

MA42_ELEMENT - a state-of-the-art frontal solver for finite-element applications

Jennifer A. Scott

October 2004

© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should be addressed to:

Library and Information Services CCLRC Rutherford Appleton Laboratory Chilton Didcot Oxfordshire OX11 0QX UK

Tel: +44 (0)1235 445384 Fax: +44(0)1235 446403 Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of information contained in any of their reports or in any communication about their tests or investigations.

$\label{eq:ma42_element} \begin{tabular}{ll} {\tt MA42_ELEMENT-a state-of-the-art frontal solver for} \\ {\tt finite-element applications}^{1,2} \\ \end{tabular}$

Jennifer A. Scott

Abstract

In recent years there have been a number of important developments in frontal algorithms for solving the large sparse linear systems of equations that arise from finite-element problems. We report on the design of a new fully portable and efficient frontal solver for large-scale real and complex unsymmetric linear systems from finite-element problems that incorporates these developments. The new package offers both a flexible reverse communication interface and a simple to use all-in-one interface, which is designed to make the package more accessible to new users. Other key features include automatic element ordering using a state-of-the-art hybrid multilevel spectral algorithm, minimal main memory requirements, the use of high level BLAS, and facilities to allow the solver to be used as part of a parallel multiple front solver. The performance of the new solver, which is written in Fortran 95, is illustrated using a range of problems from practical applications. The solver is available as package HSL_MA42_ELEMENT within the HSL mathematical software library and, for element problems, supersedes the well-known MA42 package.

Keywords: large sparse linear systems, finite elements, frontal method, out-of-core, Fortran 95.

Computational Science and Engineering Department Atlas Centre Rutherford Appleton Laboratory Oxon OX11 0QX

October 2004.

¹ Current reports available from "http://www.numerical.rl.ac.uk/reports/reports.html".

² This work was supported by the EPSRC grant GR/S42170.

1 Introduction

We are interested in the efficient solution of large sparse linear systems of equations

$$AX = B, (1.1)$$

where the system matrix A is of order $n \times n$, B is an $n \times nrhs$ ($nrhs \ge 1$) matrix of right-hand sides and X is the $n \times nrhs$ solution matrix. Such systems arise in many areas of computational science and engineering; our interest in this report is in the systems (1.1) that arise from finite element applications. In this case, A is an elemental matrix, that is, A is a sum of finite-element matrices

$$A = \sum_{k=1}^{nelt} A^{(k)}, \tag{1.2}$$

where each element matrix $A^{(k)}$ has nonzeros in a small number of rows and columns and corresponds to the matrix from element k. In practice, each $A^{(k)}$ is held in packed form as a small dense matrix together with a list of the variables that are associated with element k, which identifies where the entries belong in A. Each $A^{(k)}$ is symmetrically structured (the list of variables is both a list of column indices and a list of row indices) but, in the general case, is numerically unsymmetric.

One possible method for solving systems of this form is the frontal method. Frontal schemes have their origins in the early 1970s with the work of Irons (1970). At the time, there was a need to solve finite element problems that were too large for the system matrix and the matrix factors to be held in main memory, so that existing direct methods could not be used. The frontal method was therefore designed to be a robust direct method that required only a small amount of main memory (that is, the main memory needed was small compared with the order n of the linear system). Today computers and their memories are much larger but so too are the problems that computational scientists and engineers wish to solve. Thus methods that require only limited main memory remain attractive.

The frontal method is a variant of Gaussian elimination and involves the matrix factorization

$$A = PLUQ, (1.3)$$

where P and Q are permutation matrices, and L and U are lower and upper triangular matrices, respectively. The solution process is completed by performing the forward elimination

$$PLY = B, (1.4)$$

followed by the back-substitution

$$UQX = Y. (1.5)$$

The key feature of the method is that the contributions $A^{(k)}$ from the finite elements are assembled one at a time and the storage of the entire assembled coefficient matrix A is avoided by interleaving assembly and elimination operations. This allows the computation to be performed using a *frontal* matrix that at each stage may be expressed in the form

$$\begin{pmatrix} F_T & F_R \\ F_C & F_U \end{pmatrix}, \tag{1.6}$$

where the rows and columns of the $r \times r$ matrix F_T are fully summed, that is, there are no other entries in these rows and columns in the overall matrix, while the rows and columns of the $s \times s$ matrix F_U are not yet fully summed. In general, r << s and the frontsize r+s is much less than n, the order of A. Provided stable pivots can be chosen from F_T , the factorization $F_T = L_T U_T$ is computed. Then F_C and F_R are updated as

$$F_C \leftarrow F_C U_T^{-1},\tag{1.7}$$

$$F_R \leftarrow L_T^{-1} F_R,\tag{1.8}$$

and then Schur complement

$$F_U \leftarrow F_U - F_C F_R \tag{1.9}$$

is formed. At the next stage, another element matrix is assembled with this Schur complement to form another frontal matrix. As the rows and columns of the matrix factors are generated, they are written to buffers (work arrays), which are held in main memory. This frees up space in the frontal matrix, which can then be reused for further incoming elements. If a buffer becomes full, its contents are written to a direct access file. The data in these files is read back into main memory (one record at a time) during the forward elimination and back-substitution phases.

