sizes.

Identifier AFS times Entries in factors Flops

1 16 32 1 16 32 1 16 32

cham 9.7 3.2 3.1 8.3 8.5 8.7 3 3 3

crplat2 2.8 2.5 2.8 8.5 8.7 9.0 2 2 2

fcondp2 1098 714 777 607 610 613 1147 1155 1165

fullb 1271 810 899 705 712 718 1313 1330 1347

halfb 906 527 594 586 592 599 813 826 840

inv-ext-2 720 459 450 306 306 307 756 759 762

mt1 221 179 189 216 216 318 267 268 272

opt1 11 8.3 8.0 15 15 15 9 9 10

ship 001 18 14 15 31 31 32 14 15 15

ship 003 684 408 382 307 319 327 438 452 465

shipsec1 612 354 404 374 378 381 561 568 577

shipsec5 1323 1331 1279 502 501 502 744 744 742

shipsec8 1754 1695 1753 423 423 422 853 844 844

srb1 14 12 14 34 35 36 11 12 12

thread 60 55 54 620 623 627 72 72 74

trdheim 0.9 1.0 1.1 4.4 4.4 4.7 0.6 0.6 0.7

troll 6352 3381 3242 1339 1342 1346 5500 5518 5540

tsyl201 10 10 10 21 21 21 11 11 11

tubu 37 10 10 22 22 23 10 11 11

x104 792 1039 984 239 253 248 368 430 408

16; for some problems, 32 gives the faster time while for others the converse is true. Based on our

findings and the previous results of Cliffe et al. (1998), 16 has been selected as the default within

MA42 ELEMENT. We note that the only problem that is significantly slower using pivot size > 1

is x104. For this problem, many pivots are delayed and, in this case, using a larger pivot block

leads to a significant increase in the maximum frontsize, from 2417 for pivot size = 1 to 2969

for pivot size = 16, and this in turn leads to an increase of 17% in the number of flops.

8 Concluding comments and software availability

In this report, we have described the design and development of a new Fortran 95 frontal solver

HSL MA42 ELEMENT. The code builds on the extensive experience we have of frontal software

development and, for element problems, offers a replacement for our existing frontal codes MA42

and ME42. We have always been very aware that reading the documentation and using MA42

for the first time can be daunting and so an important consideration when developing the new

package was ease of use. We have retained a reverse communication interface because of the

flexibility it offers but we also now offer a simpler all-in-one interface that should appeal to

inexperienced users. Incorporating element ordering within the package also simplifies its use. A

number of options for holding the element matrices and/or the computed factors out-of-core are

offered to allow very large problems to be solved on machines with limited main memory. The

out-of-core facilities are simple to use; in fact, the user may only be aware that files have been

13



used to hold the factors through a warning flag.

HSL MA42 ELEMENT is included in the recent release of the software library HSL (HSL 2004).

Use of the package requires a licence; full details of how to obtain a licence may be found at

www.cse.clrc.ac.uk/nag/hsl/hsl.shtml.

References

K.A. Cliffe, I.S. Duff, and J.A. Scott. Performance issues for frontal schemes on a cache-based high

performance computer. Inter. Journal on Numerical Methods in Engineering, 42, 127–143,

1998.

I.S. Duff. MA32 - a package for solving sparse unsymmetric systems using the frontal method.

Report AERE R10079, Her Majesty’s Stationery Office, London, 1981.

I.S. Duff. Enhancements to the MA32 package for solving sparse unsymmetric equations. Report

AERE R11009, Her Majesty’s Stationery Office, London, 1983.

I.S. Duff. Design features of a frontal code for solving sparse unsymmetric linear systems out-of-

core. SIAM J. Scientific and Statistical Computing, 5, 270–280, 1984.

I.S. Duff and J.A. Scott. MA42 – a new frontal code for solving sparse unsymmetric systems.

Technical Report RAL-93-064, Rutherford Appleton Laboratory, 1993.

I.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric systems.

ACM Trans. Mathematical Software, 22(1), 30–45, 1996.

P. Hood. Frontal solution program for unsymmetric matrices. Inter. Journal on Numerical

Methods in Engineering, 10, 379–400, 1976.

HSL. A collection of Fortran codes for large-scale scientific computation, 2004. See

http://hsl.rl.ac.uk/.

Y.F. Hu and J.A. Scott. Ordering techniques for singly bordered block diagonal forms for

unsymmetric parallel sparse direct solvers. Technical Report RAL-TR-2003-020, Rutherford

Appleton Laboratory, 2003.

B.M. Irons. A frontal solution program for finite-element analysis. Inter. Journal on Numerical

Methods in Engineering, 2, 5–32, 1970.

J.A. Scott. Exploiting zeros in frontal solvers. Technical Report RAL-TR-98-041, Rutherford

Appleton Laboratory, 1997.

J.A. Scott. On ordering elements for a frontal solver. Communications in Numerical Methods in

Engineering, 15, 309–323, 1999.

J.A. Scott. The design of a portable parallel frontal solver for chemical process engineering

problems. Computers in Chemical Engineering, 25, 1699–1709, 2001a.

J.A. Scott. A parallel solver for finite element applications. Inter. Journal on Numerical Methods

in Engineering, 50, 1131–1141, 2001b.

14



J.A. Scott. Multilevel hybrid spectral element ordering algorithms. Technical Report RAL-TR-

2004-018, Rutherford Appleton Laboratory, 2004. Communications in Numerical Methods

in Engineering, to appear, 2004.

S.W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. Inter. Journal

on Numerical Methods in Engineering, 23, 1315–1324, 1986.

15