Since the original work of Irons (1970), the frontal method has been developed and generalised by a number of authors, including Hood (1976) and Duff (1981, 1983, 1984). The frontal solver MA42 of Duff and Scott (1993, 1996) for real unsymmetric systems and its counterpart ME42 for complex systems have been part of the mathematical software library HSL (HSL, 2004) for a decade. The code has been widely used to solve problems from a variety of different application areas including fluid flow, structural analysis, and chemical process engineering. It has also been used in the development of parallel frontal solvers for HSL (HSL MP42 and HSL MP43). Following feedback and comments from users, and also as a result of our own experience of using MA42 and ME42, we have noted a number of ways in which the code might be improved, both in the options offered to users and in its user interface as well as in its performance. The improvements include integrating element ordering within the package, incorporating real and complex versions within a single package, allowing greater use of dense linear algebra kernels, simplifying the use of out-of-core factor storage, and providing facilities for preserving a partial factorization. We therefore felt it was time to develop a new frontal code to supersede MA42 and ME42.

The package MA42 (and ME42) was primarily designed for finite-element problems, but by offering the user the option of entering the matrix data by elements or by equations (rows), it can be used to solve general sparse unsymmetric linear systems. We have found that including both input options within a single package adds to the complexity of the code, the user interface and user documentation. To assist with code maintenance and to make the code easy to use, an early design decision for the new frontal package was to separate the element and equation versions. In this report, we discuss the design and development of our new frontal solver HSL_MA42_ELEMENT for real and complex finite-element problems; our intention in the future is to develop a corresponding package for unassembled unsymmetric systems that will adopt a similar user interface and offer a similar range of options. We observe that having two separate codes is consistent with the approach we have already adopted for the HSL parallel frontal solvers: HSL_MP42 (Scott, 2001b)

and HSL_MP43 (Scott, 2001a) are designed for finite-element problems and general unsymmetric systems, respectively.

We end this section by listing the key features of our new frontal solver HSL_MA42_ELEMENT, a number of which will be discussed further in later sections, as indicated.

- The matrix A must be input by elements. Two interfaces are offered: a flexible reverse communication interface and a simpler all-in-one interface that is designed to appeal in particular to inexperienced users (see Section 2).
- Versions are included within the package for both real and complex systems. Single and
 double precision versions are offered but we recommend that at least 8-byte arithmetic is
 always used.
- The package is fully portable, threadsafe, and written in standard Fortran 95. HSL is a library of Fortran packages; Fortran 95 was chosen for our new frontal solver not only for its efficiency for scientific computation but also because it offers many more features than Fortran 77. The package makes extensive use of dynamic memory allocation, which allows a much cleaner user interface and enables the computation to continue if the initial allocation of workspace is not sufficient.
- Through the use of both control parameters and optional arguments, a wide range of options is available to the user. Key parameters are discussed in Section 2.3 and full details are given in the user documentation.
- A number of state-of-the-art element ordering algorithms are incorporated within the package (see Section 5).
- If there is insufficient main memory to hold the matrix factors they are held in direct access files. During the factorization, data is put into explicitly held buffers and, whenever a buffer is full, it is written to a direct access file. The length of the records in each of the direct access files (which is equal to length of the associated buffer) is chosen either automatically by the code or by the user. Further details are given in Section 2.3.
- Efficient use is made of level 3 BLAS by allowing the user to choose the minimum pivot block size (see Section 3).
- To try and avoid unnecessary operations with zeros, the code follows the work of Scott (1997) and exploits zeros in the frontal matrix (see Section 4).
- A number of features are offered that allow the code to be used within an implementation of the multiple front algorithm; this is discussed in Section 6.

Finally, we note that the naming convention adopted within HSL is for all Fortran 90 or 95 packages to have a name starting with HSL_ (which distinguishes them from the Fortran 77 codes). Throughout the remainder of this report, we abbreviate the full name HSL_MA42_ELEMENT of our new frontal solver to MA42_ELEMENT.

2 User interface

In common with other sparse direct methods, the frontal method can be split into a number of distinct phases as follows:

- 1. An ordering phase that determines a suitable order for assembling the elements. For efficiency in terms of both storage and arithmetic operations, it is essential that the elements are assembled in an order that keeps the size of the frontal matrix as small. That is, once a variable has entered the front, it needs to become fully summed as quickly as possible.
- 2. An analyse phase that takes the index lists for each of the elements in turn and determines a potential pivot sequence.
- 3. A factorization phase that uses the pivot sequence (modified if necessary to maintain numerical stability) to factorize the matrix.
- 4. A solve phase that performs forward elimination followed by back substitution using the stored factors.

MA42_ELEMENT offers the user two different interfaces: a reverse communication interface that requires separate calls to each of the different phases and a simpler (but slightly less flexible) all-in-one interface. Both make use of control parameters. These are parameters that, as their name implies, control the action within the package. They are given default values by a call to the initialisation routine MA42_ELEMENT_START. The defaults have been chosen on the basis of our numerical experiments on a range of problems and computer platforms and are likely to be appropriate for most users. However, for maximum flexibility, these parameters may be reset by the user after the call to MA42_ELEMENT_START. The controls include parameters that determine the level of diagnostic printing, the choice of element ordering algorithm, the pivoting, and the action taken if A is found to be singular. Full details of all the control parameters is provided in the user documentation.

In the remainder of this section, we describe the two interfaces and then look at the greater flexibility that is offered by the reverse communication interface.

2.1 Reverse communication

The key idea of the reverse communication interface is to keep main memory requirements for the matrix data to a minimum by requiring the user to supply the element matrices one at a time as they are needed. This gives the user maximum freedom as to how the element matrices are held; if convenient, the user may choose to generate the element data only as it is required. The ordering and analyse phase are optionally combined and, if the right-hand sides B are available in unassembled form, that is, $B = \sum_{k=1}^{nelt} B^{(k)}$, they may be passed with the element matrices $A^{(k)}$ to the factorization phase. In this case, forward substitution is performed at the same time as the matrix factorization and, once the factorization is complete, back-substitution is performed to complete the solution.

There are three main routines that comprise the reverse communication interface:

MA42_ELEMENT_ANALYSE: must be called for each element in turn to specify which variables are associated with it. The calls may be made in any order. An element assembly order may be

supplied by the user, otherwise an ordering is automatically generated. This is discussed further in Section 5. The output from the final call to MA42_ELEMENT_ANALYSE is the element assembly order for the factorisation phase. In addition, the analyse phase determines when each variable becomes fully summed (that is, it determines a tentative pivot sequence) and computes estimates of the maximum frontsize and of the storage required for the matrix factors.

MA42_ELEMENT_FACTORIZE: must be called for each element to specify the entries of $A^{(k)}$ and, optionally, $B^{(k)}$. The calls **must** be made in the order determined by the analyse phase (no calls may be made until the analyse phase is complete). Data from MA42_ELEMENT_ANALYSE is used to factorize the matrix and, if $B^{(k)}$ are specified, the equations AX = B with right-hand side(s) $B = \sum_{k=1}^{nelt} B^{(k)}$ are solved after the call for the last element. Note that more than one finite-element problem having elements with the same variable lists (but different numerical values) may be factorized and solved following a single set of calls to MA42_ELEMENT_ANALYSE.

MA42_ELEMENT_SOLVE: uses the computed factors to rapidly solve either further systems of the form AX = B or systems of the form $A^TX = B$ (or $A^HX = B$, where A^H is the complex conjugate transpose of A), with the right-hand side vectors B input in assembled form. Any number of calls to MA42_ELEMENT_SOLVE may follow the final call to MA42_ELEMENT_FACTORIZE.

In addition to the above routines, MA42_ELEMENT_RESIDUAL may be called for each element after the final call to MA42_ELEMENT_FACTORIZE, or after a call to MA42_ELEMENT_SOLVE, to compute the residual matrix RES = B - AX (or $RES = B - A^TX$ or $RES = B - A^HX$). This routine also optionally computes the infinity norm of the system matrix, allowing the user to compute the infinity norm of the scaled residuals

$$\frac{\|res_j\|_{\infty}}{\|A\|_{\infty}\|x_j\|_{\infty} + \|b_j\|_{\infty}} \tag{2.10}$$

where b_j is the jth right-hand side and x_j and res_j are the corresponding solution and residual vector, respectively. If the residual is found to be too large, the user can perform iterative refinement by calling MA42_ELEMENT_SOLVE with the right-hand side set to RES.

2.2 All-in-one interface

Our old packages MA42 and ME42 offered only a reverse communication interface. As part of our attempt to make the new package more user friendly, MA42_ELEMENT has a simpler all-in-one interface. In this case, the user must make a single call to routine MA42_ELEMENT_AFS to perform the analyse, factorize, and (optionally) solve phases. MA42_ELEMENT_SOLVE may be called to solve for further right-hand sides or to solve transpose (or complex conjugate transpose) systems. MA42_ELEMENT_RESIDUAL may also be called to compute the residual matrix.

When calling MA42_ELEMENT_AFS, the user must supply the lists of the variables for all the elements in a single integer array. The entries of the element matrices may be supplied using either an array or a direct access file (with a further array or file for element right-hand sides). Using files reduces the main memory requirements and will generally be needed for large problems (without this option, the important advantage that frontal solvers have of needing only a small amount of main memory is lost). Each record in the element data file must contain the entries for a single

element matrix, with the elements held in the same order as in the array of element variable lists. Direct access (and not sequential) files are needed so that, during the factorization, the code can read the elements in the order generated by the automatic element ordering algorithm.

2.3 Factorize options and flexibility

As well as offering the user greater flexibility in how to store or generate the element data, MA42_ELEMENT_FACTORIZE includes a number of options that are not available in the all-in-one interface. In particular, there are options to supply the lengths of the buffers (work arrays) used by the factorization and the maximum order of the frontal matrix. The latter must be at least as large as the estimate returned by the analyse phase. Because a dense matrix of order the maximum frontsize is needed, if memory restrictions are likely to be an issue, the user should not choose a maximum frontsize that is very large compared with the analyse estimate; a value larger than the analyse estimate is recommended to allow for possible increases to the frontsize because of delayed pivots. The analyse phase assumes that whenever there are at least pivot_size fully summed variables, they can be eliminated (pivot_size is a control parameter that is discussed further in Section 3). During the factorization, a potential pivot can only be used if it satisfies a numerical stability test. Specifically, a fully summed entry of the frontal matrix is only considered suitable for use as a pivot if it is of absolute value at least as large as alpha times the entry of largest absolute value in its column. The threshold parameter alpha (0 < alpha < 1) is a control parameter with default value of 0.01. If a potential pivot does not satisfy this condition, it is delayed and will be retested after further element assemblies. Values of alpha close to zero will generally result in a faster factorization with fewer entries in the factors but values close to 1 are more likely to result in a stable factorization; the default of 0.01 is a compromise between stability and sparsity. If the user does not supply the maximum frontsize when calling MA42_ELEMENT_FACTORIZE, a maximum frontsize of 110% of the estimate from the analyse phase is used. Should a user have prior knowledge of his or her problem and know that a large number of pivots will be delayed, causing the maximum frontsize to increase substantially beyond that predicted by the analyse phase, the user can overwrite the automatically selected maximum frontsize with his or her own choice.

The earlier Fortan 77 code MA42 was unable to continue if the user-supplied frontsize was not large enough but using Fortran 95 allows MA42_ELEMENT_FACTORIZE to continue the computation by allocating a new larger frontal matrix. The action taken when the frontsize is too small depends upon the control parameter front_multiple. If this is less than or equal to 1, the computation terminates with an error message as soon as the frontsize is found to be too small. The user may then increase the maximum frontsize and restart the factorization (there is no need to repeat the analyse phase). If front_multiple is greater than 1 (the default is 1.1), the computation will continue. In this case, the contents of the internal arrays of size that depends on the maximum frontsize are written to scratch files, the arrays are deallocated and then reallocated with sizes sufficient to continue the computation. The data in the files is read back into these arrays, the scratch files are closed (and thus deleted), and the computation continues. Note that increasing the size of internal arrays will add to the factorization cost and may be done more than once during the factorization of a particular problem. At the end of the factorization details of the maximum frontsize used is returned to the user. If the user needs to factorize more than one matrix having the same sparsity pattern, for efficiency advantage should be taken of this

maximum frontsize when calling MA42_ELEMENT_FACTORIZE for subsequent matrices.

Following the design of MA42, three direct-access files are optionally used by MA42_ELEMENT: one for the UQ factor (which is held with the corresponding right-hand sides), one for the PLfactor, and one for the row and column indices of the variables in the factors. However, we have greatly simplified the use of files for the user. One of the complications of using MA42 was that the user had to provide data on both the sizes of the buffers to be used and the amount of storage required by the factors. Clearly, for a new problem or application area, this could be difficult. Estimates of the factor storage needed based on the assumption that no pivots are not delayed was returned by the analyse phase but, if numerical considerations caused a number of pivots to be delayed, the factorization could terminate before completion and would have to be completely restarted with increased parameter values. MA42_ELEMENT simplifies the use of direct access files and minimises the input required from the user. For the all-in-one interface the user is not asked for any input relating to the buffers and files. In this case, buffer lengths of 2¹⁶ are used. For large problems, files will be required to hold the factors. The code chooses appropriate units on which to open files and these files are given the status SCRATCH. At the end of the computation, these files are closed (and hence lost). The only way the user will be aware that files have been used will be through the receipt a warning flag.

However, this simple use of buffers and files may not be suitable for all users. In particular, the user may wish to use named direct access files that can be saved at the end of the computation for possible further solves in the future. The reverse communication interface to MA42_ELEMENT offers a number of options aimed at more experienced users. The user can choose to supply the buffer lengths; if these are sufficiently large, using files may be avoided. The user's choice will normally depend upon the problem size and memory available. If the user does not supply buffer lengths then default values of 2¹⁶ are again used. The user may also optionally supply the names of the direct access files. If names are supplied, at the end of the computation the files are closed but not deleted.

We note that the L factor only needs to be stored during the factorization if the user wishes to call MA42_ELEMENT_SOLVE after the final call to MA42_ELEMENT_FACTORIZE (or after a call to MA42_ELEMENT_AFS). Not storing the L factor will clearly result in a substantial storage saving.

3 Minimum pivot block

At each stage of the elimination process, once pivots have been chosen, it is essential to the overall efficiency of the frontal solver that the Schur complement (1.9) is formed as efficiently as possible. The frontal matrix is held as a dense matrix and so dense linear algebra kernels (in particular, the BLAS) may be used. If the frontal solver picks a single pivot at a time then it is only possible to use Level 2 BLAS but if r > 1 pivots are chosen, F_R may be updated using the Level 3 BLAS routine _TRSM and then the Schur complement (1.9) computed using the Level 3 BLAS routine _GEMM with interior dimension r. Our experience with MA42 was that, for some problems (notably those with only one variable per finite-element node), r can be small and there is then little advantage gained by using Level 3 BLAS. This prompted Cliffe, Duff and Scott (1998) to look at enhancing the use of the BLAS by delaying updating the frontal matrix until the number of pivot candidates is at least some prescribed minimum, say pivot_size. Suppose, at some stage, that the number of fully summed variables is k, then the maximum number of pivots which we

can choose is k. If $k < \texttt{pivot_size}$ and not all the elements have been assembled, we do not look for pivots but assemble another element into the frontal matrix until the number of fully summed variables is at least $\texttt{pivot_size}$.

In MA42_ELEMENT, the minimum pivot block size pivot_size is a control parameter with default value 16. The best value to use is both problem and machine dependent. Increasing the minimum pivot block size in general increases the number of floating-point operations and real storage requirements but reduces integer storage and, most importantly, can reduce the CPU time required by both the factorization and solve phases. Results illustrating this are given in Cliffe et al. (1998). We note that pivot_size is used in both the analyse and the factorize phases. In particular, the estimates of the maximum frontsize and factor storage returned by MA42_ELEMENT_ANALYSE are dependent on pivot_size. Since the analyse phase is much less expensive than the factorization phase (especially as element reordering only needs to be performed on the first run of the analyse phase for a particular problem), the user can investigate the effect of varying pivot_size before factorizing the matrix.

4 Zeros in the front

During the factorization, the frontal matrix may contain some zero entries. Treating the frontal matrix as a dense matrix results in unnecessary operations being performed with these zeros and potentially a large number of explicit zeros being stored in the factors. Because level 3 BLAS are used to perform the factorization operations, the cost of the operations with zeros may not be prohibitive but if the frontal matrix contains a significant number of zeros, Scott (1997) found that it can be advantageous to exploit these zeros. To see how this can be done, suppose the frontal matrix has been permuted to the form (1.6) and that k is the number of fully summed variables. By performing further row and column permutations, the frontal matrix can be expressed in the form

$$F = \begin{pmatrix} F_T & F_{R_1} & 0_1 \\ F_{C_1} & F_{U_T} & F_{U_R} \\ 0_2 & F_{U_C} & F_{U_U} \end{pmatrix}, \tag{4.11}$$

where 0_1 and 0_2 are zero matrices of order $k \times k_1$ and $k_2 \times k$, respectively. Assuming the current frontal matrix is of order $l \times l$, k_1 and k_2 satisfy $0 \le k_1 \le l - k$ and $0 \le k_2 \le l - k$.

In place of (1.8) and (1.9), we now need only perform the updates

$$F_{R_1} \leftarrow L_T^{-1} F_{R_1} \tag{4.12}$$

and

$$F_{U_T} \leftarrow F_{U_T} - F_{C_1} F_{R_1}. \tag{4.13}$$

When writing to the buffers, F_{R_1} and F_{C_1} , rather than F_R and F_C , are stored, resulting in savings in both the real and integer factor storage.

If more than one pivot is chosen, the updated matrices F_{R_1} and F_{C_1} may still contain some zeros. However, experiments reported by Scott (1997) indicated that, in general, the number of zeros remaining in the factors is small (typically less than 10 per cent of the total number of entries in the factors). We do not, therefore, attempt to exploit zeros within F_{R_1} and F_{C_1} .

5 Element ordering

The efficiency of the frontal method, in terms of both storage and arithmetic operations, is dependent upon assembling the elements in an order that keeps the size of the frontal matrix, known as the wavefront, as small as possible. In other words, the elements need to be ordered so that partially summed variables become fully summed as soon as possible. MA42 relied on the user to preorder the elements; no automatic element ordering routines were included in the package. Instead, HSL offered a separate package, MC63 (Scott, 1999), that could be used to generate an element assembly order. An important design decision for MA42_ELEMENT was to simplify things for the user by offering a number of element ordering routines within the package, while also allowing the user to supply his or her own ordering. Allowing the user to specify an ordering is particularly important if a number of matrices with the same (or similar) sparsity patterns are to be factorised. In this case, the reordering (which may add a significant CPU overhead to the analyse phase) need only be performed for the first matrix.

In a recent article, Scott (2004) reported on the use of multilevel element ordering algorithms and compared their performance with a number of variants of Sloan's algorithm (Sloan, 1986). Scott considered both direct and indirect versions of the multilevel algorithm (an algorithm is referred to as a direct algorithm if it orders the elements directly and as an indirect algorithm if the variables are first resequenced and the new variable numbers then used to reorder the elements). Scott also used these variants in combination with spectral orderings to give so-called hybrid orderings. Numerical experimentation on a range of large problems from practical applications showed that, in general, the best orderings are obtained using the indirect hybrid spectral-Sloan algorithm and so this has been chosen as the default element ordering algorithm within MA42_ELEMENT. The code calls the multilevel Fiedler code HSL_MC73 of Hu and Scott (2003) to compute the spectral ordering and then a modified version of MC63 is used to obtain the hybrid ordering.

Because Sloan orderings can be computed cheaply using MC63 and because they are generally of a similar quality to the hybrid spectral-Sloan orderings for relatively small problems, MA42_ELEMENT includes an option to reorder using MC63. The code also offers an option for computing both the direct and indirect orderings; the best ordering (in terms of the root mean squared wavefront) is then automatically selected and returned from the analyse phase. How much time the user wishes to spend on element ordering will generally depend on whether memory restrictions make it important that the maximum frontsize is as small as possible or on the number of matrices with the same (or similar) sparsity patterns that are to be factorized. Clearly, if a large number of factorizations (or large number of solves following a factorization) are to be performed, it may well be worthwhile to experiment with a number of different ordering algorithms so that sparse factors are computed as rapidly as possible; MA42_ELEMENT has been designed to make this straightforward for the user to do.

6 Features designed for a multiple front algorithm

One of the main deficiencies of the frontal solution scheme is that there is little scope for parallelism other than that which can be obtained within the high level BLAS. One way of attempting to overcome this is to extend the basic frontal algorithm to use multiple fronts.

While MA42_ELEMENT is not a multiple front code, it has been designed to include a number of options that will allow it to be used in a straightforward way within a multiple front code. These are discussed briefly in this section.

In a multiple front approach, the underlying finite-element domain Ω is first partitioned into non-overlapping subdomains Ω_i . This is equivalent to ordering the matrix A to doubly-bordered block diagonal form

$$\begin{pmatrix} A_{11} & & & C_1 \\ & A_{22} & & C_2 \\ & & \dots & & \\ & & & A_{NN} & C_N \\ \tilde{C}_1 & \tilde{C}_2 & \dots & \tilde{C}_N & \sum_{i=1}^N E_i \end{pmatrix}, \tag{6.14}$$

where the diagonal blocks A_{ii} are $n_i \times n_i$ and the border blocks C_i and \tilde{C}_i are $n_i \times l$ and $l \times n_i$, respectively, with $l \ll n_i$. A partial frontal decomposition is performed on each of the matrices

$$\begin{pmatrix} A_{ii} & C_i \\ \tilde{C}_i & E_i \end{pmatrix}. \tag{6.15}$$

This can be done in parallel. At the end of the assembly and elimination processes for each subdomain Ω_i , there will remain $1 \leq l_i \leq l$ interface variables. These variables cannot be eliminated since they are shared by more than one subdomain. Variables that have not been eliminated within the subdomain because of efficiency or stability considerations will also remain. These variables are added to the border and l is increased. If F_i holds the frontal matrix that remains when all possible eliminations on subdomain Ω_i have been performed, once each of the subdomains has been dealt with formally we have

$$A = P \begin{pmatrix} L_1 & & & & \\ & L_2 & & & \\ & & \dots & & \\ & & L_N & \\ \tilde{L}_1 & \tilde{L}_2 & \dots & \tilde{L}_N & I \end{pmatrix} \begin{pmatrix} U_1 & & & \tilde{U}_1 \\ & U_2 & & \tilde{U}_2 \\ & & \dots & & \\ & & U_N & \tilde{U}_N \\ & & & \dots & F \end{pmatrix} Q, \tag{6.16}$$

where P and Q are permutation matrices and the $l \times l$ matrix F is a sum of the F_i 's and is termed the *interface matrix*. It may also be factorized using the frontal method. Once the interface variables have been computed, the rest of the block back-substitution can be performed in parallel.

When applying a frontal solver to a subdomain, elimination of the interface variables (which are not fully summed within the subdomain) must be prevented. A simple way of doing this is by introducing an extra element for each subdomain that contains only the interface variables for that subdomain. The extra element, which is called a guard element (see Duff and Scott, 1996 and Scott, 2001b), is passed as the last element to the analyse phase but is not passed to the factorise phase. Since the factorise phase is not called for the guard element, variables in the guard element (that is, the interface variables) do not become fully summed but remain in the front after the assembly and elimination operations for the final element in Ω_i are complete. Thus if MA42_ELEMENT is to be used as part of a multiple front solver it needs to offer a means of extracting the remaining frontal matrix F_i from its internal structures. To do this, we have included within the package a separate subroutine MA42_ELEMENT_PARTIAL, which may be called

by the user after one or more elements has been passed to the factorization phase to preserve the partial factorization. It writes the data remaining in the buffers to the direct access files and saves the data remaining in the frontal matrix and corresponding frontal right-hand side matrix in user-supplied arrays. In addition, we have included within the solve routine MA42_ELEMENT_SOLVE options for performing the forward eliminations and back-substitutions on separate calls. This feature is needed by the solve phase of the multiple front algorithm.

7 Numerical experiments

In this section, we report on using MA42_ELEMENT to solve a number of problems from practical applications. Comparisons are made with MA42. The test problems are listed in Table 7.1. They range in size from fewer than 1000 elements to more than 70,000 elements with almost 225,000 degrees of freedom. If only the sparsity pattern is available, numerical values for the matrix entries are generated using the HSL pseudo-random number generator FA14. Our experiments

Table 7.1: The test problems. n and nelt denote the number of variables and elements, respectively. * indicates only pattern available.

Identifier	n	nelt	Description/discipline		
cham*	12834	11070	Part of an engine cylinder		
$\mathtt{crplat2}^*$	18010	3152	Corrugated plate field		
${ t fcondp2}^*$	201822	35836	Oil production platform		
\mathtt{fullb}^*	199187	59738	Full-breadth barge		
\mathtt{halfb}^*	224617	70211	Half-breadth barge		
$inv-ext-2^*$	78142	7193	Fluid flow		
$\mathtt{mt1}^*$	97578	5328	Tubular joint		
$\mathtt{opt1}^*$	15449	977	Part of condeep cylinder		
ship_001	34920	3431	Ship structure - predesign		
ship_003	121728	45464	Ship structure - production		
$\mathtt{shipsec1}^*$	140874	41037	Section of a ship		
shipsec5	179860	52272	Section of a ship		
shipsec8	114919	32580	Section of a ship		
$\mathtt{srb1}^*$	54924	9240	Space shuttle rocket booster		
\mathtt{thread}^*	29736	2176	Threaded connector		
$\mathtt{trdheim}^*$	22098	813	CFD simulation; mesh of Trondheim fjord		
$troll^*$	213453	41084	Structural analysis		
tsyl201*	20685	960	Part of condeep cylinder		
\mathtt{tubu}^*	26573	23446	Engine cylinder model		
x104	108384	26019	Beam joint		

are performed on a single Xeon 3.06 GHz processor of a Dell Precision Workstation 650 with 4 GBytes of RAM under the Fedora Core 1 Linux operating system. The NAG Fortran 95 compiler is used with the compiler optimization flag -0. All reported timings are CPU times, measured using the Fortran 95 routine cpu_time and are given in seconds. In all our tests, the scaled residual (2.10) was computed; in each case, this was found to be less than 10^{-12} .

MA42 (Version 1.0.0) is run with all its control parameters set to their default values. Note that this means that the minimum pivot block size is 1 and zeros in the front are not exploited. The finite elements are preordered for MA42 using MC63 (both the indirect and direct algorithms are run and the best one selected). The time needed by MC63 to reorder the elements is added to the time for the analyse phase of MA42. The buffers sizes are chosen to be the same as those used by MA42_ELEMENT (that is, 2¹⁶). MA42_ELEMENT is also run with its default control parameters. CPU timings for the analyse, factorize, and solve phases (for a single right-hand side) are reported in Table 7.2. We see that the analyse phase of MA42_ELEMENT is more expensive than that of MA42.

Table 7.2: Timings (in seconds) for MA42 and MA42_ELEMENT.

Identifier	Analyse		Factor	rize	Solve		
	MA42	MA42_	MA42	MA42 MA42_		MA42_	
		ELEMENT		ELEMENT	ELEMENT		
cham	0.09	0.20	8.9	2.8	0.38	0.23	
crplat2	0.01	0.03	4.9	2.3	0.33	0.24	
fcondp2	0.24	0.39	3299	692	36.3	21.6	
fullb	0.50	0.51	1806	783	28.8	25.9	
halfb	0.52	0.52	1345	507	26.0	19.5	
inv-ext-2	0.25	0.55	1152	448	15.9	9.8	
mt1	0.10	0.22	243	172	6.4	6.1	
opt1	0.02	0.07	7.6	7.8	0.40	0.41	
ship_001	0.06	0.10	16	13	0.86	0.84	
ship_003	0.37	0.35	1279	399	13.0	9.2	
shipsec1	0.34	0.34	1916	342	23.9	11.1	
shipsec5	0.44	0.43	3361	1311	25.6	19.2	
shipsec8	0.34	0.29	4684	1680	21.8	15.1	
srb1	0.05	0.08	14	11	0.99	0.97	
thread	0.06	0.22	170	53	2.9	1.6	
trdheim	0.02	0.03	1.0	0.9	0.23	0.12	
troll	0.39	0.73	8060	3408	62	47	
tsyl201	0.01	0.03	9.2	13	0.54	0.58	
tubu	0.27	0.42	29	10	0.90	0.61	
x104	0.08	0.20	1453	1031	9.1	7.1	

This is because it implements the hybrid spectral-Sloan algorithm, which is more expensive than the Sloan algorithms used by MC63 (see Scott, 2004). However, for large problems the analyse cost is clearly a very small proportion of the total cost. In almost every example, the factorization and solve times are significantly less for the new code. The reasons for this are the better ordering, the use of a minimum pivot block greater than 1, and the exploitation of zeros in the front (although closer examination reveals that, once we have a good ordering, the reductions achieved by exploiting zeros in the front are small compared with the total factorization time).

In Table 7.3 we compare running MA42_ELEMENT with a minimum pivot block pivot_size of 1 with using pivot_size = 16 and 32. The reported times are for analyse plus factorize plus solve for one right-hand side (AFS). The "flop" counts are the number of floating-point operations in the inner-most loop of the factorization. For many problems, including halfb, shipsec1 and trol1, there are substantial savings in time if pivot_size is greater than 1. The increases in the number of entries in the factors and the number of flops are generally small (typically less than

Table 7.3: Timings (in seconds), the number of entries in the factors $(*10^6)$ and flop counts $(*10^9)$ for MA42_ELEMENT for different pivot block sizes.

Identifier	AFS times			Entrie	Entries in factors			Flops		
	1	16	32	1	16	32	1	16	32	
cham	9.7	3.2	3.1	8.3	8.5	8.7	3	3	3	
crplat2	2.8	2.5	2.8	8.5	8.7	9.0	2	2	2	
fcondp2	1098	714	777	607	610	613	1147	1155	1165	
fullb	1271	810	899	705	712	718	1313	1330	1347	
halfb	906	527	594	586	592	599	813	826	840	
inv-ext-2	720	459	450	306	306	307	756	759	762	
mt1	221	179	189	216	216	318	267	268	272	
opt1	11	8.3	8.0	15	15	15	9	9	10	
ship_001	18	14	15	31	31	32	14	15	15	
ship_003	684	408	382	307	319	327	438	452	465	
shipsec1	612	354	404	374	378	381	561	568	577	
shipsec5	1323	1331	1279	502	501	502	744	744	742	
shipsec8	1754	1695	1753	423	423	422	853	844	844	
srb1	14	12	14	34	35	36	11	12	12	
thread	60	55	54	620	623	627	72	72	74	
trdheim	0.9	1.0	1.1	4.4	4.4	4.7	0.6	0.6	0.7	
troll	6352	3381	3242	1339	1342	1346	5500	5518	5540	
tsyl201	10	10	10	21	21	21	11	11	11	
tubu	37	10	10	22	22	23	10	11	11	
x104	792	1039	984	239	253	248	368	430	408	

16; for some problems, 32 gives the faster time while for others the converse is true. Based on our findings and the previous results of Cliffe et al. (1998), 16 has been selected as the default within MA42_ELEMENT. We note that the only problem that is significantly slower using pivot_size > 1 is x104. For this problem, many pivots are delayed and, in this case, using a larger pivot block leads to a significant increase in the maximum frontsize, from 2417 for pivot_size = 1 to 2969 for pivot_size = 16, and this in turn leads to an increase of 17% in the number of flops.

8 Concluding comments and software availability

In this report, we have described the design and development of a new Fortran 95 frontal solver HSL_MA42_ELEMENT. The code builds on the extensive experience we have of frontal software development and, for element problems, offers a replacement for our existing frontal codes MA42 and ME42. We have always been very aware that reading the documentation and using MA42 for the first time can be daunting and so an important consideration when developing the new package was ease of use. We have retained a reverse communication interface because of the flexibility it offers but we also now offer a simpler all-in-one interface that should appeal to inexperienced users. Incorporating element ordering within the package also simplifies its use. A number of options for holding the element matrices and/or the computed factors out-of-core are offered to allow very large problems to be solved on machines with limited main memory. The out-of-core facilities are simple to use; in fact, the user may only be aware that files have been

used to hold the factors through a warning flag.

HSL_MA42_ELEMENT is included in the recent release of the software library HSL (HSL 2004). Use of the package requires a licence; full details of how to obtain a licence may be found at www.cse.clrc.ac.uk/nag/hsl/hsl.shtml.

References

- K.A. Cliffe, I.S. Duff, and J.A. Scott. Performance issues for frontal schemes on a cache-based high performance computer. *Inter. Journal on Numerical Methods in Engineering*, 42, 127–143, 1998.
- I.S. Duff. MA32 a package for solving sparse unsymmetric systems using the frontal method. Report AERE R10079, Her Majesty's Stationery Office, London, 1981.
- I.S. Duff. Enhancements to the MA32 package for solving sparse unsymmetric equations. Report AERE R11009, Her Majesty's Stationery Office, London, 1983.
- I.S. Duff. Design features of a frontal code for solving sparse unsymmetric linear systems out-of-core. SIAM J. Scientific and Statistical Computing, 5, 270–280, 1984.
- I.S. Duff and J.A. Scott. MA42 a new frontal code for solving sparse unsymmetric systems. Technical Report RAL-93-064, Rutherford Appleton Laboratory, 1993.
- I.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric systems. *ACM Trans. Mathematical Software*, **22**(1), 30–45, 1996.
- P. Hood. Frontal solution program for unsymmetric matrices. *Inter. Journal on Numerical Methods in Engineering*, **10**, 379–400, 1976.
- HSL. A collection of Fortran codes for large-scale scientific computation, 2004. See http://hsl.rl.ac.uk/.
- Y.F. Hu and J.A. Scott. Ordering techniques for singly bordered block diagonal forms for unsymmetric parallel sparse direct solvers. Technical Report RAL-TR-2003-020, Rutherford Appleton Laboratory, 2003.
- B.M. Irons. A frontal solution program for finite-element analysis. *Inter. Journal on Numerical Methods in Engineering*, **2**, 5–32, 1970.
- J.A. Scott. Exploiting zeros in frontal solvers. Technical Report RAL-TR-98-041, Rutherford Appleton Laboratory, 1997.
- J.A. Scott. On ordering elements for a frontal solver. Communications in Numerical Methods in Engineering, 15, 309–323, 1999.
- J.A. Scott. The design of a portable parallel frontal solver for chemical process engineering problems. *Computers in Chemical Engineering*, **25**, 1699–1709, 2001a.
- J.A. Scott. A parallel solver for finite element applications. *Inter. Journal on Numerical Methods in Engineering*, **50**, 1131–1141, 2001b.

- J.A. Scott. Multilevel hybrid spectral element ordering algorithms. Technical Report RAL-TR-2004-018, Rutherford Appleton Laboratory, 2004. Communications in Numerical Methods in Engineering, to appear, 2004.
- S.W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. *Inter. Journal on Numerical Methods in Engineering*, **23**, 1315–1324, 1986.